@article{SchuhmannStollBohretal.2019, author = {Schuhmann, Michael K. and Stoll, Guido and Bohr, Arne and Volkmann, Jens and Fluri, Felix}, title = {Electrical stimulation of the mesencephalic locomotor region attenuates neuronal loss and cytokine expression in the perifocal region of photothrombotic stroke in rats}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms20092341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201355}, year = {2019}, abstract = {Deep brain stimulation of the mesencephalic locomotor region (MLR) improves the motor symptoms in Parkinson's disease and experimental stroke by intervening in the motor cerebral network. Whether high-frequency stimulation (HFS) of the MLR is involved in non-motor processes, such as neuroprotection and inflammation in the area surrounding the photothrombotic lesion, has not been elucidated. This study evaluates whether MLR-HFS exerts an anti-apoptotic and anti-inflammatory effect on the border zone of cerebral photothrombotic stroke. Rats underwent photothrombotic stroke of the right sensorimotor cortex and the implantation of a microelectrode into the ipsilesional MLR. After intervention, either HFS or sham stimulation of the MLR was applied for 24 h. The infarct volumes were calculated from consecutive brain sections. Neuronal apoptosis was analyzed by TUNEL staining. Flow cytometry and immunohistochemistry determined the perilesional inflammatory response. Neuronal apoptosis was significantly reduced in the ischemic penumbra after MLR-HFS, whereas the infarct volumes did not differ between the groups. MLR-HFS significantly reduced the release of cytokines and chemokines within the ischemic penumbra. MLR-HFS is neuroprotective and it reduces pro-inflammatory mediators in the area that surrounds the photothrombotic stroke without changing the number of immune cells, which indicates that MLR-HFS enables the function of inflammatory cells to be altered on a molecular level.}, language = {en} } @article{KuzkinaBargarSchmittetal.2021, author = {Kuzkina, Anastasia and Bargar, Connor and Schmitt, Daniela and R{\"o}ßle, Jonas and Wang, Wen and Schubert, Anna-Lena and Tatsuoka, Curtis and Gunzler, Steven A. and Zou, Wen-Quan and Volkmann, Jens and Sommer, Claudia and Doppler, Kathrin and Chen, Shu G.}, title = {Diagnostic value of skin RT-QuIC in Parkinson's disease: a two-laboratory study}, series = {NPJ Parkinson's Disease}, volume = {7}, journal = {NPJ Parkinson's Disease}, number = {1}, doi = {10.1038/s41531-021-00242-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260451}, year = {2021}, abstract = {Skin alpha-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of alpha-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of alpha-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The a-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9\% and showed a high degree of inter-rater agreement between the two laboratories (92.2\%). Higher alpha-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The alpha-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, alpha-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms.}, language = {en} } @article{KraftDrechslerGunrebenetal.2015, author = {Kraft, Peter and Drechsler, Christiane and Gunreben, Ignaz and Heuschmann, Peter Ulrich and Kleinschnitz, Christoph}, title = {Case-control study of platelet glycoprotein receptor Ib and IIb/IIIa expression in patients with acute and chronic cerebrovascular disease}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0119810}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148806}, pages = {e0119810}, year = {2015}, abstract = {Background Animal models have been instrumental in defining thrombus formation, including the role of platelet surface glycoprotein (GP) receptors, in acute ischemic stroke (AIS). However, the involvement of GP receptors in human ischemic stroke pathophysiology and their utility as biomarkers for ischemic stroke risk and severity requires elucidation. Aims To determine whether platelet GPIb and GPIIb/IIIa receptors are differentially expressed in patients with AIS and chronic cerebrovascular disease (CCD) compared with healthy volunteers (HV) and to identify predictors of GPIb and GPIIb/IIIa expression. Methods This was a case-control study of 116 patients with AIS or transient ischemic attack (TIA), 117 patients with CCD, and 104 HV who were enrolled at our University hospital from 2010 to 2013. Blood sampling was performed once in the CCD and HV groups, and at several time points in patients with AIS or TIA. Linear regression and analysis of variance were used to analyze correlations between platelet GPIb and GPIIb/IIIa receptor numbers and demographic and clinical parameters. Results GPIb and GPIIb/IIIa receptor numbers did not significantly differ between the AIS, CCD, and HV groups. GPIb receptor expression level correlated significantly with the magnitude of GPIIb/IIIa receptor expression and the neutrophil count. In contrast, GPIIb/IIIa receptor numbers were not associated with peripheral immune-cell sub-population counts. Creactive protein was an independent predictor of GPIIb/IIIa (not GPIb) receptor numbers. Conclusions Platelet GPIb and GPIIb/IIIa receptor numbers did not distinguish between patient or control groups in this study, negating their potential use as a biomarker for predicting stroke risk.}, language = {en} } @article{NeugebauerSchneiderKollmar2019, author = {Neugebauer, Hermann and Schneider, Hauke and Kollmar, Rainer}, title = {Letter by Neugebauer et al. regarding article "Hypothermia after decompressive hemicraniectomy in treatment of malignant middle cerebral artery stroke: comment on the randomized clinical trial"}, series = {Critical Care}, volume = {23}, journal = {Critical Care}, doi = {10.1186/s13054-019-2600-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232268}, year = {2019}, abstract = {No abstract available.}, language = {en} } @article{StetterLopezCaperuchipiHoppKraemeretal.2021, author = {Stetter, Christian and Lopez-Caperuchipi, Simon and Hopp-Kr{\"a}mer, Sarah and Bieber, Michael and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena and Albert-Weißenberger, Christiane}, title = {Amelioration of cognitive and behavioral deficits after traumatic brain injury in coagulation factor XII deficient mice}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms22094855}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284959}, year = {2021}, abstract = {Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII\(^{-/-}\) mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII\(^{-/-}\) mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII\(^{-/-}\) mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII\(^{-/-}\) mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII\(^{-/-}\) mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery.}, language = {en} } @phdthesis{Spitzel2023, author = {Spitzel, Marlene}, title = {The impact of inflammation, hypoxia, and vasculopathy on pain development in the α-galactosidase A mouse model of Morbus Fabry}, doi = {10.25972/OPUS-34579}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345794}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Fabry disease (FD), an X-linked lysosomal storage disorder, is caused by variants in the gene α-galactosidase A (GLA). As a consequence, the encoded homonymous enzyme GLA is not produced in sufficient amount or does not function properly. Subsequently, globotriaosylceradmide (Gb3), the target substrate of GLA, starts accumulating in several cell types, especially neurons and endothelial cells. FD patients suffer from multiorgan symptoms including cardiomyopathy, nephropathy, stroke, and acral burning pain. It is suggested that the impact of pathological Gb3 accumulation, inflammatory and hypoxic processes, and vasculopathy are contributing to the specific FD pain phenotype. Thus, we investigated the role of inflammation, hypoxia, and vasculopathy on molecular level in dorsal root ganglia (DRG) of the GLA knockout (KO) mouse model. Further, we investigated pain-like characteristics of GLA KO mice at baseline (BS), after capsaicin administration, and after repeated enzyme replacement therapy (ERT) administration for a period of 1.5 years. Acquired data showed disturbances in immune response markers represented by downregulated inflammation-associated genes and lower numbers of CD206+ macrophages in DRG of GLA KO mice. Hypoxic mechanisms were active in DRG of GLA KO mice reflected by increased gene expression of hypoxia- and DNA damage-associated targets, higher numbers of hypoxia-inducible factor 1α-positive (HIF1α+) and carbonic anhydrase 9-positive (CA9+) neurons in DRG of GLA KO mice, and DRG neuronal HIF1α cytosolic-nuclear translocation in GLA KO mice. Vascularization in DRG of GLA KO mice was reduced including lower numbers of blood vessel branches and reduced total blood vessel length. Pain-like behavior of the GLA KO mouse model revealed no mechanical hypersensitivity at BS but age-dependent heat hyposensitivity, which developed also age-matched wild type (WT) mice. Capsaicin administration under isoflurane anesthesia did not elicit the development of nocifensive behavior in GLA KO mice after mechanical or heat stimulation. Repeated ERT administration did not show a clear effect in GLA KO mice in terms of restored heat hyposensitivity to BS paw withdrawal latencies. In summary, we demonstrated the impact of disturbed immune response markers, active hypoxic mechanisms, and reduced vascularization on molecular FD pathophysiology.}, subject = {Fabry-Krankheit}, language = {en} } @article{WohnradeVellingMixetal.2023, author = {Wohnrade, Camilla and Velling, Ann-Kathrin and Mix, Lucas and Wurster, Claudia D. and Cordts, Isabell and Stolte, Benjamin and Zeller, Daniel and Uzelac, Zeljko and Platen, Sophia and Hagenacker, Tim and Deschauer, Marcus and Lingor, Paul and Ludolph, Albert C. and Lul{\´e}, Doroth{\´e}e and Petri, Susanne and Osmanovic, Alma and Schreiber-Katz, Olivia}, title = {Health-related quality of life in spinal muscular atrophy patients and their caregivers — a prospective, cross-sectional, multi-center analysis}, series = {Brain Sciences}, volume = {13}, journal = {Brain Sciences}, number = {1}, issn = {2076-3425}, doi = {10.3390/brainsci13010110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305048}, year = {2023}, abstract = {Spinal muscular atrophy (SMA) is a disabling disease that affects not only the patient's health-related quality of life (HRQoL), but also causes a high caregiver burden (CGB). The aim of this study was to evaluate HRQoL, CGB, and their predictors in SMA. In two prospective, cross-sectional, and multi-center studies, SMA patients (n = 39) and SMA patient/caregiver couples (n = 49) filled in the EuroQoL Five Dimension Five Level Scale (EQ-5D-5L) and the Short Form Health Survey 36 (SF-36). Caregivers (CGs) additionally answered the Zarit Burden Interview (ZBI) and the Hospital Anxiety and Depression Scale (HADS). Patients were clustered into two groups with either low or high HRQoL (EQ-5D-5L index value <0.259 or >0.679). The latter group was mostly composed of ambulatory type III patients with higher motor/functional scores. More severely affected patients reported low physical functioning but good mental health and vitality. The CGB (mean ZBI = 22/88) correlated negatively with patients' motor/functional scores and age. Higher CGB was associated with a lower HRQoL, higher depression and anxiety, and more health impairments of the CGs. We conclude that patient and CG well-being levels interact closely, which highlights the need to consider the health of both parties while evaluating novel treatments.