@article{ZdziarskiBrzuszkiewiczWulltetal.2010, author = {Zdziarski, Jaroslaw and Brzuszkiewicz, Elzbieta and Wullt, Bjorn and Liesegang, Heiko and Biran, Dvora and Voigt, Birgit and Gronberg-Hernandez, Jenny and Ragnarsdottir, Bryndis and Hecker, Michael and Ron, Eliora Z. and Daniel, Rolf and Gottschalk, Gerhard and Hacker, Joerg and Svanborg, Catharina and Dobrindt, Ulrich}, title = {Host Imprints on Bacterial Genomes-Rapid, Divergent Evolution in Individual Patients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68594}, year = {2010}, abstract = {Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.}, subject = {Proteomanalyse}, language = {en} } @article{KuehnPradel2010, author = {Kuehn, Andrea and Pradel, Gabriele}, title = {The Coming-Out of Malaria Gametocytes [Review Article]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68196}, year = {2010}, abstract = {The tropical disease malaria, which results in more than one million deaths annually, is caused by protozoan parasites of the genus Plasmodium and transmitted by blood-feeding Anopheline mosquitoes. Parasite transition from the human host to the mosquito vector is mediated by gametocytes, sexual stages that are formed in human erythrocytes, which therefore play a crucial part in the spread of the tropical disease. The uptake by the blood-feeding mosquito triggers important molecular and cellular changes in the gametocytes, thus mediating the rapid adjustment of the parasite from the warm-blooded host to the insect host and subsequently initiating reproduction. The contact with midgut factors triggers gametocyte activation and results in their egress from the enveloping erythrocyte, which then leads to gamete formation and fertilization. This review summarizes recent findings on the role of gametocytes during transmission to themosquito and particularly focuses on the molecular mechanisms underlying gametocyte activation and emergence from the host erythrocyte during gametogenesis.}, subject = {Malaria}, language = {en} }