@article{SeherNickelMuelleretal.2011, author = {Seher, Axel and Nickel, Joachim and Mueller, Thomas D. and Kneitz, Susanne and Gebhardt, Susanne and Meyer ter Vehn, Tobias and Schlunck, Guenther and Sebald, Walter}, title = {Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro}, series = {Molecular Vision}, volume = {17}, journal = {Molecular Vision}, number = {08. Okt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140189}, pages = {53-62}, year = {2011}, abstract = {Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye.}, language = {en} } @phdthesis{Salzmann2010, author = {Salzmann, Steffen}, title = {Regulation der TNF-Rezeptor Signaltransduktion durch das Zytokin TWEAK}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52525}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Das pleiotrope Zytokin TNF (tumor necrosis factor) kann an den TNF-Rezeptor 1 (TNFR1) und den TNF-Rezeptor 2 (TNFR2) binden und mit deren Hilfe seine biologischen Funktionen {\"u}ber verschiedene Signalwege, wie z.B. NFB- und MAPK-Aktivierung bzw. Apop¬toseinduktion, vermitteln. In fr{\"u}heren Arbeiten konnte gezeigt werden, dass die Aktivierung des TNFR2 zur proteasomalen Degradation des Adaterproteins TRAF2 f{\"u}hrt und dadurch die TNFR1-induzierte Apoptose verst{\"a}rkt wird. TWEAK (tumor necrosis like weak inducer of apoptosis), das ebenfalls der TNF-Ligandenfamilie angeh{\"o}rt und die Interaktion mit dessen Rezeptor Fn14 (fibroblast growth factor-inducible 14), der wie der TNFR2 zur Untergruppe der TRAF-bindenden Rezeptoren der TNF-Rezeptorfamilie geh{\"o}rt, zeigten in verschiedenen Arbeiten auch eine TRAF2-degradierende Wirkung. In der vorliegenden Arbeit konnte nun gezeigt werden, dass dies auch im Falle des TWEAK/Fn14-Systems mit einem verst{\"a}rkenden Effekt auf die TNFR1-vermittelte Apoptose einhergeht. Dar{\"u}ber hinaus konnte gezeigt werden, dass TWEAK zus{\"a}tzlich auch die TNFR1-induzierte Nekrose verst{\"a}rkt, die den Zelltod durch andere Mechanismen als bei der Apoptose induziert. Von anderen Arbeiten unserer Gruppe war bekannt, dass l{\"o}sliches TWEAK (sTWEAK) und membranst{\"a}ndiges TWEAK (mTWEAK) bez{\"u}glich der TRAF2-Depletion wirkungs¬gleich sind. Da der apoptotische Fn14-TNFR1-„crosstalk" auf der Depletion von TRAF2-Komplexen beruht wurden auch keine signifikanten Unterschiede zwischen sTWEAK und mTWEAK in Bezug auf die Verst{\"a}rkung der TNFR1-induzierten Apoptose beobachtet. Interessanter¬weise zeigte sich in der vorliegenden Arbeit jedoch, dass sTWEAK den klassischen NFB-Signalweg gar nicht bzw. nur schwach aktiviert, wohingegen mTWEAK diesen stark induziert. Bei der Aktivierung des alternativen NFB-Signalweges hingegen ließen sich keine Unterschiede zwischen sTWEAK und mTWEAK erkennen. Die Aktivierung eines Signalweges wird also durch die Oligomerisierung des Liganden nicht moduliert, demgegen{\"u}ber aber erwies sich die Aktivierung eines anderen Signalweges als stark abh{\"a}ngig von der Liganden-Oligomerisierung. Vor dem Hintergrund, dass das Adapterprotein TRAF1 (TNF-receptor-associated factor 1) Heterotrimere mit TRAF2 bildet, wurde weiterhin untersucht, ob dieses Molek{\"u}l einen Einfluss auf die Aktivit{\"a}t der TWEAK-induzierten Signalwege hat. Tats{\"a}chlich zeigte sich in TRAF1-exprimie¬renden Zellen eine Verst{\"a}rkung der TWEAK-induzierten Aktivierung des klassischen NFB-Signalweges Zuk{\"u}nftige Studien m{\"u}ssen nun aufkl{\"a}ren, inwieweit die hier gefundenen Mecha-nismen das Zusammenspiel von TNF und TWEAK in vivo bestimmen.}, subject = {Tumor-Nekrose-Faktor}, language = {de} } @phdthesis{Banaszek2013, author = {Banaszek, Agnes}, title = {Dual Antigen-Restricted Complementation of a Two-Part Trispecific Antibody for Targeted Immunotherapy of Blood Cancer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90174}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Cancer cells frequently escape from immune surveillance by down-regulating two important components of the immune defence: antigen-presenting MHC and costimulatory molecules. Therefore several novel anti-tumour compounds that aim to assist the immune system in recognising and fighting cancer are currently under development. Recombinant bispecific antibodies represent one group of such novel therapeutics. They target two different antigens and recruit cytotoxic effector cells to tumour cells. For cancer immunotherapy, bispecific T cell-engaging antibodies are already well characterised. These antibodies target a tumour-associated antigen and CD3ε, the constant molecule of the T cell receptor complex. On the one hand, this study presents the development of a bispecific antibody targeting CD3ε and the rhabdomyosarcoma-associated fetal acetylcholine receptor. On the other hand, it describes a novel two-part trispecific antibody format for the