}, language = {en} } @phdthesis{Steeg2023, author = {Steeg, Felix Leonard}, title = {Kinematische und histomorphologische Charakterisierung des DYT1 Knock-in Mausmodells mit Trauma-induzierter Dystonie}, doi = {10.25972/OPUS-34580}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345805}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die dem Formenkreis der Dystonien zugrundeliegenden, pathophysiologischen Grundlagen sind bislang nicht abschließend gekl{\"a}rt. F{\"u}r die DYT-TOR1A Dystonie ist bekannt, dass eine 3-bp Deletion eines GAG-Codons im TOR1A-Gen auf Chromosom 9 einen Funktionsverlust des Proteins TorsinA bewirkt. Dieser Funktionsverlust wird als ausl{\"o}sender Faktor f{\"u}r die Entstehung der DYT-TOR1A Dystonie angenommen. Nichtsdestotrotz entwickeln lediglich circa 30\% der Mutationstr{\"a}ger eine dystone Bewegungsst{\"o}rung. Als Grund daf{\"u}r wird eine Two-hit Hypothese diskutiert, die zus{\"a}tzlich zur genetischen Pr{\"a}disposition einen Umweltfaktor wie ein peripheres Trauma f{\"u}r die Entstehung von Symptomen postuliert. Durch eine standardisierte Quetschl{\"a}sion des N. ischiadicus konnte mit dieser Arbeit bei DYT1KI M{\"a}usen, die die ∆GAG-Mutation im endogenen Genom tragen, ein dystoner Ph{\"a}notyp hervorgerufen werden. Mit den Aufzeichnungen der M{\"a}use im TST wurde ein neuronales Netzwerk mittels der Software „DeepLabCut" trainiert, sodass die Dystonie-{\"a}hnlichen Bewegungen automatisiert erfasst und ausgewertet werden konnten. Das Netzwerk tr{\"a}gt dazu bei, dem vorwiegend klinischen Syndrom der Dystonie eine objektive kinematische Charakterisierung zu bieten und kann auf andere TSTs anderer Nagermodelle {\"u}bertragen werden. Ferner wurde {\"u}berpr{\"u}ft, ob die beobachteten Bewegungen durch Unterschiede in der Regeneration nach der Nervenquetschung zustande kamen. Elektroneurographien zeigten jedoch diesbez{\"u}glich keine Unterschiede zwischen wt und DYT1KI Tieren. Dar{\"u}ber hinaus sind mikromorphologische Prozesse im zentralen und peripheren Nervensystem Gegenstand dieser Studie. Einerseits konnten wir mittels Immunzellf{\"a}rbungen von T-, B-Zellen, Makrophagen und Mikroglia feststellen, dass sowohl zentral als auch peripher kein Anhalt darauf besteht, dass die beim DYT1KI Mausmodell entstandenen Dystonie-{\"a}hnlichen Bewegungen auf einer Dysfunktion oder Aktivierung des Immunsystems, wie es bei anderen neurologischen Erkrankungen bereits nachgewiesen wurde, eine Rolle spielt. Andererseits konnte anhand stereologischer Messungen gezeigt werden, dass bei den naiven DYT1KI Tieren im Vergleich zu wt Tieren dopaminerge Neurone der SN in der Anzahl verringert und im Volumen vergr{\"o}ßert sind, was auf einen Endoph{\"a}notypen hinweist. Bei den symptomatischen, nervengequetschten DYT1KI M{\"a}usen zeigte sich wiederum eine weitere, signifikante Zunahme der Hypertrophie der dopaminergen Neurone als Hinweis auf eine unmittelbar mit dem dystonen Ph{\"a}notypen in Zusammenhang stehende Ver{\"a}nderung. Zusammenfassend konnte ein symptomatisches Mausmodell von hoher translationaler Bedeutung etabliert werden, in dem sich Hinweise f{\"u}r eine dopaminerge Dysregulation ergaben und welches f{\"u}r weitere Studien, insbesondere therapeutischer Art, eingesetzt werden k{\"o}nnte.}, subject = {Dystonie}, language = {de} } @article{HaarmannVollmuthKollikowskietal.2023, author = {Haarmann, Axel and Vollmuth, Christoph and Kollikowski, Alexander M. and Heuschmann, Peter U. and Pham, Mirko and Stoll, Guido and Neugebauer, Hermann and Schuhmann, Michael K.}, title = {Vasoactive soluble endoglin: a novel biomarker indicative of reperfusion after cerebral large-vessel occlusion}, series = {Cells}, volume = {12}, journal = {Cells}, number = {2}, issn = {2073-4409}, doi = {10.3390/cells12020288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304995}, year = {2023}, abstract = {Now that mechanical thrombectomy has substantially improved outcomes after large-vessel occlusion stroke in up to every second patient, futile reperfusion wherein successful recanalization is not followed by a favorable outcome is moving into focus. Unfortunately, blood-based biomarkers, which identify critical stages of hemodynamically compromised yet reperfused tissue, are lacking. We recently reported that hypoxia induces the expression of endoglin, a TGF-β co-receptor, in human brain endothelium in vitro. Subsequent reoxygenation resulted in shedding. Our cell model suggests that soluble endoglin compromises the brain endothelial barrier function. To evaluate soluble endoglin as a potential biomarker of reperfusion (-injury) we analyzed its concentration in 148 blood samples of patients with acute stroke due to large-vessel occlusion. In line with our in vitro data, systemic soluble endoglin concentrations were significantly higher in patients with successful recanalization, whereas hypoxia alone did not induce local endoglin shedding, as analyzed by intra-arterial samples from hypoxic vasculature. In patients with reperfusion, higher concentrations of soluble endoglin additionally indicated larger infarct volumes at admission. In summary, we give translational evidence that the sequence of hypoxia and subsequent reoxygenation triggers the release of vasoactive soluble endoglin in large-vessel occlusion stroke and can serve as a biomarker for severe ischemia with ensuing recanalization/reperfusion.}, language = {en} } @article{HaufeIsaiasPellegrinietal.2023, author = {Haufe, Stefan and Isaias, Ioannis U. and Pellegrini, Franziska and Palmisano, Chiara}, title = {Gait event prediction using surface electromyography in parkinsonian patients}, series = {Bioengineering}, volume = {10}, journal = {Bioengineering}, number = {2}, issn = {2306-5354}, doi = {10.3390/bioengineering10020212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304380}, year = {2023}, abstract = {Gait disturbances are common manifestations of Parkinson's disease (PD), with unmet therapeutic needs. Inertial measurement units (IMUs) are capable of monitoring gait, but they lack neurophysiological information that may be crucial for studying gait disturbances in these patients. Here, we present a machine learning approach to approximate IMU angular velocity profiles and subsequently gait events using electromyographic (EMG) channels during overground walking in patients with PD. We recorded six parkinsonian patients while they walked for at least three minutes. Patient-agnostic regression models were trained on temporally embedded EMG time series of different combinations of up to five leg muscles bilaterally (i.e., tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, and vastus lateralis). Gait events could be detected with high temporal precision (median displacement of <50 ms), low numbers of missed events (<2\%), and next to no false-positive event detections (<0.1\%). Swing and stance phases could thus be determined with high fidelity (median F1-score of ~0.9). Interestingly, the best performance was obtained using as few as two EMG probes placed on the left and right vastus lateralis. Our results demonstrate the practical utility of the proposed EMG-based system for gait event prediction, which allows the simultaneous acquisition of an electromyographic signal to be performed. This gait analysis approach has the potential to make additional measurement devices such as IMUs and force plates less essential, thereby reducing financial and preparation overheads and discomfort factors in gait studies.}, language = {en} } @article{SilwedelHuettenSpeeretal.2023, author = {Silwedel, Christine and H{\"u}tten, Matthias C. and Speer, Christian P. and H{\"a}rtel, Christoph and Haarmann, Axel and Henrich, Birgit and Tijssen, Maud P. M. and Alnakhli, Abdullah Ahmed and Spiller, Owen B. and Schlegel, Nicolas and Seidenspinner, Silvia and Kramer, Boris W. and Glaser, Kirsten}, title = {Ureaplasma-driven neonatal neuroinflammation: novel insights from an ovine model}, series = {Cellular and Molecular Neurobiology}, volume = {43}, journal = {Cellular and Molecular Neurobiology}, number = {2}, doi = {10.1007/s10571-022-01213-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324285}, pages = {785-795}, year = {2023}, abstract = {Ureaplasma species (spp.) are considered commensals of the adult genitourinary tract, but have been associated with chorioamnionitis, preterm birth, and invasive infections in neonates, including meningitis. Data on mechanisms involved in Ureaplasma-driven neuroinflammation are scarce. The present study addressed brain inflammatory responses in preterm lambs exposed to Ureaplasma parvum (UP) in utero. 7 days after intra-amniotic injection of UP (n = 10) or saline (n = 11), lambs were surgically delivered at gestational day 128-129. Expression of inflammatory markers was assessed in different brain regions using qRT-PCR and in cerebrospinal fluid (CSF) by multiplex immunoassay. CSF was analyzed for UP presence using ureB-based real-time PCR, and MRI scans documented cerebral white matter area and cortical folding. Cerebral tissue levels of atypical chemokine receptor (ACKR) 3, caspases 1-like, 2, 7, and C-X-C chemokine receptor (CXCR) 4 mRNA, as well as CSF interleukin-8 protein concentrations were significantly increased in UP-exposed lambs. UP presence in CSF was confirmed in one animal. Cortical folding and white matter area did not differ among groups. The present study confirms a role of caspases and the transmembrane receptors ACKR3 and CXCR4 in Ureaplasma-driven neuroinflammation. Enhanced caspase 1-like, 2, and 7 expression may reflect cell death. Increased ACKR3 and CXCR4 expression has been associated with inflammatory central nervous system (CNS) diseases and impaired blood-brain barrier function. According to these data and previous in vitro findings from our group, we speculate that Ureaplasma-induced caspase and receptor responses affect CNS barrier properties and thus facilitate neuroinflammation.