@article{AsterEvdokimovBraunetal.2022, author = {Aster, Hans-Christoph and Evdokimov, Dimitar and Braun, Alexandra and {\"U}{\c{c}}eyler, Nurcan and Kampf, Thomas and Pham, Mirko and Homola, Gy{\"o}rgy A. and Sommer, Claudia}, title = {CNS imaging characteristics in fibromyalgia patients with and without peripheral nerve involvement}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-10489-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300562}, year = {2022}, abstract = {We tested the hypothesis that reduced skin innervation in fibromyalgia syndrome is associated with specific CNS changes. This prospective case-control study included 43 women diagnosed with fibromyalgia syndrome and 40 healthy controls. We further compared the fibromyalgia subgroups with reduced (n = 21) and normal (n = 22) skin innervation. Brains were analysed for cortical volume, for white matter integrity, and for functional connectivity. Compared to controls, cortical thickness was decreased in regions of the frontal, temporal and parietal cortex in the fibromyalgia group as a whole, and decreased in the bilateral pericalcarine cortices in the fibromyalgia subgroup with reduced skin innervation. Diffusion tensor imaging revealed a significant increase in fractional anisotropy in the corona radiata, the corpus callosum, cingulum and fornix in patients with fibromyalgia compared to healthy controls and decreased FA in parts of the internal capsule and thalamic radiation in the subgroup with reduced skin innervation. Using resting-state fMRI, the fibromyalgia group as a whole showed functional hypoconnectivity between the right midfrontal gyrus and the posterior cerebellum and the right crus cerebellum, respectively. The subgroup with reduced skin innervation showed hyperconnectivity between the inferior frontal gyrus, the angular gyrus and the posterior parietal gyrus. Our results suggest that the subgroup of fibromyalgia patients with pronounced pathology in the peripheral nervous system shows alterations in morphology, structural and functional connectivity also at the level of the encephalon. We propose considering these subgroups when conducting clinical trials.}, language = {en} } @article{RolfesRuckDavidetal.2022, author = {Rolfes, Leoni and Ruck, Tobias and David, Christina and Mencl, Stine and Bock, Stefanie and Schmidt, Mariella and Strecker, Jan-Kolja and Pfeuffer, Steffen and Mecklenbeck, Andreas-Schulte and Gross, Catharina and Gliem, Michael and Minnerup, Jens and Schuhmann, Michael K. and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Natural Killer Cells Are Present in Rag1\(^{-/-}\) Mice and Promote Tissue Damage During the Acute Phase of Ischemic Stroke}, series = {Translational Stroke Research}, volume = {13}, journal = {Translational Stroke Research}, number = {1}, issn = {1868-4483}, doi = {10.1007/s12975-021-00923-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308924}, pages = {197-211}, year = {2022}, abstract = {Rag1\(^{-/-}\) mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1\(^{-/-}\) mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1\(^{null}\)IL2rg\(^{null}\) (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1\(^{-/-}\) and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1\(^{-/-}\) NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1\(^{-/-}\) were comparable in number and function to those in WT mice. Rag1\(^{-/-}\) mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1-/- controls. Our results indicate that NK cells from Rag1-/- mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.}, language = {en} } @article{BieniussaKahramanSkornickaetal.2022, author = {Bieniussa, Linda and Kahraman, Baran and Skornicka, Johannes and Schulte, Annemarie and Voelker, Johannes and Jablonka, Sibylle and Hagen, Rudolf and Rak, Kristen}, title = {Pegylated insulin-like growth factor 1 attenuates hair cell loss and promotes presynaptic maintenance of medial olivocochlear cholinergic fibers in the cochlea of the progressive motor neuropathy mouse}, series = {Frontiers in Neurology}, volume = {13}, journal = {Frontiers in Neurology}, issn = {1664-2295}, doi = {10.3389/fneur.2022.885026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276669}, year = {2022}, abstract = {The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of "efferent auditory neuropathy." Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.}, language = {en} } @article{BellutPappBieberetal.2022, author = {Bellut, Maximilian and Papp, Lena and Bieber, Michael and Kraft, Peter and Stoll, Guido and Schuhmann, Michael K.