@article{DuettingGaitsIacovoniStegneretal.2017, author = {D{\"u}tting, Sebastian and Gaits-Iacovoni, Frederique and Stegner, David and Popp, Michael and Antkowiak, Adrien and van Eeuwijk, Judith M.M. and Nurden, Paquita and Stritt, Simon and Heib, Tobias and Aurbach, Katja and Angay, Oguzhan and Cherpokova, Deya and Heinz, Niels and Baig, Ayesha A. and Gorelashvili, Maximilian G. and Gerner, Frank and Heinze, Katrin G. and Ware, Jerry and Krohne, Georg and Ruggeri, Zaverio M. and Nurden, Alan T. and Schulze, Harald and Modlich, Ute and Pleines, Irina and Brakebusch, Cord and Nieswandt, Bernhard}, title = {A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15838}, doi = {10.1038/ncomms15838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170797}, year = {2017}, abstract = {Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.}, language = {en} } @article{StegnervanEeuwijkAngayetal.2017, author = {Stegner, David and van Eeuwijk, Judith M.M. and Angay, Oğuzhan and Gorelashvili, Maximilian G. and Semeniak, Daniela and Pinnecker, J{\"u}rgen and Schmithausen, Patrick and Meyer, Imke and Friedrich, Mike and D{\"u}tting, Sebastian and Brede, Christian and Beilhack, Andreas and Schulze, Harald and Nieswandt, Bernhard and Heinze, Katrin G.}, title = {Thrombopoiesis is spatially regulated by the bone marrow vasculature}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {127}, doi = {10.1038/s41467-017-00201-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170591}, year = {2017}, abstract = {In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts.}, language = {en} } @article{KollikowskiSchuhmannNieswandtetal.2020, author = {Kollikowski, Alexander M. and Schuhmann, Michael K. and Nieswandt, Bernhard and M{\"u}llges, Wolfgang and Stoll, Guido and Pham, Mirko}, title = {Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke}, series = {Annals of Neurology}, volume = {87}, journal = {Annals of Neurology}, number = {3}, doi = {10.1002/ana.25665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212168}, pages = {466-479}, year = {2020}, abstract = {Objective Bridging the gap between experimental stroke and patients by ischemic blood probing during the hyperacute stage of vascular occlusion is crucial to assess the role of inflammation in human stroke and for the development of adjunct treatments beyond recanalization. Methods We prospectively observed 151 consecutive ischemic stroke patients with embolic large vessel occlusion of the anterior circulation who underwent mechanical thrombectomy. In all these patients, we attempted microcatheter aspiration of 3 different arterial blood samples: (1) within the core of the occluded vascular compartment and controlled by (2) carotid and (3) femoral samples obtained under physiological flow conditions. Subsequent laboratory analyses comprised leukocyte counting and differentiation, platelet counting, and the quantification of 13 proinflammatory human chemokines/cytokines. Results Forty patients meeting all clinical, imaging, interventional, and laboratory inclusion criteria could be analyzed, showing that the total number of leukocytes significantly increased under the occlusion condition. This increase was predominantly driven by neutrophils. Significant increases were also apparent for lymphocytes and monocytes, accompanied by locally elevated plasma levels of the T-cell chemoattractant CXCL-11. Finally, we found evidence that short-term clinical outcome (National Institute of Health Stroke Scale at 72 hours) was negatively associated with neutrophil accumulation. Interpretation We provide the first direct human evidence that neutrophils, lymphocytes, and monocytes, accompanied by specific chemokine upregulation, accumulate in the ischemic vasculature during hyperacute stroke and may affect outcome. These findings strongly support experimental evidence that immune cells contribute to acute ischemic brain damage and indicate that ischemic inflammation initiates already during vascular occlusion. Ann Neurol 2020;87:466-479}, language = {en} } @article{GoebVollZimmermannetal.2021, author = {G{\"o}b, Vanessa and Voll, Maximilian G. and Zimmermann, Lena and Hemmen, Katharina and Stoll, Guido and Nieswandt, Bernhard and Schuhmann, Michael K. and Heinze, Katrin G. and Stegner, David}, title = {Infarct growth precedes cerebral thrombosis following experimental stroke in mice}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-02360-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265791}, year = {2021}, abstract = {Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, successful recanalization of occluded vessels is the primary therapeutic aim, but even if it is achieved, not all patients benefit. Although blockade of platelet aggregation did not prevent infarct progression, cerebral thrombosis as cause of secondary infarct growth has remained a matter of debate. As cerebral thrombi are frequently observed after experimental stroke, a thrombus-induced impairment of the brain microcirculation is considered to contribute to tissue damage. Here, we combine the model of transient middle cerebral artery occlusion (tMCAO) with light sheet fluorescence microscopy and immunohistochemistry of brain slices to investigate the kinetics of thrombus formation and infarct progression. Our data reveal that tissue damage already peaks after 8 h of reperfusion following 60 min MCAO, while cerebral thrombi are only observed at later time points. Thus, cerebral thrombosis is not causative for secondary infarct growth during ischemic stroke.}, language = {en} } @article{BeckStegnerLorochetal.2021, author = {Beck, Sarah and Stegner, David and Loroch, Stefan and Baig, Ayesha A. and G{\"o}b, Vanessa and Schumbutzki, Cornelia and Eilers, Eva and Sickmann, Albert and May, Frauke and Nolte, Marc W. and Panousis, Con and Nieswandt, Bernhard}, title = {Generation of a humanized FXII knock-in mouse-A powerful model system to test novel anti-thrombotic agents}, series = {Journal of Thrombosis and Haemostasis}, volume = {19}, journal = {Journal of Thrombosis and Haemostasis}, number = {11}, doi = {10.1111/jth.15488}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259567}, pages = {2835-2840}, year = {2021}, abstract = {Background Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development. However, currently, in vivo studies on their efficacy and safety are impeded by the lack of an optimized animal model expressing the specific target, that is, human FXII. Objective The primary objective of this study is to develop and functionally characterize a humanized FXII mouse model. Methods A humanized FXII mouse model was generated by replacing the murine with the human F12 gene (genetic knock-in) and tested it in in vitro coagulation assays and in in vivo thrombosis models. Results These hF12\(^{KI}\) mice were indistinguishable from wild-type mice in all tested assays of coagulation and platelet function in vitro and in vivo, except for reduced expression levels of hFXII compared to human plasma. Targeting FXII by the anti-human FXIIa antibody 3F7 increased activated partial thromboplastin time dose-dependently and protected hF12\(^{KI}\) mice in an arterial thrombosis model without affecting bleeding times. Conclusion These data establish the newly generated hF12\(^{KI}\) mouse as a powerful and unique model system for in vivo studies on anti-FXII(a) biologics, supporting the development of efficient and safe human FXII(a) inhibitors.}, language = {en} } @phdthesis{Aigner2023, author = {Aigner, Max}, title = {Establishing successful protocols and imaging pipelines for Expansion Microscopy in murine blood platelets}, doi = {10.25972/OPUS-30900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-309003}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Platelets play an important role in the body, since they are part of the hemostasis system, preventing and stopping blood loss. Nevertheless, when platelet or coagulation system function are impaired, uncontrolled bleedings but also irreversible vessel occlusion followed by ischemic tissue damage can occur. Therefore, understanding platelet function and activation, mechanisms which are controlled by a variety of platelet membrane receptors and other factors is important to advance out knowledge of hemostasis and platelet malfunction. For a complete picture of platelet function and their modulating behavior it is desired to be able to quantify receptor distributions and interactions of these densely packed molecular ensembles in the membrane. This challenges scientists for several reasons. Most importantly, platelets are microscopically small objects, challenging the spatial resolution of conventional light microscopy. Moreover, platelet receptors are highly abundant on the membrane so even super-resolution microscopy struggles with quantitative receptor imaging on platelets. With Expansion microscopy (ExM), a new super-resolution technique was introduced, allowing resolutions to achieve