@article{SegererHadamekZundleretal.2016, author = {Segerer, Gabriela and Hadamek, Kerstin and Zundler, Matthias and Fekete, Agnes and Seifried, Annegrit and Mueller, Martin J. and Koentgen, Frank and Gessler, Manfred and Jeanclos, Elisabeth and Gohla, Antje}, title = {An essential developmental function for murine phosphoglycolate phosphatase in safeguarding cell proliferation}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep35160}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181094}, year = {2016}, abstract = {Mammalian phosphoglycolate phosphatase (PGP) is thought to target phosphoglycolate, a 2-deoxyribose fragment derived from the repair of oxidative DNA lesions. However, the physiological role of this activity and the biological function of the DNA damage product phosphoglycolate is unknown. We now show that knockin replacement of murine Pgp with its phosphatase-inactive Pgp\(^{D34N}\) mutant is embryonically lethal due to intrauterine growth arrest and developmental delay in midgestation. PGP inactivation attenuated triosephosphate isomerase activity, increased triglyceride levels at the expense of the cellular phosphatidylcholine content, and inhibited cell proliferation. These effects were prevented under hypoxic conditions or by blocking phosphoglycolate release from damaged DNA. Thus, PGP is essential to sustain cell proliferation in the presence of oxygen. Collectively, our findings reveal a previously unknown mechanism coupling a DNA damage repair product to the control of intermediary metabolism and cell proliferation.}, language = {en} } @article{RaduSchoenwetterBraunetal.2017, author = {Radu, Laura and Schoenwetter, Elisabeth and Braun, Cathy and Marcoux, Julien and Koelmel, Wolfgang and Schmitt, Dominik R. and Kuper, Jochen and Cianf{\´e}rani, Sarah and Egly, Jean M. and Poterszman, Arnaud and Kisker, Caroline}, title = {The intricate network between the p34 and p44 subunits is central to the activity of the transcription/DNA repair factor TFIIH}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {18}, doi = {10.1093/nar/gkx743}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170173}, pages = {10872-10883}, year = {2017}, abstract = {The general transcription factor IIH (TFIIH) is a multi-protein complex and its 10 subunits are engaged in an intricate protein-protein interaction network critical for the regulation of its transcription and DNA repair activities that are so far little understood on a molecular level. In this study, we focused on the p44 and the p34 subunits, which are central for the structural integrity of core-TFIIH. We solved crystal structures of a complex formed by the p34 N-terminal vWA and p44 C-terminal zinc binding domains from Chaetomium thermophilum and from Homo sapiens. Intriguingly, our functional analyses clearly revealed the presence of a second interface located in the C-terminal zinc binding region of p34, which can rescue a disrupted interaction between the p34 vWA and the p44 RING domain. In addition, we demonstrate that the C-terminal zinc binding domain of p34 assumes a central role with respect to the stability and function of TFIIH. Our data reveal a redundant interaction network within core-TFIIH, which may serve to minimize the susceptibility to mutational impairment. This provides first insights why so far no mutations in the p34 or p44 TFIIH-core subunits have been identified that would lead to the hallmark nucleotide excision repair syndromes xeroderma pigmentosum or trichothiodystrophy.}, language = {en} } @article{MostosiSchindelinKollmannsbergeretal.2020, author = {Mostosi, Philipp and Schindelin, Hermann and Kollmannsberger, Philip and Thorn, Andrea}, title = {Haruspex: A Neural Network for the Automatic Identification of Oligonucleotides and Protein Secondary Structure in Cryo-Electron Microscopy Maps}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {35}, doi = {10.1002/anie.202000421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214763}, pages = {14788 -- 14795}, year = {2020}, abstract = {In recent years, three-dimensional density maps reconstructed from single particle images obtained by electron cryo-microscopy (cryo-EM) have reached unprecedented resolution. However, map interpretation can be challenging, in particular if the constituting structures require de-novo model building or are very mobile. Herein, we demonstrate the potential of convolutional neural networks for the annotation of cryo-EM maps: our network Haruspex has been trained on a carefully curated set of 293 experimentally derived reconstruction maps to automatically annotate RNA/DNA as well as protein secondary structure elements. It can be straightforwardly applied to newly reconstructed maps in order to support domain placement or as a starting point for main-chain placement. Due to its high recall and precision rates of 95.1 \% and 80.3 \%, respectively, on an independent test set of 122 maps, it can also be used for validation during model building. The trained network will be available as part of the CCP-EM suite.}, language = {en} } @article{VogelsangEichlerHuntemannetal.2021, author = {Vogelsang, Anna and Eichler, Susann and Huntemann, Niklas and Masanneck, Lars and B{\"o}hnlein, Hannes and Sch{\"u}ngel, Lisa and Willison, Alice and Loser, Karin and Nieswandt, Bernhard and Kehrel, Beate E. and Zarbock, Alexander and G{\"o}bel, Kerstin and Meuth, Sven G.