}, title = {NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in-vitro and protects blood-brain barrier integrity in murine stroke}, series = {Cell Death \& Disease}, volume = {13}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-021-04379-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265693}, year = {2022}, abstract = {In ischemic stroke (IS) impairment of the blood-brain barrier (BBB) has an important role in the secondary deterioration of neurological function. BBB disruption is associated with ischemia-induced inflammation, brain edema formation, and hemorrhagic infarct transformation, but the underlying mechanisms are incompletely understood. Dysfunction of endothelial cells (EC) may play a central role in this process. Although neuronal NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome upregulation is an established trigger of inflammation in IS, the contribution of its expression in EC is unclear. We here used brain EC, exposed them to oxygen and glucose deprivation (OGD) in vitro, and analyzed their survival depending on inflammasome inhibition with the NLRP3-specific drug MCC950. During OGD, EC death could significantly be reduced when targeting NLRP3, concomitant with diminished endothelial NLRP3 expression. Furthermore, MCC950 led to reduced levels of Caspase 1 (p20) and activated Gasdermin D as markers for pyroptosis. Moreover, inflammasome inhibition reduced the secretion of pro-inflammatory chemokines, cytokines, and matrix metalloproteinase-9 (MMP9) in EC. In a translational approach, IS was induced in C57Bl/6 mice by 60 mins transient middle cerebral artery occlusion and 23 hours of reperfusion. Stroke volume, functional outcome, the BBB integrity, and-in good agreement with the in vitro results-MMP9 secretion as well as EC survival improved significantly in MCC950-treated mice. In conclusion, our results establish the NLRP3 inflammasome as a critical pathogenic effector of stroke-induced BBB disruption by activating inflammatory signaling cascades and pyroptosis in brain EC.}, language = {en} } @article{ReinholdKrugSalvadoretal.2022, author = {Reinhold, Ann Kristin and Krug, Susanne M. and Salvador, Ellaine and Sauer, Reine S. and Karl-Sch{\"o}ller, Franziska and Malcangio, Marzia and Sommer, Claudia and Rittner, Heike L.}, title = {MicroRNA-21-5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury}, series = {Annals of the New York Academy of Sciences}, volume = {1515}, journal = {Annals of the New York Academy of Sciences}, number = {1}, doi = {10.1111/nyas.14816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318226}, pages = {184 -- 195}, year = {2022}, abstract = {Both nerve injury and complex regional pain syndrome (CRPS) can result in chronic pain. In traumatic neuropathy, the blood nerve barrier (BNB) shielding the nerve is impaired—partly due to dysregulated microRNAs (miRNAs). Upregulation of microRNA-21-5p (miR-21) has previously been documented in neuropathic pain, predominantly due to its proinflammatory features. However, little is known about other functions. Here, we characterized miR-21 in neuropathic pain and its impact on the BNB in a human-murine back translational approach. MiR-21 expression was elevated in plasma of patients with CRPS as well as in nerves of mice after transient and persistent nerve injury. Mice presented with BNB leakage, as well as loss of claudin-1 in both injured and spared nerves. Moreover, the putative miR-21 target RECK was decreased and downstream Mmp9 upregulated, as was Tgfb. In vitro experiments in human epithelial cells confirmed a downregulation of CLDN1 by miR-21 mimics via inhibition of the RECK/MMP9 pathway but not TGFB. Perineurial miR-21 mimic application in mice elicited mechanical hypersensitivity, while local inhibition of miR-21 after nerve injury reversed it. In summary, the data support a novel role for miR-21, independent of prior inflammation, in elicitation of pain and impairment of the BNB via RECK/MMP9.}, language = {en} } @article{KollikowskiPhamMaerzetal.2022, author = {Kollikowski, Alexander M. and Pham, Mirko and M{\"a}rz, Alexander G. and Papp, Lena and Nieswandt, Bernhard and Stoll, Guido and Schuhmann, Michael K.