super-resolution without using a super-resolution microscope, but by combining a conventional confocal microscopy with a highly processed sample that has been expanded physically. In this doctoral thesis, I evaluated the potential of this technique for super-resolution platelet imaging by optimizing the sample preparation process and establishing an imaging and image processing pipeline for dual-color 3D images of different membrane receptors. The analysis of receptor colocalization using ExM demonstrated a clear superiority compared to conventional microscopy. Furthermore, I identified a library of fluorescently labeled antibodies against different platelet receptors compatible with ExM and showed the possibility of staining membrane receptors and parts of the cytoskeleton at the same time.}, subject = {Mikroskopie}, language = {en} } @article{MammadovaBachBraun2019, author = {Mammadova-Bach, Elmina and Braun, Attila}, title = {Zinc homeostasis in platelet-related diseases}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms20215258}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285554}, year = {2019}, abstract = {Zn\(^{2+}\) deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn\(^{2+}\)-deficient diets, accounting for 1-4\% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn\(^{2+}\) deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn\(^{2+}\) status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn\(^{2+}\) uptake in the gut using different nutritional supplementation of Zn\(^{2+}\) could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn\(^{2+}\) diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn\(^{2+}\) in hemostasis. Storage protein metallothionein maintains or releases Zn\(^{2+}\) in the cytoplasm, and the dynamic change of this cytoplasmic Zn\(^{2+}\) pool is regulated by the redox status of the cell. An increase of labile Zn\(^{2+}\) pool can be toxic for the cells, and therefore cytoplasmic Zn\(^{2+}\) levels are tightly regulated by several Zn\(^{2+}\) transporters located on the cell surface and also on the intracellular membrane of Zn\(^{2+}\) storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn\(^{2+}\) is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn\(^{2+}\) transport and the physiological role of Zn\(^{2+}\) store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn\(^{2+}\) to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn\(^{2+}\) homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.}, language = {en} } @article{RiesLiessFeileretal.2020, author = {Ries, Lena K. and Liess, Anna K. L. and Feiler, Christian G. and Spratt, Donald E. and Lowe, Edward D. and Lorenz, Sonja}, title = {Crystal structure of the catalytic C-lobe of the HECT-type ubiquitin ligase E6AP}, series = {Protein Science}, volume = {29}, journal = {Protein Science}, number = {6}, doi = {10.1002/pro.3832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214812}, pages = {1550 -- 1554}, year = {2020}, abstract = {The HECT-type ubiquitin ligase E6AP (UBE3A) is critically involved in several neurodevelopmental disorders and human papilloma virus-induced cervical tumorigenesis; the structural mechanisms underlying the activity of this crucial ligase, however, are incompletely understood. Here, we report a crystal structure of the C-terminal lobe ("C-lobe") of the catalytic domain of E6AP that reveals two molecules in a domain-swapped, dimeric arrangement. Interestingly, the molecular hinge that enables this structural reorganization with respect to the monomeric fold coincides with the active-site region. While such dimerization is unlikely to occur in the context of full-length E6AP, we noticed a similar domain swap in a crystal structure of the isolated C-lobe of another HECT-type ubiquitin ligase, HERC6. This may point to conformational strain in the active-site region of HECT-type ligases with possible implications for catalysis. Significance Statement The HECT-type ubiquitin ligase E6AP has key roles in human papilloma virus-induced cervical tumorigenesis and certain neurodevelopmental disorders. Here, we present a crystal structure of the C-terminal, catalytic lobe of E6AP, providing basic insight into the conformational properties of this functionally critical region of HECT-type ligases.