}, title = {Platelet inhibition by low-dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms22189915}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284535}, year = {2021}, abstract = {Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4\(^+\) T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28\% in ASA-treated mice compared to 56.11 ± 1.46\% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A\(_2\) were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.}, language = {en} } @article{NavarroStegnerNieswandtetal.2021, author = {Navarro, Stefano and Stegner, David and Nieswandt, Bernhard and Heemskerk, Johan W. M. and Kuijpers, Marijke J. E.}, title = {Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms23010358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284219}, year = {2021}, abstract = {In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.}, language = {en} } @article{KollikowskiPhamMaerzetal.2022, author = {Kollikowski, Alexander M. and Pham, Mirko and M{\"a}rz, Alexander G. and Papp, Lena and Nieswandt, Bernhard and Stoll, Guido and Schuhmann, Michael K.}, title = {Platelet Activation and Chemokine Release Are Related to Local Neutrophil-Dominant Inflammation During Hyperacute Human Stroke}, series = {Translational Stroke Research}, volume = {13}, journal = {Translational Stroke Research}, number = {3}, issn = {1868-601X}, doi = {10.1007/s12975-021-00938-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270194}, pages = {364-369}, year = {2022}, abstract = {Experimental evidence has emerged that local platelet activation contributes to inflammation and infarct formation in acute ischemic stroke (AIS) which awaits confirmation in human studies. We conducted a prospective observational study on 258 consecutive patients undergoing mechanical thrombectomy (MT) due to large-vessel-occlusion stroke of the anterior circulation (08/2018-05/2020). Intraprocedural microcatheter aspiration of 1 ml of local (occlusion condition) and systemic arterial blood samples (self-control) was performed according to a prespecified protocol. The samples were analyzed for differential leukocyte counts, platelet counts, and plasma levels of the platelet-derived neutrophil-activating chemokine C-X-C-motif ligand (CXCL) 4 (PF-4), the neutrophil attractant CXCL7 (NAP-2), and myeloperoxidase (MPO). The clinical-biological relevance of these variables was corroborated by specific associations with molecular-cellular, structural-radiological, hemodynamic, and clinical-functional parameters. Seventy consecutive patients fulfilling all predefined criteria entered analysis. Mean local CXCL4 (+ 39\%: 571 vs 410 ng/ml, P = .0095) and CXCL7 (+ 9\%: 693 vs 636 ng/ml, P = .013) concentrations were higher compared with self-controls. Local platelet counts were lower (- 10\%: 347,582 vs 383,284/µl, P = .0052), whereas neutrophil counts were elevated (+ 10\%: 6022 vs 5485/µl, P = 0.0027). Correlation analyses revealed associations between local platelet and neutrophil counts (r = 0.27, P = .034), and between CXCL7 and MPO (r = 0.24, P = .048). Local CXCL4 was associated with the angiographic degree of reperfusion following recanalization (r =  - 0.2523, P = .0479). Functional outcome at discharge correlated with local MPO concentrations (r = 0.3832, P = .0014) and platelet counts (r = 0.288, P = .0181). This study provides human evidence of cerebral platelet activation and platelet-neutrophil interactions during AIS and points to the relevance of per-ischemic thrombo-inflammatory mechanisms to impaired reperfusion and worse functional outcome following recanalization.}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @article{MarzoccoFazeliDiMiccoetal.2018, author = {Marzocco, Stefania and Fazeli, Gholamreza and Di Micco, Lucia and Autore, Giuseppina and Adesso, Simona and Dal Piaz, Fabrizio and Heidland, August and Di Iorio, Biagio}, title = {Supplementation of short-chain fatty acid, sodium propionate, in patients on maintenance hemodialysis: beneficial effects on inflammatory parameters and gut-derived uremic toxins, a pilot study (PLAN Study)}, series = {Journal of Clinical Medicine}, volume = {7}, journal = {Journal of Clinical Medicine}, number = {10}, issn = {2077-0383}, doi = {10.3390/jcm7100315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197626}, pages = {315}, year = {2018}, abstract = {Background: In end-stage renal disease (ESRD), gut-derived uremic toxins play a crucial role in the systemic inflammation and oxidative stress promoting the excess morbidity and mortality. The biochemical derangement is in part a consequence of an insufficient generation of short-chain fatty acids (SCFA) due to the dysbiosis of the gut and an insufficient consumption of the fermentable complex carbohydrates. Aim of the study: The primary end-point was to evaluate the potential efficacy of SCFA (specifically, sodium propionate (SP)) for patients on maintenance hemodialysis (MHD) on systemic inflammation. Secondary end-points included potential attenuation of oxidative stress markers, insulin resistance and production of gut-derived uremic toxins indoxyl sulfate and p-cresol sulfate, as well as health status after SP supplementation. Study design: We performed a single-center non-randomized pilot study in 20 MHD patients. They received the food additive SP with a daily intake of 2 × 500 mg in the form of capsules for 12 weeks. Pre-dialysis blood samples were taken at the beginning, after six weeks and at the end of the administration period, as well as four