}, language = {en} } @article{FriedrichSchneiderBuerkleinetal.2023, author = {Friedrich, Maximilian U. and Schneider, Erich and Buerklein, Miriam and Taeger, Johannes and Hartig, Johannes and Volkmann, Jens and Peach, Robert and Zeller, Daniel}, title = {Smartphone video nystagmography using convolutional neural networks: ConVNG}, series = {Journal of Neurology}, volume = {270}, journal = {Journal of Neurology}, number = {5}, doi = {10.1007/s00415-022-11493-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324526}, pages = {2518-2530}, year = {2023}, abstract = {Background Eye movement abnormalities are commonplace in neurological disorders. However, unaided eye movement assessments lack granularity. Although videooculography (VOG) improves diagnostic accuracy, resource intensiveness precludes its broad use. To bridge this care gap, we here validate a framework for smartphone video-based nystagmography capitalizing on recent computer vision advances. Methods A convolutional neural network was fine-tuned for pupil tracking using > 550 annotated frames: ConVNG. In a cross-sectional approach, slow-phase velocity of optokinetic nystagmus was calculated in 10 subjects using ConVNG and VOG. Equivalence of accuracy and precision was assessed using the "two one-sample t-test" (TOST) and Bayesian interval-null approaches. ConVNG was systematically compared to OpenFace and MediaPipe as computer vision (CV) benchmarks for gaze estimation. Results ConVNG tracking accuracy reached 9-15\% of an average pupil diameter. In a fully independent clinical video dataset, ConVNG robustly detected pupil keypoints (median prediction confidence 0.85). SPV measurement accuracy was equivalent to VOG (TOST p < 0.017; Bayes factors (BF) > 24). ConVNG, but not MediaPipe, achieved equivalence to VOG in all SPV calculations. Median precision was 0.30°/s for ConVNG, 0.7°/s for MediaPipe and 0.12°/s for VOG. ConVNG precision was significantly higher than MediaPipe in vertical planes, but both algorithms' precision was inferior to VOG. Conclusions ConVNG enables offline smartphone video nystagmography with an accuracy comparable to VOG and significantly higher precision than MediaPipe, a benchmark computer vision application for gaze estimation. This serves as a blueprint for highly accessible tools with potential to accelerate progress toward precise and personalized Medicine.}, language = {en} } @article{PolatWohllebenKosmalaetal.2022, author = {Polat, B{\"u}lent and Wohlleben, Gisela and Kosmala, Rebekka and Lisowski, Dominik and Mantel, Frederick and Lewitzki, Victor and L{\"o}hr, Mario and Blum, Robert and Herud, Petra and Flentje, Michael and Monoranu, Camelia-Maria}, title = {Differences in stem cell marker and osteopontin expression in primary and recurrent glioblastoma}, series = {Cancer Cell International}, volume = {22}, journal = {Cancer Cell International}, issn = {1475-2867}, doi = {10.1186/s12935-022-02510-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301240}, year = {2022}, abstract = {Background Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells. Methods Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan-Meier analysis, a possible association with overall survival by marker expression was investigated. Results Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08). Conclusions Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation.}, language = {en} } @article{BerveWestMartinietal.2020, author = {Berve, Kristina and West, Brian L. and Martini, Rudolf and Groh, Janos}, title = {Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice}, series = {Journal of Neuroinflammation}, volume = {17}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-020-01996-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230234}, year = {2020}, abstract = {Background The neuronal ceroid lipofuscinoses (CLN diseases) are fatal lysosomal storage diseases causing neurodegeneration in the CNS. We have previously shown that neuroinflammation comprising innate and adaptive immune reactions drives axonal damage and neuron loss in the CNS of palmitoyl protein thioesterase 1-deficient (Ppt1\(^{-/-}\)) mice, a model of the infantile form of the diseases (CLN1). Therefore, we here explore whether pharmacological targeting of innate immune cells modifies disease outcome in CLN1 mice. Methods We applied treatment with PLX3397 (150 ppm in the chow), a potent inhibitor of the colony stimulating factor-1 receptor (CSF-1R) to target innate immune cells in CLN1 mice. Experimental long-term treatment was non-invasively monitored by longitudinal optical coherence tomography and rotarod analysis, as well as analysis of visual acuity, myoclonic jerks, and survival. Treatment effects regarding neuroinflammation, neural damage, and neurodegeneration were subsequently analyzed by histology and immunohistochemistry. Results We show that PLX3397 treatment attenuates neuroinflammation in CLN1 mice by depleting pro-inflammatory microglia/macrophages. This leads to a reduction of T lymphocyte recruitment, an amelioration of axon damage and neuron loss in the retinotectal system, as well as reduced thinning of the inner retina and total brain atrophy. Accordingly, long-term treatment with the inhibitor also ameliorates clinical outcomes in CLN1 mice, such as impaired motor coordination, visual acuity, and myoclonic jerks. However, we detected a sex- and region-biased efficacy of CSF-1R inhibition, with male microglia/macrophages showing higher responsiveness toward depletion, especially in the gray matter of the CNS. This results in a better treatment outcome in male Ppt1\(^{-/-}\) mice regarding some histopathological and clinical readouts and reflects heterogeneity of innate immune reactions in the diseased CNS. Conclusions Our results demonstrate a detrimental impact of innate immune reactions in the CNS of CLN1 mice. These findings provide insights into CLN pathogenesis and may guide in the design of immunomodulatory treatment strategies.}, language = {en} } @article{RickertWagenhaeuserNordbecketal.2020, author = {Rickert, V. and Wagenh{\"a}user, L. and Nordbeck, P. and Wanner, C. and Sommer, C. and Rost, S. and {\"U}{\c{c}}eyler, N.}, title = {Stratification of Fabry mutations in clinical practice: a closer look at α-galactosidase A-3D structure}, series = {Journal of Internal Medicine}, volume = {288}, journal = {Journal of Internal Medicine}, number = {5}, doi = {10.1111/joim.13125}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218125}, pages = {593 -- 604}, year = {2020}, abstract = {Background Fabry disease (FD) is an X-linked lysosomal storage and multi-system disorder due to mutations in the α-galactosidase A (α-GalA) gene. We investigated the impact of individual amino acid exchanges in the α-GalA 3D-structure on the clinical phenotype of FD patients. Patients and methods We enrolled 80 adult FD patients with α-GalA missense mutations and stratified them into three groups based on the amino acid exchange location in the α-GalA 3D-structure: patients with active site mutations, buried mutations and other mutations. Patient subgroups were deep phenotyped for clinical and laboratory parameters and FD-specific treatment. Results Patients with active site or buried mutations showed a severe phenotype with multi-organ involvement and early disease manifestation. Patients with other mutations had a milder phenotype with less organ impairment and later disease onset. α-GalA activity was lower in patients with active site or buried mutations than in those with other mutations (P < 0.01 in men; P < 0.05 in women) whilst lyso-Gb3 levels were higher (P < 0.01 in men; <0.05 in women). Conclusions The type of amino acid exchange location in the α-GalA 3D-structure determines disease severity and temporal course of symptom onset. Patient stratification using this parameter may become a useful tool in the management of FD patients.}, language = {en} } @article{SchuhmannFluri2017, author = {Schuhmann, Michael K. and Fluri, Felix}, title = {Effects of fullerenols on mouse brain microvascular endothelial cells}, series = {International Journal of Molecular Sciences}, volume = {18}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms18081783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158072}, year = {2017}, abstract = {Fullerenols, water-soluble C60-fullerene derivatives, have been shown to exert neuroprotective effects in vitro and in vivo, most likely due to their capability to scavenge free radicals. However, little is known about the effects of fullerenols on the blood-brain barrier (BBB), especially on cerebral endothelial cells under inflammatory conditions. Here, we investigated whether the treatment of primary mouse brain microvascular endothelial cells with fullerenols impacts basal and inflammatory blood-brain barrier (BBB) properties in vitro. While fullerenols (1, 10, and 100 µg/mL) did not change transendothelial electrical resistance under basal and inflammatory conditions, 100 µg/mL of fullerenol significantly reduced erk1/2 activation and resulted in an activation of NFκB in an inflammatory milieu. Our findings suggest that fullerenols might counteract oxidative stress via the erk1/2 and NFκB pathways, and thus are able to protect microvascular endothelial cells under inflammatory conditions.}, language = {en} } @article{RauschenbergerBehnkeGrotemeyeretal.2022, author = {Rauschenberger, Lisa and Behnke, Jennifer and Grotemeyer, Alexander and Knorr, Susanne and Volkmann, Jens and Ip, Chi Wang}, title = {Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson's disease}, series = {Neurobiology of Disease}, volume = {171}, journal = {Neurobiology of Disease}, doi = {10.1016/j.nbd.2022.105798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300629}, year = {2022}, abstract = {The pathogenesis of Parkinson's disease (PD) is closely interwoven with the process of aging. Moreover, increasing evidence from human postmortem studies and from animal models for PD point towards inflammation as an additional factor in disease development. We here assessed the impact of aging and inflammation on dopaminergic neurodegeneration in the hm\(^{2}\)α-SYN-39 mouse model of PD that carries the human, A30P/A53T double-mutated α-synuclein gene. At 2-3 months of age, no significant differences were observed comparing dopaminergic neuron numbers of the substantia nigra (SN) pars compacta of hm\(^{2}\)α-SYN-39 mice with wildtype controls. At an age of 16-17 months, however, hm\(^{2}\)α-SYN-39 mice revealed a significant loss of dopaminergic SN neurons, of dopaminergic terminals in the striatum as well as a reduction of striatal dopamine levels compared to young, 2-3 months transgenic mice and compared to 16-17 months old wildtype littermates. A significant age-related correlation of infiltrating CD4+ and CD8\(^{+}\) T cell numbers with dopaminergic terminal loss of the striatum was found in hm\(^{2}\)α-SYN-39 mice, but not in wildtype controls. In the striatum of 16-17 months old wildtype mice a slightly elevated CD8\(^{+}\) T cell count and CD11b\(^{+}\) microglia cell count was observed compared to younger aged mice. Additional analyses of neuroinflammation in the nigrostriatal tract of wildtype mice did not yield any significant age-dependent changes of CD4\(^{+}\), CD8\(^{+}\) T cell and B220\(^{+}\) B cell numbers, respectively. In contrast, a significant age-dependent increase of CD8\(^{+}\) T cells, GFAP\(^{+}\) astrocytes as well as a pronounced increase of CD11b+ microglia numbers were observed in the SN of hm\(^{2}\)α-SYN-39 mice pointing towards a neuroinflammatory processes in this genetic mouse model for PD. The findings in the hm\(^{2}\)α-SYN-39 mouse model strengthen the evidence that T cell and glial cell responses are involved in the age-related neurodegeneration in PD. The slow and age-dependent progression of neurodegeneration and neuroinflammation in the hm\(^{2}\)α-SYN-39 PD rodent model underlines its translational value and makes it suitable for studying anti-inflammatory therapies.