}, language = {en} } @article{SchuhmannBieberFrankeetal.2021, author = {Schuhmann, Michael K. and Bieber, Michael and Franke, Maximilian and Kollikowski, Alexander M. and Stegner, David and Heinze, Katrin G. and Nieswandt, Bernhard and Pham, Mirko and Stoll, Guido}, title = {Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice}, series = {Journal of Neuroinflammation}, volume = {18}, journal = {Journal of Neuroinflammation}, number = {1}, doi = {10.1186/s12974-021-02095-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259172}, pages = {46}, year = {2021}, abstract = {Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{-/-}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization.}, language = {en} } @phdthesis{Mietrach2020, author = {Mietrach, Nicole Aline}, title = {Structural and functional elucidation of the Type VIIb secretion system from Staphylococcus aureus}, doi = {10.25972/OPUS-21482}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The Type VII secretion system (T7SS) is linked to virulence and long-term pathogenesis in a broad range of Gram-positive bacteria, including the human commensal and pathogen Staphylococcus aureus. The Type VIIb secretion system (T7SSb) is responsible for the export of small toxic proteins, which induce antibacterial immune responses and mediate bacterial persistence in the host. In addition, it is also involved in bacterial competition. The T7SSb requires several proteins to build up the secretion machinery. This work focuses on the structural and functional investigation of the motor ATPase EssC and the putative pore forming, multi-pass membrane component EsaA. Both proteins are indispensable for substrate secretion. EssC belongs to the FtsK/SpoIIIE ATPase family and is conserved among the T7SSs. It contains three C-terminal, cytosolic ATPase domains, designated as EssC- D1, -D2 and -D3, whereby EssC-D3 is the most distal one. In this thesis, I am presenting the crystal structure of the EssC-D3 at 1.7 {\AA} resolution. As the deletion of EssC-D3 abrogates substrate export, I have demonstrated that this domain comprises a hydrophobic, surface-exposed pocket, which is required for substrate secretion. More specifically, I have identified two amino acids involved in the secretion process. In addition, my results indicate that not only EssC-D3 is important for substrate interaction but also EssC-D2 and/or EssC-D1. Unlike in the related Yuk T7SSb of Bacillus subtilis, the ATPase activity of D3 domain contributes to substrate secretion. Mutation of the modified Walker B motif in EssC-D3 diminishes substrate secretion completely. The membrane protein EsaA encompasses an extracellular segment spanning through the cell wall of S. aureus. I was able to reveal that this part folds into a stable domain, which was crystallized and diffracted up to 4 {\AA}. The first attempts to dissolve the structure failed due to a lack of homologues structures. Therefore, crystals for single-wavelength anomalous dispersion, containing selenomethionyl-substitutes, were produced and the structure solution is still in progress. Preliminary experiments addressing the function of the extracellular domain indicate an important role in substrate secretion and bacterial competition.}, subject = {Secretion}, language = {en} } @article{PetrusevaNaumenkoKuperetal.2021, author = {Petruseva, Irina and Naumenko, Natalia and Kuper, Jochen and Anarbaev, Rashid and Kappenberger, Jeannette and Kisker, Caroline and Lavrik, Olga}, title = {The Interaction Efficiency of XPD-p44 With Bulky DNA Damages Depends on the Structure of the Damage}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.617160}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231806}, year = {2021}, abstract = {The successful elimination of bulky DNA damages via the nucleotide excision repair (NER) system is largely determined by the damage recognition step. This step consists of primary recognition and verification of the damage. The TFIIH helicase XPD plays a key role in the verification step during NER. To date, the mechanism of damage verification is not sufficiently understood and requires further detailed research. This study is a systematic investigation of the interaction of ctXPD (Chaetomium thermophilum) as well as ctXPD-ctp44 with model DNAs, which contain structurally different bulky lesions with previously estimated NER repair efficiencies. We have used ATPase and DNA binding studies to assess the interaction of ctXPD with damaged DNA. The result of the analysis of ctXPD-ctp44 binding to DNA containing fluorescent and photoactivatable lesions demonstrates the relationship between the affinity of XPD for DNAs containing bulky damages and the ability of the NER system to eliminate the damage. Photo-cross-linking of ctXPD with DNA probes containing repairable and unrepairable photoactivatable damages reveals differences in the DNA interaction efficiency in the presence and absence of ctp44. In general, the results obtained indicate the ability of ctXPD-ctp44 to interact with a damage and suggest a significant role for ctp44 subunit in the verification process.