}, title = {Platelet Activation and Chemokine Release Are Related to Local Neutrophil-Dominant Inflammation During Hyperacute Human Stroke}, series = {Translational Stroke Research}, volume = {13}, journal = {Translational Stroke Research}, number = {3}, issn = {1868-601X}, doi = {10.1007/s12975-021-00938-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270194}, pages = {364-369}, year = {2022}, abstract = {Experimental evidence has emerged that local platelet activation contributes to inflammation and infarct formation in acute ischemic stroke (AIS) which awaits confirmation in human studies. We conducted a prospective observational study on 258 consecutive patients undergoing mechanical thrombectomy (MT) due to large-vessel-occlusion stroke of the anterior circulation (08/2018-05/2020). Intraprocedural microcatheter aspiration of 1 ml of local (occlusion condition) and systemic arterial blood samples (self-control) was performed according to a prespecified protocol. The samples were analyzed for differential leukocyte counts, platelet counts, and plasma levels of the platelet-derived neutrophil-activating chemokine C-X-C-motif ligand (CXCL) 4 (PF-4), the neutrophil attractant CXCL7 (NAP-2), and myeloperoxidase (MPO). The clinical-biological relevance of these variables was corroborated by specific associations with molecular-cellular, structural-radiological, hemodynamic, and clinical-functional parameters. Seventy consecutive patients fulfilling all predefined criteria entered analysis. Mean local CXCL4 (+ 39\%: 571 vs 410 ng/ml, P = .0095) and CXCL7 (+ 9\%: 693 vs 636 ng/ml, P = .013) concentrations were higher compared with self-controls. Local platelet counts were lower (- 10\%: 347,582 vs 383,284/µl, P = .0052), whereas neutrophil counts were elevated (+ 10\%: 6022 vs 5485/µl, P = 0.0027). Correlation analyses revealed associations between local platelet and neutrophil counts (r = 0.27, P = .034), and between CXCL7 and MPO (r = 0.24, P = .048). Local CXCL4 was associated with the angiographic degree of reperfusion following recanalization (r =  - 0.2523, P = .0479). Functional outcome at discharge correlated with local MPO concentrations (r = 0.3832, P = .0014) and platelet counts (r = 0.288, P = .0181). This study provides human evidence of cerebral platelet activation and platelet-neutrophil interactions during AIS and points to the relevance of per-ischemic thrombo-inflammatory mechanisms to impaired reperfusion and worse functional outcome following recanalization.}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @article{SchmidbauerFerseSalihetal.2022, author = {Schmidbauer, Moritz L. and Ferse, Caroline and Salih, Farid and Klingner, Carsten and Musleh, Rita and Kunst, Stefan and Wittstock, Matthias and Neumann, Bernhard and Schebesch, Karl-Michael and B{\"o}sel, Julian and Godau, Jana and Lochner, Piergiorgio and Adam, Elisabeth H. and Jahnke, Kolja and Knier, Benjamin and Schirotzek, Ingo and M{\"u}llges, Wolfgang and Notz, Quirin and Dengl, Markus and G{\"u}ldner, Andreas and Onur, Oezguer A. and Garcia Borrega, Jorge and Dimitriadis, Konstantinos and G{\"u}nther, Albrecht}, title = {COVID-19 and intracranial hemorrhage: a multicenter case series, systematic review and pooled analysis}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm11030605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255236}, year = {2022}, abstract = {Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) profoundly impacts hemostasis and microvasculature. In the light of the dilemma between thromboembolic and hemorrhagic complications, in the present paper, we systematically investigate the prevalence, mortality, radiological subtypes, and clinical characteristics of intracranial hemorrhage (ICH) in coronavirus disease (COVID-19) patients. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review of the literature by screening the PubMed database and included patients diagnosed with COVID-19 and concomitant ICH. We performed a pooled analysis, including a prospectively collected cohort of critically ill COVID-19 patients with ICH, as part of the PANDEMIC registry (Pooled Analysis of Neurologic Disorders Manifesting in Intensive Care of COVID-19). Results: Our literature review revealed a total of 217 citations. After the selection process, 79 studies and a total of 477 patients were included. The median age was 58.8 years. A total of 23.3\% of patients experienced the critical stage of COVID-19, 62.7\% of patients were on anticoagulation and 27.5\% of the patients received ECMO. The prevalence of ICH was at 0.85\% and the mortality at 52.18\%, respectively. Conclusion: ICH in COVID-19 patients is rare, but it has a very poor prognosis. Different subtypes of ICH seen in COVID-19, support the assumption of heterogeneous and multifaceted pathomechanisms contributing to ICH in COVID-19. Further clinical and pathophysiological investigations are warranted to resolve the conflict between thromboembolic and hemorrhagic complications in the future.