}, language = {en} } @article{KrajkaNaujockPaulyetal.2021, author = {Krajka, Victor and Naujock, Maximilian and Pauly, Martje G. and Stengel, Felix and Meier, Britta and Stanslowsky, Nancy and Klein, Christine and Seibler, Philip and Wegner, Florian and Capetian, Philipp}, title = {Ventral Telencephalic Patterning Protocols for Induced Pluripotent Stem Cells}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.716249}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244607}, year = {2021}, abstract = {The differentiation of human induced pluripotent stem cells (hiPSCs) into specific cell types for disease modeling and restorative therapies is a key research agenda and offers the possibility to obtain patient-specific cells of interest for a wide range of diseases. Basal forebrain cholinergic neurons (BFCNs) play a particular role in the pathophysiology of Alzheimer's dementia and isolated dystonias. In this work, various directed differentiation protocols based on monolayer neural induction were tested for their effectiveness in promoting a ventral telencephalic phenotype and generating BFCN. Ventralizing factors [i.e., purmorphamine and Sonic hedgehog (SHH)] were applied at different time points, time intervals, and concentrations. In addition, caudal identity was prevented by the use of a small molecule XAV-939 that inhibits the Wnt-pathway. After patterning, gene expression profiles were analyzed by quantitative PCR (qPCR). Rostro-ventral patterning is most effective when initiated simultaneously with neural induction. The most promising combination of patterning factors was 0.5 μM of purmorphamine and 1 μM of XAV-939, which induces the highest expression of transcription factors specific for the medial ganglionic eminence, the source of GABAergic inter- and cholinergic neurons in the telencephalon. Upon maturation of cells, the immune phenotype, as well as electrophysiological properties were investigated showing the presence of marker proteins specific for BFCN (choline acetyltransferase, ISL1, p75, and NKX2.1) and GABAergic neurons. Moreover, a considerable fraction of measured cells displayed mature electrophysiological properties. Synaptic boutons containing the vesicular acetylcholine transporter (VACHT) could be observed in the vicinity of the cells. This work will help to generate basal forebrain interneurons from hiPSCs, providing a promising platform for modeling neurological diseases, such as Alzheimer's disease or Dystonia.}, language = {en} } @article{PalmisanoBrandtVissanietal.2020, author = {Palmisano, Chiara and Brandt, Gregor and Vissani, Matteo and Pozzi, Nicol{\´o} G. and Canessa, Andrea and Brumberg, Joachim and Marotta, Giorgio and Volkmann, Jens and Mazzoni, Alberto and Pezzoli, Gianni and Frigo, Carlo A. and Isaias, Ioannis U.}, title = {Gait Initiation in Parkinson's Disease: Impact of Dopamine Depletion and Initial Stance Condition}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {8}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2020.00137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200801}, year = {2020}, abstract = {Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson's disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment.}, language = {en} } @article{SteigerwaldMuellerJohannesetal.2016, author = {Steigerwald, Frank and M{\"u}ller, Lorenz and Johannes, Silvia and Matthies, Cordula and Volkmann, Jens}, title = {Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device}, series = {Movement Disorders}, volume = {31}, journal = {Movement Disorders}, number = {8}, doi = {10.1002/mds.26669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187683}, pages = {1240-1243}, year = {2016}, abstract = {Introduction A novel neurostimulation system allows steering current in horizontal directions by combining segmented leads and multiple independent current control. The aim of this study was to evaluate directional DBS effects on parkinsonian motor features and adverse effects of subthalamic neurostimulation. Methods Seven PD patients implanted with the novel directional DBS system for bilateral subthalamic DBS underwent an extended monopolar review session during the first postoperative week, in which current thresholds were determined for rigidity control and stimulation-induced adverse effects using either directional or ring-mode settings. Results Effect or adverse effect thresholds were modified by directional settings for each of the 14 STN leads. Magnitude of change varied markedly between leads, as did orientation of optimal horizontal current steering. Conclusion Directional current steering through chronically implanted segmented electrodes is feasible, alters adverse effect and efficacy thresholds in a highly individual manner, and expands the therapeutic window in a monopolar review as compared to ring-mode DBS.}, language = {en} } @article{PasosSteigerwaldReichetal.2019, author = {Pasos, Uri E. Ramirez and Steigerwald, Frank and Reich, Martin M. and Matthies, Cordula and Volkmann, Jens and Reese, Ren{\´e}}, title = {Levodopa modulates functional connectivity in the upper beta band between bubthalamic nucleus and muscle activity in tonic and phasic motor activity patterns in Parkinson's disease}, series = {Frontiers in Human Neuroscience}, volume = {13}, journal = {Frontiers in Human Neuroscience}, number = {223}, doi = {10.3389/fnhum.2019.00223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201540}, year = {2019}, abstract = {Introduction: Striatal dopamine depletion disrupts basal ganglia function and causes Parkinson's disease (PD). The pathophysiology of the dopamine-dependent relationship between basal ganglia signaling and motor control, however, is not fully understood. We obtained simultaneous recordings of local field potentials (LFPs) from the subthalamic nucleus (STN) and electromyograms (EMGs) in patients with PD to investigate the impact of dopaminergic state and movement on long-range beta functional connectivity between basal ganglia and lower motor neurons. Methods: Eight PD patients were investigated 3 months after implantation of a deep brain stimulation (DBS)-system capable of recording LFPs via chronically-implanted leads (Medtronic, ACTIVA PC+S®). We analyzed STN spectral power and its coherence with EMG in the context of two different movement paradigms (tonic wrist extension vs. alternating wrist extension and flexion) and the effect of levodopa (L-Dopa) intake using an unbiased data-driven approach to determine regions of interest (ROI). Results: Two ROIs capturing prominent coherence within a grand average coherogram were identified. A trend of a dopamine effect was observed for the first ROI (50-150 ms after movement start) with higher STN-EMG coherence in medicated patients. Concerning the second ROI (300-500 ms after movement start), an interaction effect of L-Dopa medication and movement task was observed with higher coherence in the isometric contraction task compared to alternating movements in the medication ON state, a pattern which was reversed in L-Dopa OFF. Discussion: L-Dopa medication may normalize functional connectivity between remote structures of the motor system with increased upper beta coherence reflecting a physiological restriction of the amount of information conveyed between remote structures. This may be necessary to maintain simple movements like isometric contraction. Our study adds dynamic properties to the complex interplay between STN spectral beta power and the nucleus' functional connectivity to remote structures of the motor system as a function of movement and dopaminergic state. This may help to identify markers of neuronal activity relevant for more individualized programming of DBS therapy.}, language = {en} } @article{ZellerHeidemeierGrigoleitetal.2017, author = {Zeller, Daniel and Heidemeier, Anke and Grigoleit, G{\"o}tz Ulrich and M{\"u}llges, Wolfgang}, title = {Case report: subacute tetraplegia in an immunocompromised patient}, series = {BMC Neurology}, volume = {17}, journal = {BMC Neurology}, number = {31}, doi = {10.1186/s12883-017-0814-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157576}, year = {2017}, abstract = {Background: Clinical reasoning in Neurology is based on general associations which help to deduce the site of the lesion. However, even "golden principles" may occasionally be deceptive. Here, we describe the case of subacute flaccid tetraparesis due to motor cortical lesions. To our knowledge, this is the first report to include an impressive illustration of nearly symmetric motor cortical involvement of encephalitis on brain MRI. Case presentation: A 51 year old immunocompromized man developed a high-grade pure motor flaccid tetraparesis over few days. Based on clinical presentation, critical illness polyneuromyopathy was suspected. However, brain MRI revealed symmetrical hyperintensities strictly limited to the subcortical precentral gyrus. An encephalitis, possibly due to CMV infection, turned out to be the most likely cause. Conclusion: While recognition of basic clinical patterns is indispensable in neurological reasoning, awareness of central conditions mimicking peripheral nervous disease may be crucial to detect unsuspected, potentially treatable conditions.}, language = {en} } @article{CanessaPozziArnulfoetal.2016, author = {Canessa, Andrea and Pozzi, Nicol{\`o} G. and Arnulfo, Gabriele and Brumberg, Joachim and Reich, Martin M. and Pezzoli, Gianni and Ghilardi, Maria F. and Matthies, Cordula and Steigerwald, Frank and Volkmann, Jens and Isaias, Ioannis U.