@article{BahenaDaftarianMaroofianetal.2022, author = {Bahena, Paulina and Daftarian, Narsis and Maroofian, Reza and Linares, Paola and Villalobos, Daniel and Mirrahimi, Mehraban and Rad, Aboulfazl and Doll, Julia and Hofrichter, Michaela A. H. and Koparir, Asuman and R{\"o}der, Tabea and Han, Seungbin and Sabbaghi, Hamideh and Ahmadieh, Hamid and Behboudi, Hassan and Villanueva-Mendoza, Cristina and Cort{\´e}s-Gonzalez, Vianney and Zamora-Ortiz, Rocio and Kohl, Susanne and Kuehlewein, Laura and Darvish, Hossein and Alehabib, Elham and La Arenas-Sordo, Maria de Luz and Suri, Fatemeh and Vona, Barbara and Haaf, Thomas}, title = {Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment}, series = {Human Genetics}, volume = {141}, journal = {Human Genetics}, number = {3-4}, issn = {1432-1203}, doi = {10.1007/s00439-021-02303-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267750}, pages = {785-803}, year = {2022}, abstract = {Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75\%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15\%) probands displayed other genetic entities with dual sensory impairment, including Alstr{\"o}m syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92\%. Two (3\%) probands were partially solved and only 3 (5\%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.}, language = {en} } @phdthesis{Riekert2022, author = {Riekert, Elisa}, title = {Der Einfluss von Tnap auf die Zahnentwicklung im Zebrafisch (Danio rerio)}, doi = {10.25972/OPUS-28740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287406}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Aufgrund mangelnder Aktivit{\"a}t der Gewebe-unspezifischen Phosphatase (tissue-nonspecific alkaline phosphatase, TNAP) kommt es zum Krankheitsbild der Hypophosphatasie (HPP). Neben skelettalen und neuronalen Symptomen leiden Patienten mit HPP h{\"a}ufig an einem vorzeitigen Verlust der Milchz{\"a}hne und weiteren dentalen Manifestationen, wie Zahnhartsubstanzdefekten, Eruptionsst{\"o}rungen, erweiterte Pulpenkammern oder einer verringerten alveol{\"a}ren Knochenh{\"o}he. Ziel der Arbeit war es, den Einfluss der TNAP auf die Zahnentwicklung von Zebrafischlarven zu untersuchen, um ein neues in-vivo Modell f{\"u}r die dentalen Auswirkungen bei Hypophosphatasie etablieren zu k{\"o}nnen. Um die sehr kleinen Z{\"a}hne der Zebrafischlarven auch in fr{\"u}hen Entwicklungsstadien darzustellen, wurden mittels verschiedener histologischer F{\"a}rbungen die Zahnstrukturen angef{\"a}rbt und die Larven danach in JB4®, einen polymeren Kunststoff, eingebettet. Im Anschluss wurden histologische Schnitte angefertigt und am Fluoreszenzmikroskop ausgewertet. Einerseits konnte durch In-situ-Hybridisierung die Expression verschiedener Gene, wie z.B. alpl (welches f{\"u}r die Tnap im Zebrafisch kodiert), im Bereich von dentalen Strukturen in verschiedenen Entwicklungsstadien nachgewiesen werden. Außerdem zeigte die Analyse der dentalen Strukturen nach Inhibition der Tnap mittels Levamisol bei f{\"u}nf Tage alten Zebrafischlarven eine Ver{\"a}nderung von Form, Gr{\"o}ße und Struktur der ersten Z{\"a}hne. Die TNAP-Inhibition f{\"u}hrte auch zur quantitativ nachweisbaren Steigerung des Fluoreszenzsignals von ß-Catenin, welches eine zentrale Funktion im Wnt/ß-Catenin-Signalweg besitzt und essenziell in verschiedenen zellul{\"a}ren Prozessen w{\"a}hrend der Embryogenese ist. Zusammenfassend zeigen die Ergebnisse der Arbeit, dass der Zebrafisch großes Potenzial als in-vivo Modell f{\"u}r die dentalen Symptome bei HPP bietet. Außerdem er{\"o}ffnen sich neue interessante Fragen in Bezug auf den Einfluss von ß-Catenin bei den fr{\"u}hen pathophysiologischen Prozessen der Erkrankung.