}, language = {en} } @phdthesis{Palmisano2022, author = {Palmisano, Chiara}, title = {Supraspinal Locomotor Network Derangements: A Multimodal Approach}, doi = {10.25972/OPUS-26644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266442}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Parkinson's Disease (PD) constitutes a major healthcare burden in Europe. Accounting for aging alone, ~700,000 PD cases are predicted by 2040. This represents an approximately 56\% increase in the PD population between 2005 and 2040, with a consequent rise in annual disease-related medical costs. Gait and balance disorders are a major problem for patients with PD and their caregivers, mainly because to their correlation with falls. Falls occur as a result of a complex interaction of risk factors. Among them, Freezing of Gait (FoG) is a peculiar gait derangement characterized by a sudden and episodic inability to produce effective stepping, causing falls, mobility restrictions, poor quality of life, and increased morbidity and mortality. Between 50-70\% of PD patients have FoG and/or falls after a disease duration of 10 years, only partially and inconsistently improved by dopaminergic treatment and Deep Brain Stimulation (DBS). Treatment-induced worsening has been also observed under certain conditions. Effective treatments for gait disturbances in PD are lacking, probably because of the still poor understanding of the supraspinal locomotor network. In my thesis, I wanted to expand our knowledge of the supraspinal locomotor network and in particular the contribution of the basal ganglia to the control of locomotion. I believe this is a key step towards new preventive and personalized therapies for postural and gait problems in patients with PD and related disorders. In addition to patients with PD, my studies also included people affected by Progressive Supranuclear Palsy (PSP). PSP is a rare primary progressive parkinsonism characterized at a very early disease stage by poor balance control and frequent backwards falls, thus providing an in vivo model of dysfunctional locomotor control. I focused my attention on one of the most common motor transitions in daily living, the initiation of gait (GI). GI is an interesting motor task and a relevant paradigm to address balance and gait impairments in patients with movement disorders, as it is associated with FoG and high risk of falls. It combines a preparatory (i.e., the Anticipatory Postural Adjustments [APA]) and execution phase (the stepping) and allows the study of movement scaling and timing as an expression of muscular synergies, which follow precise and online feedback information processing and integration into established feedforward patterns of motor control. By applying a multimodal approach that combines biomechanical assessments and neuroimaging investigations, my work unveiled the fundamental contribution of striatal dopamine to GI in patients with PD. Results in patients with PSP further supported the fundamental role of the striatum in GI execution, revealing correlations between the metabolic intake of the left caudate nucleus with diverse GI measurements. This study also unveiled the interplay of additional brain areas in the motor control of GI, namely the Thalamus, the Supplementary Motor Area (SMA), and the Cingulate cortex. Involvement of cortical areas was also suggested by the analysis of GI in patients with PD and FoG. Indeed, I found major alterations in the preparatory phase of GI in these patients, possibly resulting from FoG-related deficits of the SMA. Alterations of the weight shifting preceding the stepping phase were also particularly important in PD patients with FoG, thus suggesting specific difficulties in the integration of somatosensory information at a cortical level. Of note, all patients with PD showed preserved movement timing of GI, possibly suggesting preserved and compensatory activity of the cerebellum. Postural abnormalities (i.e., increased trunk and thigh flexion) showed no relationship with GI, ruling out an adaptation of the motor pattern to the altered postural condition. In a group of PD patients implanted with DBS, I further explored the pathophysiological functioning of the locomotor network by analysing the timely activity of the Subthalamic Nucleus (STN) during static and dynamic balance control (i.e., standing and walking). For this study, I used novel DBS devices capable of delivering stimulation and simultaneously recording Local Field Potentials (LFP) of the implanted nucleus months and years after surgery. I showed a gait-related frequency shift in the STN activity of PD patients, possibly conveying cortical (feedforward) and cerebellar (feedback) information to mesencephalic locomotor areas. Based on this result, I identified for each patient a Maximally Informative Frequency (MIF) whose power changes can reliably classify standing and walking conditions. The MIF is a promising input signal for new DBS devices that can monitor LFP power modulations to timely adjust the stimulation delivery based on the ongoing motor task (e.g., gait) performed by the patient (adaptive DBS). Altogether my achievements allowed to define the role of different cortical and subcortical brain areas in locomotor control, paving the way for a better understanding of the pathophysiological dynamics of the supraspinal locomotor network and the development of tailored therapies for gait disturbances and falls prevention in PD and related disorders.