}, title = {Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {611}, doi = {10.3389/fnhum.2016.00611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164061}, year = {2016}, abstract = {Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson's disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement.}, language = {en} } @article{ElhfnawyVolkmannSchliesseretal.2019, author = {Elhfnawy, Ahmed Mohamed and Volkmann, Jens and Schliesser, Mira and Fluri, Felix}, title = {Are cerebral white matter lesions related to the presence of bilateral internal carotid artery stenosis or to the length of stenosis among patients with ischemic cerebrovascular events?}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, number = {919}, doi = {10.3389/fneur.2019.00919}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201241}, year = {2019}, abstract = {Background and purpose: Previous studies delivered contradicting results regarding the relation between the presence of an internal carotid artery stenosis (ICAS) and the occurence of white matter lesions (WMLs). We hypothesize that special characteristics related to the ICAS might be related to the WMLs. We examined the relation between the presence of bilateral ICAS, the degree and length of stenosis and ipsi-, contralateral as well as mean white matter lesion load (MWMLL). Methods: In a retrospective cohort, patients with ischemic stroke or transient ischemic attack (TIA) as well as ipsi- and/or contralateral ICAS were identified. The length and degree of ICAS, as well as plaque morphology (hypoechoic, mixed or echogenic), were assessed on ultrasound scans and, if available, the length was also measured on magnetic resonance angiography (MRA) scans, and/or digital subtraction angiography (DSA). The WMLs were assessed in 4 areas separately, (periventricular and deep WMLs on each hemispherer), using the Fazekas scale. The MWMLL was calculated as the mean of these four values. Results: 136 patients with 177 ICAS were identified. A significant correlation between age and MWMLL was observed (Spearman correlation coefficient, ρ = 0.41, p < 0.001). Before adjusting for other risk factors, a significantly positive relation was found between the presence of bilateral ICAS and MWMLL (p = 0.039). The length but not the degree of ICAS showed a very slight trend toward association with ipsilateral WMLs and with MWMLL. In an age-adjusted multivariate logistic regression with MWMLL ≥2 as the outcome measure, atrial fibrillation (OR 3.54, 95\% CI 1.12-11.18, p = 0.03), female sex (OR 3.11, 95\% CI 1.19-8.11, p = 0.02) and diabetes mellitus (OR 2.76, 95\% CI 1.16-6.53, p = 0.02) were significantly related to WMLs, whereas the presence of bilateral stenosis showed a trend toward significance (OR 2.25, 95\% CI 0.93-5.45, p = 0.074). No relation was found between plaque morphology and MWMLL, periventricular, or deep WMLs. Conclusion: We have shown a slight correlation between the length of stenosis and the presence of WMLs which might be due to microembolisation originating from the carotid plaque. However, the presence of bilateral ICAS seems also to be related to WMLs which may point to common underlying vascular risk factors contributing to the occurrence of WML.}, language = {en} } @article{AppeltshauserBrunderHeiniusetal.2020, author = {Appeltshauser, Luise and Brunder, Anna-Michelle and Heinius, Annika and K{\"o}rtv{\´e}lyessy, Peter and Wandinger, Klaus-Peter and Junker, Ralf and Villmann, Carmen and Sommer, Claudia and Leypoldt, Frank and Doppler, Kathrin}, title = {Antiparanodal antibodies and IgG subclasses in acute autoimmune neuropathy}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {7}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {5}, doi = {10.1212/NXI.0000000000000817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230079}, year = {2020}, abstract = {Objective To determine whether IgG subclasses of antiparanodal autoantibodies are related to disease course and treatment response in acute- to subacute-onset neuropathies, we retrospectively screened 161 baseline serum/CSF samples and 66 follow-up serum/CSF samples. Methods We used ELISA and immunofluorescence assays to detect antiparanodal IgG and their subclasses and titers in serum/CSF of patients with Guillain-Barre syndrome (GBS), recurrent GBS (R-GBS), Miller-Fisher syndrome, and acute- to subacute-onset chronic inflammatory demyelinating polyradiculoneuropathy (A-CIDP). We evaluated clinical data retrospectively. Results We detected antiparanodal autoantibodies with a prevalence of 4.3\% (7/161), more often in A-CIDP (4/23, 17.4\%) compared with GBS (3/114, 2.6\%). Longitudinal subclass analysis in the patients with GBS revealed IgG2/3 autoantibodies against Caspr-1 and against anti-contactin-1/Caspr-1, which disappeared at remission. At disease onset, patients with A-CIDP had IgG2/3 anti-Caspr-1 and anti-contactin-1/Caspr-1 or IgG4 anti-contactin-1 antibodies, IgG3 being associated with good response to IV immunoglobulins (IVIg). In the chronic phase of disease, IgG subclass of one patient with A-CIDP switched from IgG3 to IgG4. Conclusion Our data (1) confirm and extend previous observations that antiparanodal IgG2/3 but not IgG4 antibodies can occur in acute-onset neuropathies manifesting as monophasic GBS, (2) suggest association of IgG3 to a favorable response to IVIg, and (3) lend support to the hypothesis that in some patients, an IgG subclass switch from IgG3 to IgG4 may be the correlate of a secondary progressive or relapsing course following a GBS-like onset.}, language = {en} } @article{LendersHennermannKurschatetal.2016, author = {Lenders, Malte and Hennermann, Julia B. and Kurschat, Christine and Rolfs, Arndt and Canaan-K{\"u}hl, Sima and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan and Kampmann, Christoph and Karabul, Nesrin and Giese, Anne-Katrin and Duning, Thomas and Stypmann, J{\"o}rg and Kr{\"a}mer, Johannes and Weidemann, Frank and Brand, Stefan-Martin and Wanner, Christoph and Brand, Eva}, title = {Multicenter Female Fabry Study (MFFS) - clinical survey on current treatment of females with Fabry disease}, series = {Orphanet Journal of Rare Diseases}, volume = {11}, journal = {Orphanet Journal of Rare Diseases}, number = {88}, doi = {10.1186/s13023-016-0473-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166543}, year = {2016}, abstract = {Background The aim of the present study was to assess manifestations of and applied treatment concepts for females with Fabry disease (FD) according to the current European Fabry Guidelines. Methods Between 10/2008 and 12/2014, data from the most recent visit of 261 adult female FD patients from six German Fabry centers were retrospectively analyzed. Clinical presentation and laboratory data, including plasma lyso-Gb3 levels were assessed. Results Fifty-five percent of females were on enzyme replacement therapy (ERT), according to recent European FD guidelines. Thirty-three percent of females were untreated although criteria for ERT initiation were fulfilled. In general, the presence of left ventricular hypertrophy (LVH) seemed to impact more on ERT initiation than impaired renal function. In ERT-na{\"i}ve females RAAS blockers were more often prescribed if LVH was present rather than albuminuria. Affected females with missense mutations showed a similar disease burden compared to females with nonsense mutations. Elevated plasma lyso-Gb3 levels in ERT-na{\"i}ve females seem to be a marker of disease burden, since patients showed comparable incidences of organ manifestations even if they were ~8 years younger than females with normal lyso-Gb3 levels. Conclusion The treatment of the majority of females with FD in Germany is in line with the current European FD guidelines. However, a relevant number of females remain untreated despite organ involvement, necessitating a careful reevaluation of these females.}, language = {en} } @article{HermSchurigMartineketal.2019, author = {Herm, Juliane and Schurig, Johannes and Martinek, Martin R. and H{\"o}ltgen, Reinhard and Schirdewan, Alexander and Kirchhof, Paulus and Wieczorek, Marcus and P{\"u}rerfellner, Helmut and Heuschmann, Peter U. and Fiebach, Jochen B. and Haeusler, Karl Georg}, title = {MRI-detected brain lesions in AF patients without further stroke risk factors undergoing ablation - a retrospective analysis of prospective studies}, series = {BMC Cardiovascular Disorders}, volume = {19}, journal = {BMC Cardiovascular Disorders}, doi = {10.1186/s12872-019-1035-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201226}, pages = {58}, year = {2019}, abstract = {Background Atrial fibrillation (AF) without other stroke risk factors is assumed to have a low annual stroke risk comparable to patients without AF. Therefore, current clinical guidelines do not recommend oral anticoagulation for stroke prevention of AF in patients without stroke risk factors. We analyzed brain magnetic resonance imaging (MRI) imaging to estimate the rate of clinically inapparent ("silent") ischemic brain lesions in these patients. Methods We pooled individual patient-level data from three prospective studies comprising stroke-free patients with symptomatic AF. All study patients underwent brain MRI within 24-48 h before planned left atrial catheter ablation. MRIs were analyzed by a neuroradiologist blinded to clinical data. Results In total, 175 patients (median age 60 (IQR 54-67) years, 32\% female, median CHA\(_2\)DS\(_2\)-VASc = 1 (IQR 0-2), 33\% persistent AF) were included. In AF patients without or with at least one stroke risk factor, at least one silent ischemic brain lesion was observed in 4 (8\%) out of 48 and 10 (8\%) out of 127 patients, respectively (p > 0.99). Presence of silent ischemic brain lesions was related to age (p = 0.03) but not to AF pattern (p = 0.77). At least one cerebral microbleed was detected in 5 (13\%) out of 30 AF patients without stroke risk factors and 25 (25\%) out of 108 AF patients with stroke risk factors (p = 0.2). Presence of cerebral microbleeds was related to male sex (p = 0.04) or peripheral artery occlusive disease (p = 0.03). Conclusion In patients with symptomatic AF scheduled for ablation, brain MRI detected silent ischemic brain lesions in approximately one in 12 patients, and microbleeds in one in 5 patients. The prevalence of silent ischemic brain lesions did not differ in AF patients with or without further stroke risk factors.