@article{DischingerHeckelBischleretal.2021, author = {Dischinger, Ulrich and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and K{\"o}nigsrainer, Malina and Schmitt-B{\"o}hrer, Angelika and Otto, Christoph and Fassnacht, Martin and Seyfried, Florian and Hankir, Mohammed Khair}, title = {Roux-en-Y gastric bypass and caloric restriction but not gut hormone-based treatments profoundly impact the hypothalamic transcriptome in obese rats}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {1}, issn = {2072-6643}, doi = {10.3390/nu14010116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252392}, year = {2021}, abstract = {Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.}, language = {en} } @article{RodriguezRicoYepesetal.2015, author = {Rodriguez, H{\´e}ctor and Rico, Sergio and Yepes, Ana and Franco-Echevarr{\´i}a, Elsa and Antoraz, Sergio and Santamar{\´i}a, Ram{\´o}n I. and D{\´i}az, Margerita}, title = {The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {450}, doi = {10.3389/fmicb.2015.00450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143048}, year = {2015}, abstract = {Two-component systems (TCSs) are the most important sensing mechanisms in bacteria. In Streptomyces, TCSs-mediated responses to environmental stimuli are involved in the regulation of antibiotic production. This study examines the individual role of two histidine kinases (HKs), AbrC1 and AbrC2, which form part of an atypical TCS in Streptomyces coelicolor. gRT-PCR analysis of the expression of both kinases demonstrated that both are expressed at similar levels in NB and NMMP media. Single deletion of abrC1 elicited a significant increase in antibiotic production, while deletion of abrC2 did not have any clear effect. The origin of this phenotype, probably related to the differential phosphorylation ability of the two kinases, was also explored indirectly, analyzing the toxic phenotypes associated with high levels of phosphorylated RR. The higher the AbrC3 regulator phosphorylation rate, the greater the cell toxicity. For the first time, the present work shows in Streptomyces the combined involvement of two different HKs in the response of a regulator to environmental signals. Regarding the possible applications of this research, the fact that an abrC1 deletion mutant overproduces three of the S. coelicolor antibiotics makes this strain an excellent candidate as a host for the heterologous production of secondary metabolites.}, language = {en} } @article{IbrahimOhlsen2022, author = {Ibrahim, Eslam S. and Ohlsen, Knut}, title = {The old yellow enzyme OfrA fosters Staphylococcus aureus survival via affecting thiol-dependent redox homeostasis}, series = {Frontiers in Microbiology}, volume = {13}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.888140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274381}, year = {2022}, abstract = {Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs' physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host-pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.}, language = {en} } @article{BabskiHaasNaetherSchindleretal.2016, author = {Babski, Julia and Haas, Karina A. and N{\"a}ther-Schindler, Daniela and Pfeiffer, Friedhelm and F{\"o}rstner, Konrad U. and Hammelmann, Matthias and Hilker, Rolf and Becker, Anke and Sharma, Cynthia M. and Marchfelder, Anita and Soppa, J{\"o}rg}, title = {Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq)}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, number = {629}, doi = {10.1186/s12864-016-2920-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164553}, year = {2016}, abstract = {Background Differential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. Although the transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. Therefore, we used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii. Results Three independent cultures of Hfx. volcanii grown under optimal conditions to the mid-exponential growth phase were used to determine the primary transcriptome and map the 5′-ends of the transcripts. In total, 4749 potential TSSs were detected. A position weight matrix (PWM) was derived for the promoter predictions, and the results showed that 64 \% of the TSSs were preceded by stringent or relaxed basal promoters. Of the identified TSSs, 1851 belonged to protein-coding genes. Thus, fewer than half (46 \%) of the 4040 protein-coding genes were expressed under optimal growth conditions. Seventy-two percent of all protein-coding transcripts were leaderless, which emphasized that this pathway is the major pathway for translation initiation in haloarchaea. A total of 2898 of the TSSs belonged to potential non-coding RNAs, which accounted for an unexpectedly high fraction (61 \%) of all