}, subject = {Zebrab{\"a}rbling}, language = {de} } @article{LorenzMusacchioKunstmannetal.2022, author = {Lorenz, Delia and Musacchio, Thomas and Kunstmann, Erdmute and Grauer, Eva and Pluta, Natalie and Stock, Annika and Speer, Christian P. and Hebestreit, Helge}, title = {A case report of Sanfilippo syndrome - the long way to diagnosis}, series = {BMC Neurology}, volume = {22}, journal = {BMC Neurology}, number = {1}, doi = {10.1186/s12883-022-02611-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300465}, year = {2022}, abstract = {Background Mucopolysaccharidosis type III (Sanfilippo syndrome) is a lysosomal storage disorder, caused by a deficiency in the heparan-N-sulfatase enzyme involved in the catabolism of the glycosaminoglycan heparan sulfate. It is characterized by early nonspecific neuropsychiatric symptoms, followed by progressive neurocognitive impairment in combination with only mild somatic features. In this patient group with a broad clinical spectrum a significant genotype-phenotype correlation with some mutations leading to a slower progressive, attenuated course has been demonstrated. Case presentation Our patient had complications in the neonatal period and was diagnosed with Mucopolysaccharidosis IIIa only at the age of 28 years. He was compound heterozygous for the variants p.R245H and p.S298P, the latter having been shown to lead to a significantly milder phenotype. Conclusions The diagnostic delay is even more prolonged in this patient population with comorbidities and a slowly progressive course of the disease.}, language = {en} } @article{DollKolbSchnappetal.2020, author = {Doll, Julia and Kolb, Susanne and Schnapp, Linda and Rad, Aboulfazl and R{\"u}schendorf, Franz and Khan, Imran and Adli, Abolfazl and Hasanzadeh, Atefeh and Liedtke, Daniel and Knaup, Sabine and Hofrichter, Michaela AH and M{\"u}ller, Tobias and Dittrich, Marcus and Kong, Il-Keun and Kim, Hyung-Goo and Haaf, Thomas and Vona, Barbara}, title = {Novel loss-of-function variants in CDC14A are associated with recessive sensorineural hearing loss in Iranian and Pakistani patients}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms21010311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285142}, year = {2020}, abstract = {CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss.}, language = {en} } @article{RolfesBordeMoellenhoffetal.2022, author = {Rolfes, Muriel and Borde, Julika and M{\"o}llenhoff, Kathrin and Kayali, Mohamad and Ernst, Corinna and Gehrig, Andrea and Sutter, Christian and Ramser, Juliane and Niederacher, Dieter and Horv{\´a}th, Judit and Arnold, Norbert and Meindl, Alfons and Auber, Bernd and Rump, Andreas and Wang-Gohrke, Shan and Ritter, Julia and Hentschel, Julia and Thiele, Holger and Altm{\"u}ller, Janine and N{\"u}rnberg, Peter and Rhiem, Kerstin and Engel, Christoph and Wappenschmidt, Barbara and Schmutzler, Rita K. and Hahnen, Eric and Hauke, Jan}, title = {Prevalence of cancer predisposition germline variants in male breast cancer patients: results of the German Consortium for Hereditary Breast and Ovarian Cancer}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {13}, issn = {2072-6694}, doi = {10.3390/cancers14133292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281758}, year = {2022}, abstract = {Male breast cancer (mBC) is associated with a high prevalence of pathogenic variants (PVs) in the BRCA2 gene; however, data