}, language = {en} } @article{GesslerLehmannBoeseletal.2021, author = {Gessler, Florian and Lehmann, Felix and B{\"o}sel, Julian and Fuhrer, Hannah and Neugebauer, Hermann and Wartenberg, Katja E. and Wolf, Stefan and Bernstock, Joshua D. and Niesen, Wolf-Dirk and Schuss, Patrick}, title = {Triage and Allocation of Neurocritical Care Resources During the COVID 19 Pandemic - A National Survey}, series = {Frontiers in Neurology}, volume = {11}, journal = {Frontiers in Neurology}, issn = {1664-2295}, doi = {10.3389/fneur.2020.609227}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221593}, year = {2021}, abstract = {Objective: In light of the ongoing COVID-19 pandemic and the associated hospitalization of an overwhelming number of ventilator-dependent patients, medical and/or ethical patient triage paradigms have become essential. While guidelines on the allocation of scarce resources do exist, such work within the subdisciplines of intensive care (e.g., neurocritical care) remains limited. Methods: A 16-item questionnaire was developed that sought to explore/quantify the expert opinions of German neurointensivists with regard to triage decisions. The anonymous survey was conducted via a web-based platform and in total, 96 members of the Initiative of German Neurointensive Trial Engagement (IGNITE)-study group were contacted via e-mail. The IGNITE consortium consists of an interdisciplinary panel of specialists with expertise in neuro-critical care (i.e., anesthetists, neurologists and neurosurgeons). Results: Fifty members of the IGNITE consortium responded to the questionnaire; in total the respondents were in charge of more than 500 Neuro ICU beds throughout Germany. Common determinants reported which affected triage decisions included known patient wishes (98\%), the state of health before admission (96\%), SOFA-score (85\%) and patient age (69\%). Interestingly, other principles of allocation, such as a treatment of "youngest first" (61\%) and members of the healthcare sector (50\%) were also noted. While these were the most accepted parameters affecting the triage of patients, a "first-come, first-served" principle appeared to be more accepted than a lottery for the allocation of ICU beds which contradicts much of what has been reported within the literature. The respondents also felt that at least one neurointensivist should serve on any interdisciplinary triage team. Conclusions: The data gathered in the context of this survey reveal the estimation/perception of triage algorithms among neurointensive care specialists facing COVID-19. Further, it is apparent that German neurointensivists strongly feel that they should be involved in any triage decisions at an institutional level given the unique resources needed to treat patients within the Neuro ICU.}, language = {en} } @article{KleikersHooijmansGoebetal.2015, author = {Kleikers, Pamela W. M. and Hooijmans, Carlijn and G{\"o}b, Eva and Langhauser, Friederike and Rewell, Sarah S. J. and Radermacher, Kim and Ritskes-Hoitinga, Merel and Howells, David W. and Kleinschnitz, Christoph and Schmidt, Harald H. H. W.}, title = {A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {13428}, doi = {10.1038/srep13428}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151401}, year = {2015}, abstract = {Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX\(_{2}\) to be a major therapeutic target in stroke. Systematic review and MA of all available NOX\(_{2}\)\(^{-/y}\) studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX\(_{2}\) as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias.}, language = {en} } @article{BittnerBobakHofmannetal.2015, author = {Bittner, Stefan and Bobak, Nicole and Hofmann, Majella-Sophie and Schuhmann, Michael K. and Ruck, Tobias and G{\"o}bel, Kerstin and Br{\"u}ck, Wolfgang and Wiendl, Heinz and Meuth, Sven G.}, title = {Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160816880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151454}, pages = {16880 -- 16896}, year = {2015}, abstract = {Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs.}, language = {en} } @article{ErbacherVaknineMoshitzkyetal.2022, author = {Erbacher, Christoph and Vaknine, Shani and Moshitzky, Gilli and Lobentanzer, Sebastian and Eisenberg, Lina and Evdokimov, Dimitar and Sommer, Claudia and Greenberg, David S. and Soreq, Hermona and {\"U}{\c{c}}eyler, Nurcan}, title = {Distinct CholinomiR blood cell signature as a potential modulator of the cholinergic system in women with fibromyalgia syndrome}, series = {Cells}, volume = {11}, journal = {Cells}, number = {8}, issn = {2073-4409}, doi = {10.3390/cells11081276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270686}, year = {2022}, abstract = {Fibromyalgia syndrome (FMS) is a heterogeneous chronic pain syndrome characterized by musculoskeletal pain and other key co-morbidities including fatigue and a depressed mood. FMS involves altered functioning of the central and peripheral nervous system (CNS, PNS) and immune system, but the specific molecular pathophysiology remains unclear. Anti-cholinergic treatment is effective in FMS patient subgroups, and cholinergic signaling is a strong modulator of CNS and PNS immune processes. Therefore, we used whole blood small RNA-sequencing of female FMS patients and healthy controls to profile microRNA regulators of cholinergic transcripts (CholinomiRs). We compared microRNA profiles with those from Parkinson's disease (PD) patients with pain as disease controls. We validated the sequencing results with quantitative real-time PCR (qRT-PCR) and identified cholinergic targets. Further, we measured serum cholinesterase activity in FMS patients and healthy controls. Small RNA-sequencing revealed FMS-specific changes in 19 CholinomiRs compared to healthy controls and PD patients. qRT-PCR validated miR-182-5p upregulation, distinguishing FMS patients from healthy controls. mRNA targets of CholinomiRs bone morphogenic protein receptor 2 and interleukin 6 signal transducer were downregulated. Serum acetylcholinesterase levels and cholinesterase activity in FMS patients were unchanged. Our findings identified an FMS-specific CholinomiR signature in whole blood, modulating immune-related gene expression.}, language = {en} } @article{GrohHoernerMartini2018, author = {Groh, Janos and H{\"o}rner, Michaela and Martini, Rudolf}, title = {Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations}, series = {Journal of Neuroinflammation}, volume = {15}, journal = {Journal of Neuroinflammation}, number = {194}, doi = {10.1186/s12974-018-1228-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176524}, year = {2018}, abstract = {Background: Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. Methods: We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. Results: Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. Conclusions: We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.}, language = {en} } @article{GrotemeyerMcFlederWuetal.2022, author = {Grotemeyer, Alexander and McFleder, Rhonda Leah and Wu, Jingjing and Wischhusen, J{\"o}rg and Ip, Chi Wang}, title = {Neuroinflammation in Parkinson's disease - putative pathomechanisms and targets for disease-modification}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.878771}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274665}, year = {2022}, abstract = {Parkinson's disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.}, language = {en} } @article{AppeltshauserMessingerStarzetal.2022, author = {Appeltshauser, Luise and Messinger, Julia and Starz, Katharina and Heinrich, David and Brunder, Anna-Michelle and Stengel, Helena and Fiebig, Bianca and Ayzenberg, Ilya and Birklein, Frank and Dresel, Christian and Dorst, Johannes and Dvorak, Florian and Grimm, Alexander and Joerk, Alexander and Leypoldt, Frank and M{\"a}urer, Mathias and Merl, Patrick and Michels, Sebastian and Pitarokoili, Kalliopi and Rosenfeldt, Mathias and Sperfeld, Anne-Dorte and Weihrauch, Marc and Welte, Gabriel Simon and Sommer, Claudia and Doppler, Kathrin}, title = {Diabetes Mellitus Is a Possible Risk Factor for Nodo-paranodopathy With Antiparanodal Autoantibodies}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {9}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {3}, doi = {10.1212/NXI.0000000000001163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300551}, year = {2022}, abstract = {Background and Objectives Nodo-paranodopathies are peripheral neuropathies with dysfunction of the node of Ranvier. Affected patients who are seropositive for antibodies against adhesion molecules like contactin-1 and neurofascin show distinct clinical features and a disruption of the paranodal complex. An axoglial dysjunction is also a characteristic finding of diabetic neuropathy. Here, we aim to investigate a possible association of antibody-mediated nodo-paranodopathy and diabetes mellitus (DM). Methods We retrospectively analyzed clinical data of 227 patients with chronic inflammatory demyelinating polyradiculoneuropathy and Guillain-Barr{\´e} syndrome from multiple centers in Germany who had undergone diagnostic testing for antiparanodal antibodies targeting neurofascin-155, pan-neurofascin, contactin-1-associated protein 1, and contactin-1. To study possible direct pathogenic effects of antiparanodal antibodies, we performed immunofluorescence binding assays on human pancreatic tissue sections. Results The frequency of DM was 33.3\% in seropositive patients and thus higher compared with seronegative patients (14.1\%, OR = 3.04, 95\% CI = 1.31-6.80). The relative risk of DM in seropositive patients was 3.4-fold higher compared with the general German population. Seropositive patients with DM most frequently harbored anti-contactin-1 antibodies and had higher antibody titers than seropositive patients without DM. The diagnosis of DM preceded the onset of neuropathy in seropositive patients. No immunoreactivity of antiparanodal antibodies against pancreatic tissue was detected. Discussion We report an association of nodo-paranodopathy and DM. Our results suggest that DM may be a potential risk factor for predisposing to developing nodo-paranodopathy and argue against DM being induced by the autoantibodies. Our findings set the basis for further research investigating underlying immunopathogenetic connections.}, language = {en} } @article{LinsenmannMonoranuAlkonyietal.2019, author = {Linsenmann, Thomas and Monoranu, Camelia M. and Alkonyi, Balint and Westermaier, Thomas and Hagemann, Carsten and Kessler, Almuth F. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario}, title = {Cerebellar liponeurocytoma - molecular signature of a rare entity and the importance of an accurate diagnosis}, series = {Interdisciplinary Neurosurgery}, volume = {16}, journal = {Interdisciplinary Neurosurgery}, doi = {10.1016/j.inat.2018.10.