}, language = {en} } @article{PozziPalmisanoReichetal.2022, author = {Pozzi, Nicol{\´o} G. and Palmisano, Chiara and Reich, Martin M. and Capetian, Philip and Pacchetti, Claudio and Volkmann, Jens and Isaias, Ioannis U.}, title = {Troubleshooting gait disturbances in Parkinson's disease with deep brain stimulation}, series = {Frontiers in Human Neuroscience}, volume = {16}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2022.806513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274007}, year = {2022}, abstract = {Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.}, language = {en} } @article{WagenhaeuserRickertSommeretal.2022, author = {Wagenh{\"a}user, Laura and Rickert, Vanessa and Sommer, Claudia and Wanner, Christoph and Nordbeck, Peter and Rost, Simone and {\"U}{\c{c}}eyler, Nurcan}, title = {X-chromosomal inactivation patterns in women with Fabry disease}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {9}, doi = {10.1002/mgg3.2029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312795}, year = {2022}, abstract = {Background Although Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene (GLA), women may develop severe symptoms. We investigated X-chromosomal inactivation patterns (XCI) as a potential determinant of symptom severity in FD women. Patients and Methods We included 95 women with mutations in GLA (n = 18 with variants of unknown pathogenicity) and 50 related men, and collected mouth epithelial cells, venous blood, and skin fibroblasts for XCI analysis using the methylation status of the androgen receptor gene. The mutated X-chromosome was identified by comparison of samples from relatives. Patients underwent genotype categorization and deep clinical phenotyping of symptom severity. Results 43/95 (45\%) women carried mutations categorized as classic. The XCI pattern was skewed (i.e., ≥75:25\% distribution) in 6/87 (7\%) mouth epithelial cell samples, 31/88 (35\%) blood samples, and 9/27 (33\%) skin fibroblast samples. Clinical phenotype, α-galactosidase A (GAL) activity, and lyso-Gb3 levels did not show intergroup differences when stratified for X-chromosomal skewing and activity status of the mutated X-chromosome. Conclusions X-inactivation patterns alone do not reliably reflect the clinical phenotype of women with FD when investigated in biomaterial not directly affected by FD. However, while XCI patterns may vary between tissues, blood frequently shows skewing of XCI patterns.}, language = {en} } @article{SpitzelWagnerBreyeretal.2022, author = {Spitzel, Marlene and Wagner, Elise and Breyer, Maximilian and Henniger, Dorothea and Bayin, Mehtap and Hofmann, Lukas and Mauceri, Daniela and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of Fabry disease}, series = {Cells}, volume = {11}, journal = {Cells}, number = {11}, issn = {2073-4409}, doi = {10.3390/cells11111730}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275186}, year = {2022}, abstract = {Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206\(^+\) macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1\(^+\) DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.}, language = {en} } @article{KraemerSchuhmannVolkmannetal.2022, author = {Kr{\"a}mer, Stefanie D. and Schuhmann, Michael K. and Volkmann, Jens and Fluri, Felix}, title = {Deep brain stimulation in the subthalamic nucleus can improve skilled Forelimb movements and retune dynamics of striatal networks in a rat stroke model}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {24}, doi = {10.3390/ijms232415862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312828}, year = {2022}, abstract = {Recovery of upper limb (UL) impairment after stroke is limited in stroke survivors. Since stroke can be considered as a network disorder, neuromodulation may be an approach to improve UL motor dysfunction. Here, we evaluated the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in rats on forelimb grasping using the single-pellet reaching (SPR) test after stroke and determined costimulated brain regions during STN-HFS using 2-[\(^{18}\)F]Fluoro-2-deoxyglucose-([\(^{18}\)F]FDG)-positron emission tomography (PET). After a 4-week training of SPR, photothrombotic stroke was induced in the sensorimotor cortex of the dominant hemisphere. Thereafter, an electrode was implanted in the