regarding other BC predisposition genes are limited. In this retrospective multicenter study, we investigated the prevalence of PVs in BRCA1/2 and 23 non-BRCA1/2 genes using a sample of 614 patients with mBC, recruited through the centers of the German Consortium for Hereditary Breast and Ovarian Cancer. A high proportion of patients with mBC carried PVs in BRCA2 (23.0\%, 142/614) and BRCA1 (4.6\%, 28/614). The prevalence of BRCA1/2 PVs was 11.0\% in patients with mBC without a family history of breast and/or ovarian cancer. Patients with BRCA1/2 PVs did not show an earlier disease onset than those without. The predominant clinical presentation of tumor phenotypes was estrogen receptor (ER)-positive, progesterone receptor (PR)-positive, and HER2-negative (77.7\%); further, 10.2\% of the tumors were triple-positive, and 1.2\% were triple-negative. No association was found between ER/PR/HER2 status and BRCA1/2 PV occurrence. Comparing the prevalence of protein-truncating variants (PTVs) between patients with mBC and control data (ExAC, n = 27,173) revealed significant associations of PTVs in both BRCA1 and BRCA2 with mBC (BRCA1: OR = 17.04, 95\% CI = 10.54-26.82, p < 10\(^{-5}\); BRCA2: OR = 77.71, 95\% CI = 58.71-102.33, p < 10\(^{-5}\)). A case-control investigation of 23 non-BRCA1/2 genes in 340 BRCA1/2-negative patients and ExAC controls revealed significant associations of PTVs in CHEK2, PALB2, and ATM with mBC (CHEK2: OR = 3.78, 95\% CI = 1.59-7.71, p = 0.002; PALB2: OR = 14.77, 95\% CI = 5.02-36.02, p < 10\(^{-5}\); ATM: OR = 3.36, 95\% CI = 0.89-8.96, p = 0.04). Overall, our findings support the benefit of multi-gene panel testing in patients with mBC irrespective of their family history, age at disease onset, and tumor phenotype.}, language = {en} } @article{BleinBardelDanjeanetal.2015, author = {Blein, Sophie and Bardel, Claire and Danjean, Vincent and McGuffog, Lesley and Healay, Sue and Barrowdale, Daniel and Lee, Andrew and Dennis, Joe and Kuchenbaecker, Karoline B. and Soucy, Penny and Terry, Mary Beth and Chung, Wendy K. and Goldgar, David E. and Buys, Saundra S. and Janavicius, Ramunas and Tihomirova, Laima and Tung, Nadine and Dorfling, Cecilia M. and van Rensburg, Elizabeth J. and Neuhausen, Susan L. and Ding, Yuan Chun and Gerdes, Anne-Marie and Ejlertsen, Bent and Nielsen, Finn C. and Hansen, Thomas V. O. and Osorio, Ana and Benitez, Javier and Andreas Conejero, Raquel and Segota, Ena and Weitzel, Jeffrey N. and Thelander, Margo and Peterlongo, Paolo and Radice, Paolo and Pensotti, Valeria and Dolcetti, Riccardo and Bonanni, Bernardo and Peissel, Bernard and Zaffaroni, Daniela and Scuvera, Giulietta and Manoukian, Siranoush and Varesco, Liliana and Capone, Gabriele L. and Papi, Laura and Ottini, Laura and Yannoukakos, Drakoulis and Konstantopoulou, Irene and Garber, Judy and Hamann, Ute and Donaldson, Alan and Brady, Angela and Brewer, Carole and Foo, Claire and Evans, D. Gareth and Frost, Debra and Eccles, Diana and Douglas, Fiona and Cook, Jackie and Adlard, Julian and Barwell, Julian and Walker, Lisa and Izatt, Louise and Side, Lucy E. and Kennedy, M. John and Tischkowitz, Marc and Rogers, Mark T. and Porteous, Mary E. and Morrison, Patrick J. and Platte, Radka and Eeles, Ros and Davidson, Rosemarie and Hodgson, Shirley and Cole, Trevor and Godwin, Andrew K and Isaacs, Claudine and Claes, Kathleen and De Leeneer, Kim and Meindl, Alfons and Gehrig, Andrea and Wappenschmidt, Barbara and Sutter, Christian and Engel, Christoph and Niederacher, Dieter and Steinemann, Doris and Plendl, Hansjoerg