transcripts. Most of the non-coding TSSs had not been previously described (2792) and represented novel sequences (59 \% of all TSSs). A large fraction of the potential novel non-coding transcripts were cis-antisense RNAs (1244 aTSSs). A strong negative correlation between the levels of antisense transcripts and cognate sense mRNAs was found, which suggested that the negative regulation of gene expression via antisense RNAs may play an important role in haloarchaea. The other types of novel non-coding transcripts corresponded to internal transcripts overlapping with mRNAs (1153 iTSSs) and intergenic small RNA (sRNA) candidates (395 TSSs). Conclusion This study provides a comprehensive map of the primary transcriptome of Hfx. volcanii grown under optimal conditions. Fewer than half of all protein-coding genes have been transcribed under these conditions. Unexpectedly, more than half of the detected TSSs belonged to several classes of non-coding RNAs. Thus, RNA-based regulation appears to play a more important role in haloarchaea than previously anticipated.}, language = {en} } @article{HassanVasquezGuoLiangetal.2017, author = {Hassan, Musa A. and Vasquez, Juan J. and Guo-Liang, Chew and Meissner, Markus and Siegel, T. Nicolai}, title = {Comparative ribosome profiling uncovers a dominant role for translational control in \(Toxoplasma\) \(gondii\)}, series = {BMC Genomics}, volume = {18}, journal = {BMC Genomics}, doi = {10.1186/s12864-017-4362-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172376}, year = {2017}, abstract = {Background The lytic cycle of the protozoan parasite \(Toxoplasma\) \(gondii\), which involves a brief sojourn in the extracellular space, is characterized by defined transcriptional profiles. For an obligate intracellular parasite that is shielded from the cytosolic host immune factors by a parasitophorous vacuole, the brief entry into the extracellular space is likely to exert enormous stress. Due to its role in cellular stress response, we hypothesize that translational control plays an important role in regulating gene expression in \(Toxoplasma\) during the lytic cycle. Unlike transcriptional profiles, insights into genome-wide translational profiles of \(Toxoplasma\) \(gondii\) are lacking. Methods We have performed genome-wide ribosome profiling, coupled with high throughput RNA sequencing, in intracellular and extracellular \(Toxoplasma\) \(gondii\) parasites to investigate translational control during the lytic cycle. Results Although differences in transcript abundance were mostly mirrored at the translational level, we observed significant differences in the abundance of ribosome footprints between the two parasite stages. Furthermore, our data suggest that mRNA translation in the parasite is potentially regulated by mRNA secondary structure and upstream open reading frames. Conclusion We show that most of the \(Toxoplasma\) genes that are dysregulated during the lytic cycle are translationally regulated.}, language = {en} } @article{ČuklinaHahnImakaevetal.2016, author = {Čuklina, Jelena and Hahn, Julia and Imakaev, Maxim and Omasits, Ulrich and F{\"o}rstner, Konrad U. and Ljubimov, Nikolay and Goebel, Melanie and Pessi, Gabriella and Fischer, Hans-Martin and Ahrens, Christian H. and Gelfand, Mikhail S. and Evguenieva-Hackenberg, Elena}, title = {Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-016-2602-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164565}, pages = {302}, year = {2016}, abstract = {Background Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. Results A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 \% of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. Conclusions The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes.}, language = {en} } @article{EneLohseVladuetal.2016, author = {Ene, Iuliana V. and Lohse, Matthew B. and Vladu, Adrian V. and Morschh{\"a}user, Joachim and Johnson, Alexander D. and Bennett, Richard J.}, title = {Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells}, series = {mBio}, volume = {7}, journal = {mBio}, number = {6}, doi = {10.1128/mBio.01269-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165818}, pages = {e01269-16}, year = {2016}, abstract = {The white-opaque switch is a bistable, epigenetic transition affecting multiple traits in Candida albicans including mating, immunogenicity, and niche specificity. To compare how the two cell states respond to external cues, we examined the fitness, phenotypic switching, and filamentation properties of white cells and opaque cells under 1,440 different conditions at 25°C and 37°C. We demonstrate that white and opaque cells display striking differences in their integration of metabolic and thermal cues, so that the two states