STN ipsilateral to the infarction, followed by a continuous STN-HFS or sham stimulation for 7 days. On postinterventional day 2 and 7, an SPR test was performed during STN-HFS. Success rate of grasping was compared between these two time points. [\(^{18}\)F]FDG-PET was conducted on day 2 and 3 after stroke, without and with STN-HFS, respectively. STN-HFS resulted in a significant improvement of SPR compared to sham stimulation. During STN-HFS, a significantly higher [\(^{18}\)F]FDG-uptake was observed in the corticosubthalamic/pallidosubthalamic circuit, particularly ipsilateral to the stimulated side. Additionally, STN-HFS led to an increased glucose metabolism within the brainstem. These data demonstrate that STN-HFS supports rehabilitation of skilled forelimb movements, probably by retuning dysfunctional motor centers within the cerebral network.}, language = {en} } @phdthesis{Haehnel2022, author = {H{\"a}hnel, Luzia Maria}, title = {Evaluation von Beta-2-Mikroglobulin, Laktat und Angiotensin-Converting Enzyme im Liquor als Biomarker der Multiplen Sklerose}, doi = {10.25972/OPUS-25850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This study investigates the suitability of beta-2-microglobulin (β2-microglobulin), lactate and angiotensin-converting enzyme (ACE) as biomarkers, given the good availability of these parameters in routine diagnostics but lack of data in this regard. For this purpose, 6,310 CSF samples obtained at the Neurological Clinic of the University Hospital of W{\"u}rzburg were analyzed. Closer analysis was carried out of 276 cases with non-inflammatory neurological diseases (NIND; control group) and 438 MS cases not taking an immunotherapy treatment (study group). In the MS cases, the form of progression of the disease and the disease activity (clinical relapses, progression index) were recorded. A clear correlation could be seen between age and CSF levels of β2-microglobulin, lactate and ACE in both the MS and control groups, whereby a correction was required for the subsequent comparison studies; this could also at least partly explain the contradictory data obtained in other studies to date. The MS cases showed elevated β2-microglobulin and lactate levels and decreased ACE levels in CSF compared to the controls. In both groups, there was a positive correlation between β2-microglobulin and ACE levels. In the separate analysis of the forms of progression of MS, cases with clinically-isolated syndrome (CIS) and relapsing-remitting MS (RRMS) revealed elevated β2-microglobulin levels, whilst cases with secondary-progressive or primary-progressive MS (SPMS or PPMS) did not. Lactate levels were only increased in cases of CIS. Cases with a relapsing course showed reduced ACE levels. The disease activity could not reliably be mapped by the parameters. Lactate levels tended to be elevated during a relapse, but this result was no longer significant after correction. Lactate levels also showed a positive correlation with the progression index. Our findings in this study provide evidence that the examined analysis parameters cannot be used in isolation to assess progression, disease activity and duration of disease. However, the significant differences between relapsing and chronic-progressive courses support the hypothesis of different underlying mechanisms of pathogenesis, and could serve as a starting basis for further studies.}, subject = {Multiple Sklerose}, language = {de} } @phdthesis{Seager2022, author = {Seager, Anna}, title = {Die ur{\"a}mische Neuropathie - ein Vitamin-B\(_{12}\)-Mangel?}, doi = {10.25972/OPUS-29109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291094}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Eine Vielzahl von Patienten mit fortgeschrittener, beziehungsweise dialysepflichtiger Niereninsuffizienz entwickeln eine Polyneuropathie. Die Pathogenese der ur{\"a}mischen Neuropathie (UN) ist nicht gekl{\"a}rt, sodass auf der Suche nach dem Pathomechanismus auch ein Vitamin-B12-Mangel diskutiert werden muss, da dieser {\"a}hnliche Symptome wie die UN hervorrufen kann. Ziel dieser Studie war es, den Zusammenhang zwischen den Parametern des Vitamin-B12-Stoffwechsels und der UN darzustellen. In einer prospektiven Studie mit insgesamt 54 teilnehmenden Patienten wurden diese vor und nach einer Vitamin-B12-Substitution laborchemisch untersucht. Zudem erhielten die Patienten neben einer klinischen Untersuchung eine elektroneurographische Diagnostik des N. suralis und des N. tibialis, sowie eine QST-Untersuchung.