and Kast, Karin and Rhiem, Kerstin and Ditsch, Nina and Arnold, Norbert and Varon-Mateeva, Raymonda and Schmutzler, Rita K. and Preisler-Adams, Sabine and Markov, Nadja Bogdanova and Wang-Gohrke, Shan and de Pauw, Antoine and Lefol, Cedrick and Lasset, Christine and Leroux, Dominique and Rouleau, Etienne and Damiola, Francesca and Dreyfus, Helene and Barjhoux, Laure and Golmard, Lisa and Uhrhammer, Nancy and Bonadona, Valerie and Sornin, Valerie and Bignon, Yves-Jean and Carter, Jonathan and Van Le, Linda and Piedmonte, Marion and DiSilvestro, Paul A. and de la Hoya, Miguel and Caldes, Trinidad and Nevanlinna, Heli and Aittom{\"a}ki, Kristiina and Jager, Agnes and van den Ouweland, Ans M. W. and Kets, Carolien M. and Aalfs, Cora M. and van Leeuwen, Flora E. and Hogervorst, Frans B. L. and Meijers-Heijboer, Hanne E. J. and Oosterwijk, Jan C. and van Roozendaal, Kees E. P. and Rookus, Matti A. and Devilee, Peter and van der Luijt, Rob B. and Olah, Edith and Diez, Orland and Teule, Alex and Lazaro, Conxi and Blanco, Ignacio and Del Valle, Jesus and Jakubowska, Anna and Sukiennicki, Grzegorz and Gronwald, Jacek and Spurdle, Amanda B. and Foulkes, William and Olswold, Curtis and Lindor, Noralene M. and Pankratz, Vernon S. and Szabo, Csilla I. and Lincoln, Anne and Jacobs, Lauren and Corines, Marina and Robson, Mark and Vijai, Joseph and Berger, Andreas and Fink-Retter, Anneliese and Singer, Christian F. and Rappaport, Christine and Geschwantler Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Greene, Mark H. and Mai, Phuong L. and Rennert, Gad and Imyanitov, Evgeny N. and Mulligan, Anna Marie and Glendon, Gord and Andrulis, Irene L. and Tchatchou, Andrine and Toland, Amanda Ewart and Pedersen, Inge Sokilde and Thomassen, Mads and Kruse, Torben A. and Jensen, Uffe Birk and Caligo, Maria A. and Friedman, Eitan and Zidan, Jamal and Laitman, Yael and Lindblom, Annika and Melin, Beatrice and Arver, Brita and Loman, Niklas and Rosenquist, Richard and Olopade, Olufunmilayo I. and Nussbaum, Robert L. and Ramus, Susan J. and Nathanson, Katherine L. and Domchek, Susan M. and Rebbeck, Timothy R. and Arun, Banu K. and Mitchell, Gillian and Karlan, Bethy Y. and Lester, Jenny and Orsulic, Sandra and Stoppa-Lyonnet, Dominique and Thomas, Gilles and Simard, Jacques and Couch, Fergus J. and Offit, Kenenth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C. and Mazoyer, Sylvie and Phelan, Catherine M. and Sinilnikova, Olga M. and Cox, David G.}, title = {An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {17}, journal = {Breast Cancer Research}, number = {61}, doi = {10.1186/s13058-015-0567-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145458}, year = {2015}, abstract = {Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95\% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95\% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.}, language = {en} } @article{RemmeleLutherBalkenholetal.2015, author = {Remmele, Christian W. and Luther, Christian H. and Balkenhol, Johannes and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus T.}, title = {Integrated inference and evaluation of host-fungi interaction networks}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {764}, doi = {10.3389/fmicb.2015.00764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148278}, year = {2015}, abstract = {Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi human and fungi mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host fungi transcriptome and proteome data.