}, language = {en} } @article{PeissertSauerGrabarczyketal.2020, author = {Peissert, Stefan and Sauer, Florian and Grabarczyk, Daniel B. and Braun, Cathy and Sander, Gudrun and Poterszman, Arnaud and Egly, Jean-Marc and Kuper, Jochen and Kisker, Caroline}, title = {In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-020-15241-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229857}, year = {2020}, abstract = {The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction. More importantly, mutagenesis of the Arch domain revealed that these residues are essential for the regulation of (i) NER activity by either impairing XPD helicase activity or the interaction of XPD with XPG; (ii) the phosphorylation of the RNA polymerase II and RNA synthesis. Our results reveal how MAT1 shields these functionally important residues thereby providing insights into how XPD is regulated by MAT1 and defining the Arch domain as a major mechanistic player within the XPD scaffold.}, language = {en} } @article{WagnerMottUpcinetal.2021, author = {Wagner, Nicole and Mott, Kristina and Upcin, Berin and Stegner, David and Schulze, Harald and Erg{\"u}n, S{\"u}leyman}, title = {CXCL12-abundant reticular (CAR) cells direct megakaryocyte protrusions across the bone marrow sinusoid wall}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells10040722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234180}, year = {2021}, abstract = {Megakaryocytes (MKs) release platelets into the lumen of bone marrow (BM) sinusoids while remaining to reside within the BM. The morphogenetic events of this complex process are still not fully understood. We combined confocal laser scanning microscopy with transmission and serial block-face scanning electron microscopy followed by 3D-reconstruction on mouse BM tissue sections. These analyses revealed that MKs in close vicinity to BM sinusoid (BMS) wall first induce the lateral retraction of CXCL12-abundant reticular (CAR) cells (CAR), followed by basal lamina (BL) degradation enabling direct MK-sinusoidal endothelial cells (SECs) interaction. Subsequently, an endothelial engulfment starts that contains a large MK protrusion. Then, MK protrusions penetrate the SEC, transmigrate into the BMS lumen and form proplatelets that are in direct contact to the SEC surface. Furthermore, such processes are induced on several sites, as observed by 3D reconstructions. Our data demonstrate that MKs in interaction with CAR-cells actively induce BMS wall alterations, including CAR-cell retraction, BL degradation, and SEC engulfment containing a large MK protrusion. This results in SEC penetration enabling the migration of MK protrusion into the BMS lumen where proplatelets that are adherent to the luminal SEC surface are formed and contribute to platelet release into the blood circulation.}, language = {en} } @article{HarnošCanizalJuraseketal.2019, author = {Harnoš, Jakub and Ca{\~n}izal, Maria Consuelo Alonso and Jur{\´a}sek, Miroslav and Kumar, Jitender and Holler, Cornelia and Schambony, Alexandra and Han{\´a}kov{\´a}, Kateřina and Bernat{\´i}k, Ondřej and Zdr{\´a}hal, Zbyn{\^e}k and G{\"o}m{\"o}ryov{\´a}, Krist{\´i}na and Gybeľ, Tom{\´a}š and Radaszkiewicz, Tomasz Witold and Kravec, Marek and Trant{\´i}rek, Luk{\´a}š and Ryneš, Jan and Dave, Zankruti and Fern{\´a}ndez-Llamazares, Ana Iris and V{\´a}cha, Robert and Tripsianes, Konstantinos and Hoffmann, Carsten and Bryja, V{\´i}tězslav}, title = {Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09651-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227837}, year = {2019}, abstract = {Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.}, language = {en} } @article{HeilSchreiberGoetzetal.2018, author = {Heil, Hannah S. and Schreiber, Benjamin and G{\"o}tz, Ralph and Emmerling, Monika and Dabauvalle, Marie-Christine and Krohne, Georg and H{\"o}fling, Sven and Kamp, Martin and Sauer, Markus and Heinze, Katrin G.