}, subject = {Ur{\"a}mie}, language = {de} } @phdthesis{Brunder2022, author = {Brunder, Anna-Michelle}, title = {Nodale und paranodale Autoantik{\"o}rper bei inflammatorischen Polyneuropathien: Nachweis, Charakterisierung und Assoziation zu klinischen Verlaufsformen}, doi = {10.25972/OPUS-28218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282185}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In den letzten Jahren gewann das Konzept der Paranodopathien als eigene Krankheitsentit{\"a}t der inflammatorischen Polyneuropathien zunehmend an Bedeutung. Die Forschung konzentrierte sich dabei {\"u}berwiegend auf die chronisch inflammatorische Polyradikuloneuropathie (CIDP). In dieser Arbeit werden (para-)nodale Antik{\"o}rper gegen Neurofascin-155, panNeurofascin, Contactin-1 und Caspr-1 in einer großen Kohorte von Patienten mit Guillain-Barr{\´e}-Syndrom (GBS) und CIDP nachgewiesen. Patienten mit Anti-panNeurofascin-Antik{\"o}rpern zeigten besonders schwere Verlaufsformen. Patienten mit anderen (para-)nodalen Antik{\"o}rpern zeigten je nach IgG-Subklasse der Antik{\"o}rper spezifische klinische Merkmale und ein unterschiedliches Ansprechen auf die Therapie. Die Arbeit zeigt, dass die Bestimmung (para-)nodaler Antik{\"o}rper bei Patienten mit GBS und CIDP im klinischen Alltag zur Einordung der Prognose und Therapieplanung sinnvoll sein kann.}, subject = {Polyneuropathie}, language = {de} } @phdthesis{Leinfelder2022, author = {Leinfelder, Teresa}, title = {Untersuchung von Trainingseffekten bei der Verwendung einer auditorischen P300-basierten EEG Gehirn-Computer Schnittstelle mittels fMRI Analyse}, doi = {10.25972/OPUS-29068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In dieser Dissertation untersuchten wir die neuronalen Korrelate des Training-Effektes einer auditorischen P300 Gehirn-Computer Schnittstelle mittels fMRI Analyse in einem pr{\"a}-post Design mit zehn gesunden Testpersonen. Wir wiesen in drei Trainings-sitzungen einen Trainingseffekt in der EEG-Analyse der P300 Welle nach und fanden entsprechende Kontraste in einer pr{\"a}-post Analyse von fMRI Daten, wobei in allen f{\"u}nf Sitzungen das gleiche Paradigma verwendet wurde. In der fMRI Analyse fanden wir fol-gende Ergebnisse: in einem Target-/ Nichttarget Kontrast zeigte sich verst{\"a}rkte Aktivie-rung in Generatorregionen der P300 Welle (temporale und inferiore frontale Regionen) und interessanterweise auch in motorassoziierten Arealen, was h{\"o}here kognitiver Pro-zesse wie Aufmerksamkeitslenkung und Arbeitsspeicher widerspiegeln k{\"o}nnte. Der Kon-trast des Trainingseffektes zeigte nach dem Training einen st{\"a}rkeren Rebound Effekt im Sinne einer verst{\"a}rkten Aktivierung in Generatorregionen der P300 Welle, was eine ver-besserte Erkennung und Prozessierung von Target-Stimuli reflektieren k{\"o}nnte. Eine Ab-nahme von Aktivierung in frontalen Arealen in diesem Kontrast k{\"o}nnte durch effizientere Abl{\"a}ufe kognitiver Prozesse und des Arbeitsged{\"a}chtnis erkl{\"a}rt werden.}, subject = {Gehirn-Computer-Schnittstelle}, language = {de} } @phdthesis{Stengel2022, author = {Stengel, Helena Maria}, title = {Paranodale und nodale Autoantik{\"o}rper: Charakterisierung der Anti-Neurofascin-Autoantik{\"o}rper-assoziierten Neuropathie und Untersuchung des Effektes von Anti-Contactin-1-Autoantik{\"o}rpern im Zellkulturmodell}, doi = {10.25972/OPUS-25466}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die (Para-)nodopathie ist neben der prim{\"a}r axonalen und der prim{\"a}r demyelinisierenden Polyneuropathie eine neue Krankheitsentit{\"a}t, die sich durch eine Sch{\"a}digung der Funktion des Ranvierschen Schn{\"u}rringes auszeichnet. Die Forschung zu (para-)nodalen Autoantik{\"o}rpern fokussierte sich bislang haupts{\"a}chlich auf Neurofascin-155- und Contactin-1-Autoantik{\"o}rper der Subklasse IgG4. In dieser Studie wurden die Seren von insgesamt 264 PatientInnen mit CIDP, GBS oder anderen Formen von Polyneuropathien mittels Bindungsassays an murinen Ischiadicuszupfnerven und gegebenenfalls ELISA auf (para-)nodale Autoantik{\"o}rper gescrennt. Positive Autoantik{\"o}rperbefunde wurden bei IgG-Autoantik{\"o}rpern mittels Bindungsassays an transfizierten HEK-293-Zellen und bei IgM-Autoantik{\"o}rpern mittels Western Blot best{\"a}tigt. ELISA Untersuchungen dienten zur n{\"a}heren Spezifizierung. Weiterhin wurde die zeitabh{\"a}ngige Wirkung von Contactin-1-Autoantik{\"o}rpern im Zellkulturmodell untersucht. Die im folgenden dargestellten Ergebnisse zeigen, dass die (Para-)nodopathie nicht auf die bisher am h{\"a}ufigsten beschriebene Erkrankung mit IgG4-Autoantik{\"o}rpern beschr{\"a}nkt werden sollte. Bei dem extrem schwer betroffenen IgG-Patient 1 konnte ein Pan-Neurofascin-IgG3-Autoantik{\"o}rper nachgewiesen werden. Als charakteristische Symptome f{\"u}r diese Autoantik{\"o}rper konnten in {\"U}bereinstimmung mit weiteren Fallberichten Tetraplegie, Beatmungspflichtigkeit