}, language = {en} } @article{SilvestriBarrowdaleMulliganetal.2016, author = {Silvestri, Valentina and Barrowdale, Daniel and Mulligan, Anna Marie and Neuhausen, Susan L. and Fox, Stephen and Karlan, Beth Y. and Mitchell, Gillian and James, Paul and Thull, Darcy L. and Zorn, Kristin K. and Carter, Natalie J. and Nathanson, Katherine L. and Domchek, Susan M. and Rebbeck, Timothy R. and Ramus, Susan J. and Nussbaum, Robert L. and Olopade, Olufunmilayo I. and Rantala, Johanna and Yoon, Sook-Yee and Caligo, Maria A. and Spugnesi, Laura and Bojesen, Anders and Pedersen, Inge Sokilde and Thomassen, Mads and Jensen, Uffe Birk and Toland, Amanda Ewart and Senter, Leigha and Andrulis, Irene L. and Glendon, Gord and Hulick, Peter J. and Imyanitov, Evgeny N. and Greene, Mark H. and Mai, Phuong L. and Singer, Christian F. and Rappaport-Fuerhauser, Christine and Kramer, Gero and Vijai, Joseph and Offit, Kenneth and Robson, Mark and Lincoln, Anne and Jacobs, Lauren and Machackova, Eva and Foretova, Lenka and Navratilova, Marie and Vasickova, Petra and Couch, Fergus J. and Hallberg, Emily and Ruddy, Kathryn J. and Sharma, Priyanka and Kim, Sung-Won and Teixeira, Manuel R. and Pinto, Pedro and Montagna, Marco and Matricardi, Laura and Arason, Adalgeir and Johannsson, Oskar Th and Barkardottir, Rosa B. and Jakubowska, Anna and Lubinski, Jan and Izquierdo, Angel and Pujana, Miguel Angel and Balma{\~n}a, Judith and Diez, Orland and Ivady, Gabriella and Papp, Janos and Olah, Edith and Kwong, Ava and Nevanlinna, Heli and Aittom{\"a}ki, Kristiina and Segura, Pedro Perez and Caldes, Trinidad and Van Maerken, Tom and Poppe, Bruce and Claes, Kathleen B. M. and Isaacs, Claudine and Elan, Camille and Lasset, Christine and Stoppa-Lyonnet, Dominique and Barjhoux, Laure and Belotti, Muriel and Meindl, Alfons and Gehrig, Andrea and Sutter, Christian and Engel, Christoph and Niederacher, Dieter and Steinemann, Doris and Hahnen, Eric and Kast, Karin and Arnold, Norbert and Varon-Mateeva, Raymonda and Wand, Dorothea and Godwin, Andrew K. and Evans, D. Gareth and Frost, Debra and Perkins, Jo and Adlard, Julian and Izatt, Louise and Platte, Radka and Eeles, Ros and Ellis, Steve and Hamann, Ute and Garber, Judy and Fostira, Florentia and Fountzilas, George and Pasini, Barbara and Giannini, Giuseppe and Rizzolo, Piera and Russo, Antonio and Cortesi, Laura and Papi, Laura and Varesco, Liliana and Palli, Domenico and Zanna, Ines and Savarese, Antonella and Radice, Paolo and Manoukian, Siranoush and Peissel, Bernard and Barile, Monica and Bonanni, Bernardo and Viel, Alessandra and Pensotti, Valeria and Tommasi, Stefania and Peterlongo, Paolo and Weitzel, Jeffrey N. and Osorio, Ana and Benitez, Javier and McGuffog, Lesley and Healey, Sue and Gerdes, Anne-Marie and Ejlertsen, Bent and Hansen, Thomas V. O. and Steele, Linda and Ding, Yuan Chun and Tung, Nadine and Janavicius, Ramunas and Goldgar, David E. and Buys, Saundra S. and Daly, Mary B. and Bane, Anita and Terry, Mary Beth and John, Esther M. and Southey, Melissa and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C. and Ottini, Laura}, title = {Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2}, series = {Breast Cancer Research}, volume = {18}, journal = {Breast Cancer Research}, number = {15}, doi = {10.1186/s13058-016-0671-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164769}, year = {2016}, abstract = {Background BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs). Methods We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1/2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database. Results Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P