}, title = {Sharpening emitter localization in front of a tuned mirror}, series = {Light: Science \& Applications}, volume = {7}, journal = {Light: Science \& Applications}, doi = {10.1038/s41377-018-0104-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228080}, year = {2018}, abstract = {Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2,3,4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.}, language = {en} } @article{JarickMokhtariSchelleretal.2018, author = {Jarick, Katja J. and Mokhtari, Zeinab and Scheller, Lukas and Hartweg, Julia and Thusek, Sina and Le, Duc-Dung and Ranecky, Maria and Shaikh, Haroon and Qureischi, Musga and Heinze, Katrin G. and Beilhack, Andreas}, title = {Photoconversion of Alloreactive T Cells in Murine Peyer's Patches During Acute Graft-Versus-Host Disease: Tracking the Homing Route of Highly Proliferative Cells In Vivo}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2018.01468}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323309}, year = {2018}, abstract = {The regulation of immune cell migration throughout the body is essential to warrant immunosurveillance and to maintain immune homeostasis. Marking and tracking of these cells has proven important to study mechanisms of immune cell trafficking and cell interaction in vivo. Photoconversion is a well-suited technique for intravital application because it enables contactless time- and location-specific marking of cells in the tissue without surgically manipulating the microenvironment of the cells in question. However, in dividing cells the converted fluorescent protein may decline quickly. Here, we provide a detailed description of the photoconversion technique and its applicability to tracking highly proliferating T cells from the priming site of T cell activation to peripheral target organs of effector function in a preclinical model. Dendra2+ T cells were photoconverted in the Peyer's patches during the initiation phase of acute graft-versus-host disease (GvHD) and tracked through the mesenteric lymph nodes and the peripheral blood to the small intestine with flow cytometry and intravital two-photon microscopy. Photoconverted alloreactive T cells preserved the full proliferative capacity, homing, and migration of alloreactive T cells in the intestinal lamina propria. We conclusively proved that photoconversion of highly proliferative alloreactive T cells in the Peyer's patches is an effective tool to study trafficking of alloreactive T cells under physiologic conditions and to GvHD target tissues. This technique can also be applied to the study of immune cell tracking under inflammatory and non-inflammatory conditions.}, language = {en} } @article{HersterBittnerCodreaetal.2019, author = {Herster, Franziska and Bittner, Zsofia and Codrea, Marius Cosmin and Archer, Nathan K. and Heister, Martin and L{\"o}ffler, Markus W. and Heumos, Simon and Wegner, Joanna and Businger, Ramona and Schindler, Michael and Stegner, David and Sch{\"a}kel, Knut and Grabbe, Stephan and Ghoreschi, Kamran and Miller, Lloyd S. and Weber, Alexander N. R.}, title = {Platelets Aggregate With Neutrophils and Promote Skin Pathology in Psoriasis}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.01867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320175}, year = {2019}, abstract = {Psoriasis is a frequent systemic inflammatory autoimmune disease characterized primarily by skin lesions with massive infiltration of leukocytes, but frequently also presents with cardiovascular comorbidities. Especially polymorphonuclear neutrophils (PMNs) abundantly infiltrate psoriatic skin but the cues that prompt PMNs to home to the skin are not well-defined. To identify PMN surface receptors that may explain PMN skin homing in psoriasis patients, we screened 332 surface antigens on primary human blood PMNs from healthy donors and psoriasis patients. We identified platelet surface antigens as a defining feature of psoriasis PMNs, due to a significantly increased aggregation of neutrophils and platelets in the blood of psoriasis patients. Similarly, in the imiquimod-induced experimental in vivo mouse model of psoriasis, disease induction promoted PMN-platelet aggregate formation. In psoriasis patients, disease incidence directly correlated with blood platelet counts and platelets were detected in direct contact with PMNs in psoriatic but not healthy skin. Importantly, depletion of circulating platelets in mice in vivo ameliorated disease severity significantly, indicating that both PMNs and platelets may be relevant for psoriasis pathology and disease severity.