sowie eine schwere Hirnnervenbeteiligung bis zur Locked-In-Symptomatik identifiziert werden. Diese Patienten heben sich deutlich von den PatientInnen mit den bisher haupts{\"a}chlich beschriebenen Neurofascin-155-IgG4-Autoantik{\"o}rpern ab, die wie IgG-Patient 2 charakteristischerweise in jungem Alter an einer CIDP mit Tremor ohne Besserung unter IVIG-Therapie leiden. Es wurden f{\"u}nf PatientInnen mit Neurofascin-155-IgM-Autoantik{\"o}rpern identifiziert, die eine akut beginnende Erkrankung mit Tetraparese, Tremor und neuropathischen Schmerzen zeigten. Ob sich dieser Ph{\"a}notyp als charakteristisch f{\"u}r eine Neurofascin-155-IgM-(Para-)nodopathie best{\"a}tigt, sollte in weiteren Studien untersucht werden. Im murinen Zellkulturmodell an cerebell{\"a}ren Neuronen und Spinalganglienneuronen zeigte sich nach Inkubation mit Contactin-1-IgG-Patientenantik{\"o}rpern eine zeitabh{\"a}ngige, rasch reversible Verminderung der Contactin-1-Protein-Expression in immunhistochemischen F{\"a}rbungen sowie Western Blots, die durch eine Internalisierung des Contactin-1-Proteins erkl{\"a}rbar w{\"a}re. Der Angriff von Autoantik{\"o}rpern an Spinalganglienneuronen und cerebell{\"a}ren Neurone sollte in weitere pathophysiologische {\"U}berlegungen miteinbezogen werden, da hierdurch typische Symptome der (Para-)nodopathie wie eine sensible Ataxie oder ein cerebell{\"a}rer Tremor erkl{\"a}rt werden k{\"o}nnten.}, subject = {Ranvier-Schn{\"u}rring}, language = {de} } @article{UeceylerSchliesserEvdokimovetal.2022, author = {{\"U}{\c{c}}eyler, Nurcan and Schließer, Mira and Evdokimov, Dimitar and Radziwon, Jakub and Feulner, Betty and Unterecker, Stefan and Rimmele, Florian and Walter, Uwe}, title = {Reduced midbrain raphe echogenicity in patients with fibromyalgia syndrome}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {11}, doi = {10.1371/journal.pone.0277316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300639}, year = {2022}, abstract = {Objectives The pathogenesis of fibromyalgia syndrome (FMS) is unclear. Transcranial ultrasonography revealed anechoic alteration of midbrain raphe in depression and anxiety disorders, suggesting affection of the central serotonergic system. Here, we assessed midbrain raphe echogenicity in FMS. Methods Sixty-six patients underwent transcranial sonography, of whom 53 were patients with FMS (27 women, 26 men), 13 patients with major depression and physical pain (all women), and 14 healthy controls (11 women, 3 men). Raphe echogenicity was graded visually as normal or hypoechogenic, and quantified by digitized image analysis, each by investigators blinded to the clinical diagnosis. Results Quantitative midbrain raphe echogenicity was lower in patients with FMS compared to healthy controls (p<0.05), but not different from that of patients with depression and accompanying physical pain. Pain and FMS symptom burden did not correlate with midbrain raphe echogenicity as well as the presence and severity of depressive symptoms. Conclusion We found reduced echogenicity of the midbrain raphe area in patients with FMS and in patients with depression and physical pain, independent of the presence or severity of pain, FMS, and depressive symptoms. Further exploration of this sonographic finding is necessary before this objective technique may enter diagnostic algorithms in FMS and depression.}, language = {en} } @article{KarikariMcFlederRibechinietal.2022, author = {Karikari, Akua A. and McFleder, Rhonda L. and Ribechini, Eliana and Blum, Robert and Bruttel, Valentin and Knorr, Susanne and Gehmeyr, Mona and Volkmann, Jens and Brotchie, Jonathan M. and Ahsan, Fadhil and Haack, Beatrice and Monoranu, Camelia-Maria and Keber, Ursula and Yeghiazaryan, Rima and Pagenstecher, Axel and Heckel, Tobias and Bischler, Thorsten and Wischhusen, J{\"o}rg and Koprich, James B. and Lutz, Manfred B. and Ip, Chi Wang}, title = {Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice}, series = {Brain, Behavior, and Immunity}, volume = {101}, journal = {Brain, Behavior, and Immunity}, doi = {10.1016/j.bbi.2022.01.007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300600}, pages = {194 -- 210}, year = {2022}, abstract = {Background Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. Methods We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)\(^{-/-}\) mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4\(^{+}\)/CD8\(^{-}\), CD4\(^{-}\)/CD8\(^{+}\), or CD4\(^{+}\)/CD8\(^{+}\) (JHD\(^{-/-}\)) mice into the RAG-1\(^{-/-}\) mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. Results AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. Conclusions Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.}, language = {en} }