for trend = 2 × 10-5) and higher grade (P for trend = 0.005) and were more likely to be oestrogen receptor-positive [odds ratio (OR) 10.59; 95 \% confidence interval (CI) 5.15-21.80] and progesterone receptor-positive (OR 5.04; 95 \% CI 3.17-8.04). With the exception of grade, similar patterns of associations emerged when we compared BRCA1 MBCs and FBCs. BRCA2 MBCs also presented with higher grade than MBCs from the SEER database (P for trend = 4 × 10-12). Conclusions On the basis of the largest series analysed to date, our results show that BRCA1/2 MBCs display distinct pathologic characteristics compared with BRCA1/2 FBCs, and we identified a specific BRCA2-associated MBC phenotype characterised by a variable suggesting greater biological aggressiveness (i.e., high histologic grade). These findings could lead to the development of gender-specific risk prediction models and guide clinical strategies appropriate for MBC management.}, language = {en} } @phdthesis{Kiene2022, author = {Kiene, Carmen}, title = {Immunozytogenetische Analysen an Interphase-Zellen und Meiose-Stadien der Maus}, doi = {10.25972/OPUS-27910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279109}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In der vorliegenden Arbeit wurden mittels 5-Methylcytosin Immunof{\"a}rbung zytogenetische Analysen an Metaphasechromosomen aus der Mitose, an Interphase-Zellen verschiedener Organe und an Meiose-Stadien der Maus (Mus musculus) zur Detektion hypermethylierter DNA durchgef{\"u}hrt. Zus{\"a}tzlich erfolgte eine C-B{\"a}nderung an Metaphasechromosomen und Meiose-Stadien zum Nachweis von konstitutivem Heterochromatin.}, subject = {Cytogenetik}, language = {de} } @article{ZaumNandaKressetal.2022, author = {Zaum, Ann-Kathrin and Nanda, Indrajit and Kress, Wolfram and Rost, Simone}, title = {Detection of pericentric inversion with breakpoint in DMD by whole genome sequencing}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {10}, doi = {10.1002/mgg3.2028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293940}, year = {2022}, abstract = {Background Dystrophinopathies caused by variants in the DMD gene are a well-studied muscle disease. The most common type of variant in DMD are large deletions. Very rarely reported forms of variants are chromosomal translocations, inversions and deep intronic variants (DIVs) because they are not detectable by standard diagnostic techniques (sequencing of coding sequence, copy number variant detection). This might be the reason that some clinically and histologically proven dystrophinopathy cases remain unsolved. Methods We used whole genome sequencing (WGS) to screen the entire DMD gene for variants in one of two brothers suffering from typical muscular dystrophy with strongly elevated creatine kinase levels. Results Although a pathogenic DIV could not be detected, we were able to identify a pericentric inversion with breakpoints in DMD intron 44 and Xq13.3, which could be confirmed by Sanger sequencing in the index as well as in his brother and mother. As this variation affects a major part of DMD it is most likely disease causing. Conclusion Our findings elucidate that WGS is capable of detecting large structural rearrangements and might be suitable for the genetic diagnostics of dystrophinopathies in the future. In particular, inversions might be a more frequent cause for dystrophinopathies as anticipated and should be considered in genetically unsolved dystrophinopathy cases.}, language = {en} }