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177652}, pages = {7-11}, year = {2019}, abstract = {Background: Cerebellar liponeurocytoma is an extremely rare tumour entity of the central nervous system. It is histologically characterised by prominent neuronal/neurocytic differentiation with focal lipidisation and corresponding histologically to WHO grade II. It typically develops in adults, and usually shows a low proliferative potential. Recurrences have been reported in almost 50\% of cases, and in some cases the recurrent tumour may display increased mitotic activity and proliferation index, vascular proliferations and necrosis. Thus pathological diagnosis of liponeurocytoma is challenging. This case presentation highlights the main clinical, radiographic and pathological features of a cerebellar liponeurocytoma. Case presentation: A 59-year-old, right-handed woman presented at our department with a short history of persistent headache, vertigo and gait disturbances. Examination at presentation revealed that the patient was awake, alert and fully oriented. The cranial nerve status was normal. Uncertainties were noted in the bilateral finger-to-nose testing with bradydiadochokinesis on both sides. Strength was full and no pronator drift was observed. Sensation was intact. No signs of pyramidal tract dysfunction were detected. Her gait appeared insecure. The patient underwent surgical resection. Afterward no further disturbances could be detected. Conclusions: To date >40 cases of liponeurocytoma have been reported, including cases with supratentorial location. A review of the 5 published cases of recurrent cerebellar. Liponeurocytoma revealed that the median interval between the first and second relapse was rather short, indicating uncertain malignant potential. The most recent WHO classification of brain tumours (2016) classifies the cerebellar liponeurocytoma as a separate entity and assigns the tumour to WHO grade II. Medulloblastoma is the most important differential diagnosis commonly seen in children and young adults. In contrast, cerebellar liponeurocytoma is typically diagnosed in adults. The importance of accurate diagnosis should not be underestimated especially in the view of possible further therapeutic interventions and for the determination of the patient's prognosis.}, language = {en} } @article{HaarmannSchuhmannSilwedeletal.2019, author = {Haarmann, Axel and Schuhmann, Michael K. and Silwedel, Christine and Monoranu, Camelia-Maria and Stoll, Guido and Buttmann, Mathias}, title = {Human brain endothelial CXCR2 is inflammation-inducible and mediates CXCL5- and CXCL8-triggered paraendothelial barrier breakdown}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms20030602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201297}, year = {2019}, abstract = {Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood-brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood-brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood-brain barrier stabilization.}, language = {en} } @article{BenKraiemSauerNorwigetal.2021, author = {Ben-Kraiem, Adel and Sauer, Reine-Solange and Norwig, Carla and Popp, Maria and Bettenhausen, Anna-Lena and Atalla, Mariam Sobhy and Brack, Alexander and Blum, Robert and Doppler, Kathrin and Rittner, Heike Lydia}, title = {Selective blood-nerve barrier leakiness with claudin-1 and vessel-associated macrophage loss in diabetic polyneuropathy}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, number = {9}, doi = {10.1007/s00109-021-02091-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265237}, pages = {1237-1250}, year = {2021}, abstract = {Diabetic polyneuropathy (DPN) is the most common complication in diabetes and can be painful in up to 26\% of all diabetic patients. Peripheral nerves are shielded by the blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels. So far, there are conflicting results regarding the role and function of the BNB in the pathophysiology of DPN. In this study, we analyzed the spatiotemporal tight junction protein profile, barrier permeability, and vessel-associated macrophages in Wistar rats with streptozotocin-induced DPN. In these rats, mechanical hypersensitivity developed after 2 weeks and loss of motor function after 8 weeks, while the BNB and the blood-DRG barrier were leakier for small, but not for large molecules after 8 weeks only. The blood-spinal cord barrier remained sealed throughout the observation period. No gross changes in tight junction protein or cytokine expression were observed in all barriers to blood. However, expression of Cldn1 mRNA in perineurium was specifically downregulated in conjunction with weaker vessel-associated macrophage shielding of the BNB. Our results underline the role of specific tight junction proteins and BNB breakdown in DPN maintenance and differentiate DPN from traumatic nerve injury. Targeting claudins and sealing the BNB could stabilize pain and prevent further nerve damage.}, language = {en} } @article{BrumbergKuzkinaLapaetal.2021, author = {Brumberg, Joachim and Kuzkina, Anastasia and Lapa, Constantin and Mammadova, Sona and Buck, Andreas and Volkmann, Jens and Sommer, Claudia and Isaias, Ioannis U. and Doppler, Kathrin}, title = {Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy}, series = {Neurobiology of Disease}, volume = {153}, journal = {Neurobiology of Disease}, doi = {10.1016/j.nbd.2021.105332}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260061}, pages = {105332}, year = {2021}, abstract = {Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [\(^{123}\)I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical workup including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [\(^{123}\)I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6\% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0\% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [\(^{123}\)I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 +/- 0.63 vs. 2.91 +/- 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 +/- 0.51 vs. 2.74 +/- 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap.}, language = {en} } @article{TraubOttoSelletal.2022, author = {Traub, Jan and Otto, Markus and Sell, Roxane and Homola, Gy{\"o}rgy A. and Steinacker, Petra and Oeckl, Patrick and Morbach, Caroline and Frantz, Stefan and Pham, Mirko and St{\"o}rk, Stefan and Stoll, Guido and Frey, Anna}, title = {Serum glial fibrillary acidic protein indicates memory impairment in patients with chronic heart failure}, series = {ESC Heart Failure}, volume = {9}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.13986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312736}, pages = {2626-2634}, year = {2022}, abstract = {Aims Cognitive dysfunction occurs frequently in patients with heart failure (HF), but early detection remains challenging. Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker of cognitive decline in disorders of primary neurodegeneration such as Alzheimer's disease. We evaluated the utility of serum GFAP as a biomarker for cognitive dysfunction and structural brain damage in patients with stable chronic HF. Methods and results Using bead-based single molecule immunoassays, we quantified serum levels of GFAP in patients with HF participating in the prospective Cognition.Matters-HF study. Participants were extensively phenotyped, including cognitive testing of five separate domains and magnetic resonance imaging (MRI) of the brain. Univariable and multivariable models, also accounting for multiple testing, were run. One hundred and forty-six chronic HF patients with a mean age of 63.8 ± 10.8 years were included (15.1\% women). Serum GFAP levels (median 246 pg/mL, quartiles 165, 384 pg/mL; range 66 to 1512 pg/mL) did not differ between sexes. In the multivariable adjusted model, independent predictors of GFAP levels were age (T = 5.5; P < 0.001), smoking (T = 3.2; P = 0.002), estimated glomerular filtration rate (T = -4.7; P < 0.001), alanine aminotransferase (T = -2.1; P = 0.036), and the left atrial end-systolic volume index (T = 3.4; P = 0.004). NT-proBNP but not serum GFAP explained global cerebral atrophy beyond ageing. However, serum GFAP levels were associated with the cognitive domain visual/verbal memory (T = -3.0; P = 0.003) along with focal hippocampal atrophy (T = 2.3; P = 0.025). Conclusions Serum GFAP levels are affected by age, smoking, and surrogates of the severity of HF. The association of GFAP with memory dysfunction suggests that astroglial pathologies, which evade detection by conventional MRI, may contribute to memory loss beyond ageing in patients with chronic HF.}, language = {en} } @article{BieberSchuhmannBellutetal.2022, author = {Bieber, Michael and Schuhmann, Michael K. and Bellut, Maximilian and Stegner, David and Heinze, Katrin G. and Pham, Mirko and Nieswandt, Bernhard and Stoll, Guido}, title = {Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286038}, year = {2022}, abstract = {During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.}, language = {en} } @article{TraubGrondeyGassenmaieretal.2022, author = {Traub, Jan and Grondey, Katja and Gassenmaier, Tobias and Schmitt, Dominik and Fette, Georg and Frantz, Stefan and Boivin-Jahns, Val{\´e}rie and Jahns, Roland and St{\"o}rk, Stefan and Stoll, Guido and Reiter, Theresa and Hofmann, Ulrich and Weber, Martin S. and Frey, Anna}, title = {Sustained increase in serum glial fibrillary acidic protein after first ST-elevation myocardial infarction}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms231810304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288261}, year = {2022}, abstract = {Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11\% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0-4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway.}, language = {en} } @article{KraftSchuhmann2022, author = {Kraft, Peter and Schuhmann, Michael K.}, title = {Cellular and molecular targets in acute ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288294}, year = {2022}, abstract = {No abstract available}, language = {en} } @article{DelVecchioHanafiPozzietal.2023, author = {Del Vecchio, Jasmin and Hanafi, Ibrahem and Pozzi, Nicol{\´o} Gabriele and Capetian, Philipp and Isaias, Ioannis U. and Haufe, Stefan and Palmisano, Chiara}, title = {Pallidal recordings in chronically implanted dystonic patients: mitigation of tremor-related artifacts}, series = {Bioengineering}, volume = {10}, journal = {Bioengineering}, number = {4}, issn = {2306-5354}, doi = {10.3390/bioengineering10040476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313498}, year = {2023}, abstract = {Low-frequency oscillatory patterns of pallidal local field potentials (LFPs) have been proposed as a physiomarker for dystonia and hold the promise for personalized adaptive deep brain stimulation. Head tremor, a low-frequency involuntary rhythmic movement typical of cervical dystonia, may cause movement artifacts in LFP signals, compromising the reliability of low-frequency oscillations as biomarkers for adaptive neurostimulation. We investigated chronic pallidal LFPs with the Percept\(^{TM}\) PC (Medtronic PLC) device in eight subjects with dystonia (five with head tremors). We applied a multiple regression approach to pallidal LFPs in patients with head tremors using kinematic information measured with an inertial measurement unit (IMU) and an electromyographic signal (EMG). With IMU regression, we found tremor contamination in all subjects, whereas EMG regression identified it in only three out of five. IMU regression was also superior to EMG regression in removing tremor-related artifacts and resulted in a significant power reduction, especially in the theta-alpha band. Pallido-muscular coherence was affected by a head tremor and disappeared after IMU regression. Our results show that the Percept PC can record low-frequency oscillations but also reveal spectral contamination due to movement artifacts. IMU regression can identify such artifact contamination and be a suitable tool for its removal.