exhibit optimal fitness under distinct conditions. White cells were fitter than opaque cells under a wide range of environmental conditions, including growth at various pHs and in the presence of chemical stresses or antifungal drugs. This difference was exacerbated at 37°C, consistent with white cells being the default state of C. albicans in the mammalian host. In contrast, opaque cells showed greater fitness than white cells under select nutritional conditions, including growth on diverse peptides at 25°C. We further demonstrate that filamentation is significantly rewired between the two states, with white and opaque cells undergoing filamentous growth in response to distinct external cues. Genetic analysis was used to identify signaling pathways impacting the white-opaque transition both in vitro and in a murine model of commensal colonization, and three sugar sensing pathways are revealed as regulators of the switch. Together, these findings establish that white and opaque cells are programmed for differential integration of metabolic and thermal cues and that opaque cells represent a more metabolically specialized cell state than the default white state.}, language = {en} } @article{SchielmannSzwedaGucwaetal.2017, author = {Schielmann, Marta and Szweda, Piotr and Gucwa, Katarzyna and Kawczyński, Marcin and Milewska, Maria J. and Martynow, Dorota and Morschh{\"a}user, Joachim and Milewski, Sławomir}, title = {Transport deficiency is the molecular basis of \(Candida\) \(albicans\) resistance to antifungal oligopeptides}, series = {Frontiers in Microbiology}, volume = {8}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2017.02154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173245}, year = {2017}, abstract = {Oligopeptides incorporating \(N3\)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP), an inhibitor of glucosamine-6-phosphate synthase, exhibited growth inhibitory activity against \(Candida\) \(albicans\), with minimal inhibitory concentration values in the 0.05-50 μg mL\(^{-1}\) range. Uptake by the peptide permeases was found to be the main factor limiting an anticandidal activity of these compounds. Di- and tripeptide containing FMDP (F2 and F3) were transported by Ptr2p/Ptr22p peptide transporters (PTR) and FMDP-containing hexa-, hepta-, and undecapeptide (F6, F7, and F11) were taken up by the oligopeptide transporters (OPT) oligopeptide permeases, preferably by Opt2p/Opt3p. A phenotypic, apparent resistance of \(C. albicans\) to FMDP-oligopeptides transported by OPT permeases was triggered by the environmental factors, whereas resistance to those taken up by the PTR system had a genetic basis. Anticandidal activity of longer FMDP-oligopeptides was strongly diminished in minimal media containing easily assimilated ammonium sulfate or L-glutamine as the nitrogen source, both known to downregulate expression of the OPT genes. All FMDP-oligopeptides tested were more active at lower pH and this effect was slightly more remarkable for peptides F6, F7, and F11, compared to F2 and F3. Formation of isolated colonies was observed inside the growth inhibitory zones induced by F2 and F3 but not inside those induced by F6, F7, and F11. The vast majority (98\%) of those colonies did not originate from truly resistant cells. The true resistance of 2\% of isolates was due to the impaired transport of di- and to a lower extent, tripeptides. The resistant cells did not exhibit a lower expression of \(PTR2\), \(PTR22\), or \(OPT1-3\) genes, but mutations in the \(PTR2\) gene resulting in T422H, A320S, D119V, and A320S substitutions in the amino acid sequence of Ptr2p were found.}, language = {en} } @article{FoerstnerReuscherHaberzettletal.2018, author = {F{\"o}rstner, Konrad U and Reuscher, Carina M and Haberzettl, Kerstin and Weber, Lennart and Klug, Gabriele}, title = {RNase E cleavage shapes the transcriptome of Rhodobacter sphaeroides and strongly impacts phototrophic growth}, series = {Life Science Alliance}, volume = {1}, journal = {Life Science Alliance}, number = {4}, doi = {10.26508/lsa.201800080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177139}, pages = {e201800080}, year = {2018}, abstract = {Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth.}, language = {en} } @article{MichauxHansenJennichesetal.2020, author = {Michaux, Charlotte and Hansen, Elisabeth E. and Jenniches, Laura and Gerovac, Milan and Barquist, Lars and Vogel, J{\"o}rg}, title = {Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.600325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217947}, year = {2020}, abstract = {Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40\% (E. faecalis) and 43\% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse.}, language = {en} }