}, language = {en} } @phdthesis{WeigelverhHoffmann2024, author = {Weigel [verh. Hoffmann], Mathis Leonard}, title = {Thrombozytenfunktionsanalyse als potenzielles Instrument zur Fr{\"u}herkennung von Sepsis}, doi = {10.25972/OPUS-35819}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Sepsis ist ein h{\"a}ufiges und akut lebensbedrohliches Syndrom, das eine Organfunktionsst{\"o}rung in Folge einer dysregulierten Immunantwort auf eine Infektion beschreibt. Eine fr{\"u}hzeitige Diagnosestellung und Therapieeinleitung sind von zentraler Bedeutung f{\"u}r das {\"U}berleben der Patient:innen. In einer Pilotstudie konnte unsere Forschungsgruppe mittels Durchflusszytometrie eine ausgepr{\"a}gte Hyporeaktivit{\"a}t der Thrombozyten bei Sepsis nachweisen, die einen potenziell neuen Biomarker zur Sepsis-Fr{\"u}herkennung darstellt. Zur Evaluation des Ausmaßes und Entstehungszeitpunktes der detektierten Thrombozytenfunktionsst{\"o}rung wurden im Rahmen der vorliegenden Arbeit zus{\"a}tzlich zu Patient:innen mit Sepsis (SOFA-Score ≥ 2; n=13) auch hospitalisierte Patient:innen mit einer Infektion ohne Sepsis (SOFA-Score < 2; n=12) rekrutiert. Beide Kohorten wurden zu zwei Zeitpunkten (t1: <24h; t2: Tag 5-7) im Krankheitsverlauf mittels Durchflusszytometrie und PFA-200 untersucht und mit einer gesunden Kontrollgruppe (n=28) verglichen. Ph{\"a}notypische Auff{\"a}lligkeiten der Thrombozyten bei Sepsis umfassten: (i) eine ver{\"a}nderte Expression verschiedener Untereinheiten des GPIb-IX-V-Rezeptorkomplexes, die auf ein verst{\"a}rktes Rezeptor-Shedding hindeutet; (ii) ein ausgepr{\"a}gtes Mepacrin-Beladungsdefizit, das auf eine zunehmend reduzierte Anzahl von δ-Granula entlang des Infektion-Sepsis Kontinuums hinweist; (iii) eine Reduktion endst{\"a}ndig gebundener Sialins{\"a}ure im Sinne einer verst{\"a}rkten Desialylierung. Die funktionelle Analyse der Thrombozyten bei Sepsis ergab bei durchflusszytometrischer Messung der Integrin αIIbβ3-Aktivierung (PAC-1-Bindung) eine ausgepr{\"a}gte generalisierte Hyporeaktivit{\"a}t gegen{\"u}ber multiplen Agonisten, die abgeschw{\"a}cht bereits bei Infektion nachweisbar war und gem{\"a}ß ROC-Analysen gut zwischen Infektion und Sepsis diskriminierte (AUC >0.80 f{\"u}r alle Agonisten). Im Gegensatz dazu zeigten Thrombozyten bei Sepsis und Analyse mittels PFA-200 unter Einfluss physiologischer Scherkr{\"a}fte eine normale bis gar beschleunigte Aggregation. Die Reaktivit{\"a}tsmessung von Thrombozyten mittels Durchflusszytometrie stellt weiterhin einen vielversprechenden Biomarker f{\"u}r die Sepsis-Fr{\"u}herkennung dar. F{\"u}r weitere Schlussfolgerungen ist jedoch eine gr{\"o}ßere Kohorte erforderlich. In nachfolgenden Untersuchungen sollten zudem mechanistische Ursachen der beschriebenen ph{\"a}notypischen und funktionellen Auff{\"a}lligkeiten von Thrombozyten bei Infektion und Sepsis z.B. mittels Koinkubationsexperimenten untersucht werden.}, subject = {Sepsis}, language = {de} } @article{GotruvanGeffenNagyetal.2019, author = {Gotru, Sanjeev Kiran and van Geffen, Johanna P. and Nagy, Magdolna and Mammadova-Bach, Elmina and Eilenberger, Julia and Volz, Julia and Manukjan, Georgi and Schulze, Harald and Wagner, Leonard and Eber, Stefan and Schambeck, Christian and Deppermann, Carsten and Brouns, Sanne and Nurden, Paquita and Greinacher, Andreas and Sachs, Ulrich and Nieswandt, Bernhard and Hermanns, Heike M. and Heemskerk, Johan W. M. and Braun, Attila}, title = {Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44751-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227455}, year = {2019}, abstract = {Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d-/- mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2-/- mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2-/- and Unc13d-/- mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation.}, language = {en} } @article{HinesMaricHinesetal.2018, author = {Hines, Rochelle M. and Maric, Hans Michael and Hines, Dustin J. and Modgil, Amit and Panzanelli, Patrizia and Nakamura, Yasuko and Nathanson, Anna J. and Cross, Alan and Deeb, Tarek and Brandon, Nicholas J. and Davies, Paul and Fritschy, Jean-Marc and Schindelin, Hermann and Moss, Stephen J.}, title = {Developmental seizures and mortality result from reducing GABAA receptor α2-subunit interaction with collybistin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05481-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320719}, year = {2018}, abstract = {Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.}, language = {en} }