}, language = {en} } @phdthesis{Goeser2024, author = {G{\"o}ser, Marlies}, title = {"Eignet sich die kritische Flimmerfrequenz zur Diagnose einer minimal hepatischen Enzephalopathie?"}, doi = {10.25972/OPUS-34936}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349363}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Korrelation und Kontingenzpr{\"u}fung von Kritischer Flimmerfrequenz als diagnostischem Mittel bei minimal hepatischer Enzephalopathie mit anderen etablierten diagnostischen Mitteln und beschreibenden Parametern. In den Ergebnissen lediglich Korrelation mit Alertness Testung in der Testbatterie. Minimal hepatische Enzephalopathie braucht zur Diagnostik mindestens 2 verschiedene erg{\"a}nzende diagnostische Verfahren (neuropsychologisch und -physiologisch), um sicher entdeckt werden zu k{\"o}nnen. Bei nur einem Testverfahren blieben zahlreiche Betroffene unentdeckt. M{\"o}glicherweise ist das verschiedenen pathophysiologischen Subgruppen geschuldet.}, subject = {Encephalopathia hepatica}, language = {de} } @article{WiesslerTalucciPiroetal.2024, author = {Wiessler, Anna-Lena and Talucci, Ivan and Piro, Inken and Seefried, Sabine and H{\"o}rlin, Verena and Baykan, Bet{\"u}l B. and T{\"u}z{\"u}n, Erdem and Schaefer, Natascha and Maric, Hans M. and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor β-targeting autoantibodies contribute to the pathology of autoimmune diseases}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {11}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {2}, doi = {10.1212/NXI.0000000000200187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349958}, year = {2024}, abstract = {Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.}, language = {en} } @article{BreyerGruenerKleinetal.2024, author = {Breyer, Maximilian and Gr{\"u}ner, Julia and Klein, Alexandra and Finke, Laura and Klug, Katharina and Sauer, Markus and {\"U}{\c{c}}eyler, Nurcan}, title = {\(In\) \(vitro\) characterization of cells derived from a patient with the GLA variant c.376A>G (p.S126G) highlights a non-pathogenic role in Fabry disease}, series = {Molecular Genetics and Metabolism Reports}, volume = {38}, journal = {Molecular Genetics and Metabolism Reports}, issn = {22144269}, doi = {10.1016/j.ymgmr.2023.101029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350295}, year = {2024}, abstract = {Highlights • The GLA variant S126G is not associated with Fabry symptoms in the presented case • S126G has no effect on α-GAL A activity or Gb3 levels in this patient • S126G sensory neurons show no electrophysiological abnormalities Abstract Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice.}, language = {en} } @article{JaenschEvdokimovEgenolfetal.2024, author = {J{\"a}nsch, Sarah and Evdokimov, Dimitar and Egenolf, Nadine and Meyer zu Altenschildesche, Caren and Kreß, Luisa and {\"U}{\c{c}}eyler, Nurcan}, title = {Distinguishing fibromyalgia syndrome from small fiber neuropathy: a clinical guide}, series = {Pain Reports}, volume = {9}, journal = {Pain Reports}, number = {1}, doi = {10.1097/PR9.0000000000001136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350306}, year = {2024}, abstract = {Introduction: Fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) are distinct pain conditions that share commonalities and may be challenging as for differential diagnosis. Objective: To comprehensively investigate clinical characteristics of women with FMS and SFN to determine clinically applicable parameters for differentiation. Methods: We retrospectively analyzed medical records of 158 women with FMS and 53 with SFN focusing on pain-specific medical and family history, accompanying symptoms, additional diseases, and treatment. We investigated data obtained using standardized pain, depression, and anxiety questionnaires. We further analyzed test results and findings obtained in standardized small fiber tests. Results: FMS patients were on average ten years younger at symptom onset, described higher pain intensities requiring frequent change of pharmaceutics, and reported generalized pain compared to SFN. Pain in FMS was accompanied by irritable bowel or sleep disturbances, and in SFN by paresthesias, numbness, and impaired glucose metabolism (P < 0.01 each). Family history was informative for chronic pain and affective disorders in FMS (P < 0.001) and for neurological disorders in SFN patients (P < 0.001). Small fiber pathology in terms of skin denervation and/or thermal sensory threshold elevation was present in 110/158 (69.7 \%) FMS patients and 39/53 (73.6 \%) SFN patients. FMS patients mainly showed proximally reduced skin innervation and higher corneal nerve branch densities (p<0.001) whereas SFN patients were characterized by reduced cold detection and prolonged electrical A-delta conduction latencies (P < 0.05). Conclusions: Our data show that FMS and SFN differ substantially. Detailed pain, drug and family history, investigating blood glucose metabolism, and applying differential small fiber tests may help to improve diagnostic differentiation and targeted therapy.}, language = {en} } @article{BinderLangePozzietal.2023, author = {Binder, Tobias and Lange, Florian and Pozzi, Nicol{\`o} and Musacchio, Thomas and Daniels, Christine and Odorfer, Thorsten and Fricke, Patrick and Matthies, Cordula and Volkmann, Jens and Capetian, Philipp}, title = {Feasibility of local field potential-guided programming for deep brain stimulation in Parkinson's disease: a comparison with clinical and neuro-imaging guided approaches in a randomized, controlled pilot trial}, series = {Brain Stimulation}, volume = {16}, journal = {Brain Stimulation}, number = {5}, doi = {10.1016/j.brs.2023.08.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350280}, pages = {1243-1251}, year = {2023}, abstract = {Highlights • Beta-Guided programming is an innovative approach that may streamline the programming process for PD patients with STN DBS. • While preliminary findings from our study suggest that Beta Titration may potentially mitigate STN overstimulation and enhance symptom control, • Our results demonstrate that beta-guided programming significantly reduces programming time, suggesting it could be efficiently integrated into routine clinical practice using a commercially available patient programmer. Background Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson's disease (PD). Clinical outcomes after DBS can be limited by poor programming, which remains a clinically driven, lengthy and iterative process. Electrophysiological recordings in PD patients undergoing STN-DBS have shown an association between STN spectral power in the beta frequency band (beta power) and the severity of clinical symptoms. New commercially-available DBS devices now enable the recording of STN beta oscillations in chronically-implanted PD patients, thereby allowing investigation into the use of beta power as a biomarker for DBS programming. Objective To determine the potential advantages of beta-guided DBS programming over clinically and image-guided programming in terms of clinical efficacy and programming time. Methods We conducted a randomized, blinded, three-arm, crossover clinical trial in eight Parkinson's patients with STN-DBS who were evaluated three months after DBS surgery. We compared clinical efficacy and time required for each DBS programming paradigm, as well as DBS parameters and total energy delivered between the three strategies (beta-, clinically- and image-guided). Results All three programming methods showed similar clinical efficacy, but the time needed for programming was significantly shorter for beta- and image-guided programming compared to clinically-guided programming (p < 0.001). Conclusion Beta-guided programming may be a useful and more efficient approach to DBS programming in Parkinson's patients with STN-DBS. It takes significantly less time to program than traditional clinically-based programming, while providing similar symptom control. In addition, it is readily available within the clinical DBS programmer, making it a valuable tool for improving current clinical practice.}, language = {en} } @article{GschmackMonoranuMaroufetal.2022, author = {Gschmack, Eva and Monoranu, Camelia-Maria and Marouf, Hecham and Meyer, Sarah and Lessel, Lena and Idris, Raja and Berg, Daniela and Maetzler, Walter and Steigerwald, Frank and Volkmann, Jens and Gerlach, Manfred and Riederer, Peter and Koutsilieri, Eleni and Scheller, Carsten}, title = {Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson's disease}, series = {Journal of Neural Transmission}, volume = {129}, journal = {Journal of Neural Transmission}, number = {5-6}, doi = {10.1007/s00702-022-02495-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325161}, pages = {545-555}, year = {2022}, abstract = {Idiopathic Parkinson's disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus-subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood-brain barrier.}, language = {en} } @article{HartmannsbergerScribaGuidolinetal.2024, author = {Hartmannsberger, Beate and Scriba, Sabrina and Guidolin, Carolina and Becker, Juliane and Mehling, Katharina and Doppler, Kathrin and Sommer, Claudia and Rittner, Heike L.}, title = {Transient immune activation without loss of intraepidermal innervation and associated Schwann cells in patients with complex regional pain syndrome}, series = {Journal of Neuroinflammation}, volume = {21}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-023-02969-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357164}, year = {2024}, abstract = {Background Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. Methods We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. Results Intraepidermal Schwann cells were detected in human skin of the finger—but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other—but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. Conclusions Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.}, language = {en} }