treatment of leukaemia and other haematological malignancies in the context of haematopoietic stem cell transplantation (HSCT). For HSCT, an HLA-identical donor is preferred, but very rarely available. In an HLA-mismatched setting, the HLA disparity could be exploited for targeted cancer treatment. In the present study, a two-part trispecific HLA-A2 × CD45 × CD3 antibody was developed for potential cases in which the patient is HLA-A2-positive, but the donor is not. This holds true for about half the cases in Germany, since HLA-A2 is the most common HLA molecule found here. Combinatorial targeting of HLA-A2 and the leucocyte-common antigen CD45 allows for highly specific dual-antigen restricted tumour targeting. More precisely, two single-chain antibody constructs were developed: i) a single-chain variable fragment (scFv) specific for HLA-A2, and ii) a scFv against CD45, both linked to the VL and the VH domain of a CD3ε-specific antibody, respectively. It turned out that, after the concomitant binding of these constructs to the same HLA-A2- and CD45-expressing cell, the unpaired variable domains of a CD3ε-specific antibody assembled to a functional scFv. In a therapeutic situation, this assembly should exclusively occur on the recipient's blood cancer cells, leading to T cell-mediated cancer cell destruction. In this way, a relapse of disease might be prevented, and standard therapy (radiation and chemotherapy) might be omitted. For both approaches, the antibody constructs were periplasmically expressed in E. coli, purified via His tag, and biochemically characterised. Their binding to the respective targets was proven by flow cytometry. The stimulatory properties of the antibodies were assayed by measuring IL-2 release after incubation with T cells and antigen-expressing target cells. Both the bispecific antibody against rhabdomyosarcoma and the assembled trispecific antibody against blood cancer mediated T-cell activation in a concentration-dependent manner at nanomolar concentrations. For the trispecific antibody, this effect indeed proved to be dual antigen-restricted, as it could be blocked by prior incubation of either HLA-A2- or CD45-specific scFv and did not occur on single-positive (CD45+) or double-negative (HLA-A2- CD45-) target cells. Furthermore, antibodies from both approaches recruited T cells for tumour cell destruction in vitro.}, subject = {Immuntherapie}, language = {en} } @article{OthmanBekhitAnanyetal.2021, author = {Othman, Eman M. and Bekhit, Amany A. and Anany, Mohamed A. and Dandekar, Thomas and Ragab, Hanan M. and Wahid, Ahmed}, title = {Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {10}, issn = {1420-3049}, doi = {10.3390/molecules26102961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239734}, year = {2021}, abstract = {The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.}, language = {en} } @article{SeherLaglerStuehmeretal.2017, author = {Seher, Axel and Lagler, Charlotte and St{\"u}hmer, Thorsten and M{\"u}ller-Richter, Urs Dietmar Achim and K{\"u}bler, Alexander Christian and Sebald, Walter and M{\"u}ller, Thomas Dieter and Nickel, Joachim}, title = {Utilizing BMP-2 muteins for treatment of multiple myeloma}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0174884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158144}, pages = {e0174884}, year = {2017}, abstract = {Multiple myeloma (MM) represents a haematological cancer characterized by the pathological hyper proliferation of antibody-producing B-lymphocytes. Patients typically suffer from kidney malfunction and skeletal disorders. In the context of MM, the transforming growth factor β (TGFβ) member Activin A was recently identified as a promoter of both accompanying symptoms. Because studies have shown that bone morphogenetic protein (BMP)-2-mediated activities are counteracted by Activin A, we analysed whether BMP2, which also binds to the Activin A receptors ActRII and ActRIIB but activates the alternative SMAD-1/5/8 pathway, can be used to antagonize Activin A activities, such as in the context of MM. Therefore three BMP2 derivatives were generated with modified binding activities for the type II (ActRIIB) and/or type I receptor (BMPRIA) showing either increased or decreased BMP2 activity. In the context of MM these BMP2 muteins show two functionalities since they act as a) an anti-proliferative/apoptotic agent against neoplastic B-cells, b) as a bone-formation promoting growth factor. The molecular basis of both activities was shown in two different cellular models to clearly rely on the properties of the investigated BMP2 muteins to compete for the binding of Activin A to the Activin type II receptors. The experimental outcome suggests new therapeutic strategies using BMP2 variants in the treatment of MM-related pathologies.}, language = {en} }