weeks after withdrawal of the treatment. Results: The subjects revealed a significant decline of inflammatory parameters C-reactive protein (-46\%), interleukin IL-2 (-27\%) and IL-17 (-15\%). The inflammatory parameters IL-6 and IFN-gamma showed a mild non-significant reduction and the anti-inflammatory cytokine IL-10 increased significantly (+71\%). While the concentration of bacterial endotoxins and TNF-α remained unchanged, the gut-derived uremic toxins, indoxyl sulfate (-30\%) and p-cresyl sulfate (-50\%), revealed a significant decline. The SP supplementation reduced the parameters of oxidative stress malondialdehyde (-32\%) and glutathione peroxidase activity (-28\%). The serum insulin levels dropped by 30\% and the HOMA-index by 32\%. The reduction of inflammatory parameters was associated with a lowering of ferritin and a significant increase in transferrin saturation (TSAT). Four weeks after the end of the treatment phase, all improved parameters deteriorated again. Evaluation of the psycho-physical performance with the short form 36 (SF-36) questionnaire showed an enhancement in the self-reported physical functioning, general health, vitality and mental health. The SP supplementation was well tolerated and without important side effects. No patient had left the study due to intolerance to the medication. The SP supplementation in MHD patients reduced pro-inflammatory parameters and oxidative stress and improved insulin resistance and iron metabolism. Furthermore, SP effectively lowered the important gut-derived uremic toxins indoxyl and p-cresol sulfate. These improvements were associated with a better quality of life. Further controlled studies are required in a larger cohort to evaluate the clinical outcome.}, language = {en} } @article{FusiPaudelMederetal.2022, author = {Fusi, Lorenza and Paudel, Rupesh and Meder, Katharina and Schlosser, Andreas and Schrama, David and Goebeler, Matthias and Schmidt, Marc}, title = {Interaction of transcription factor FoxO3 with histone acetyltransferase complex subunit TRRAP modulates gene expression and apoptosis}, series = {Journal of Biological Chemistry}, volume = {298}, journal = {Journal of Biological Chemistry}, number = {3}, doi = {10.1016/j.jbc.2022.101714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299820}, year = {2022}, abstract = {Forkhead box O (FoxO) transcription factors are conserved proteins involved in the regulation of life span and age-related diseases, such as diabetes and cancer. Stress stimuli or growth factor deprivation promotes nuclear localization and activation of FoxO proteins, which—depending on the cellular context—can lead to cell cycle arrest or apoptosis. In endothelial cells (ECs), they further regulate angiogenesis and may promote inflammation and vessel destabilization implicating a role of FoxOs in vascular diseases. In several cancers, FoxOs exert a tumor-suppressive function by regulating proliferation and survival. We and others have previously shown that FoxOs can regulate these processes via two different mechanisms: by direct binding to forkhead-responsive elements at the promoter of target genes or by a poorly understood alternative process that does not require direct DNA binding and regulates key targets in primary human ECs. Here, we performed an interaction study in ECs to identify new nuclear FoxO3 interaction partners that might contribute to FoxO-dependent gene regulation. Mass spectrometry analysis of FoxO3-interacting proteins revealed transformation/transcription domain-associated protein (TRRAP), a member of multiple histone acetyltransferase complexes, as a novel binding partner of FoxO family proteins. We demonstrate that TRRAP is required to support FoxO3 transactivation and FoxO3-dependent G1 arrest and apoptosis in ECs via transcriptional activation of the cyclin-dependent kinase inhibitor p27\(^{kip1}\) and the proapoptotic B-cell lymphoma 2 family member, BIM. Moreover, FoxO-TRRAP interaction could explain FoxO-induced alternative gene regulation via TRRAP-dependent recruitment to target promoters lacking forkhead-responsive element sequences.}, language = {en} } @phdthesis{Slotta2019, author = {Slotta, Anja Maria}, title = {The Role of Protein Kinase D 1 in the regulation of murine adipose tissue function under physiological and pathophysiological conditions}, doi = {10.25972/OPUS-17911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179112}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Adipocytes are specialized cells found in vertebrates to ensure survival in terms of adaption to food deficit and abundance. However, their dysfunction accounts for the pathophysiology of metabolic diseases such as T2DM. Preliminary data generated by Mona L{\"o}ffler suggested that PKD1 is involved in adipocyte function. Here, I show that PKD1 expression and activity is linked to lipid metabolism of murine adipocytes. PKD1 gene expression and activity was reduced in murine white adipose tissue upon fasting, a physiological condition which induces lipolysis. Isoproterenol-stimulated lipolysis in adipose tissue and 3T3-L1 adipocytes reduced PKD1 gene expression. Silencing ATGL in adipocytes inhibited isoproterenol-stimulated lipolysis, however, the β-adrenergic stimulation of ATGL-silenced adipocytes lowered PKD1 expression levels as well. Adipose tissue of obese mice exhibited high PKD1 RNA levels but paradoxically lower protein levels of phosphorylated PKD1-Ser916. However, HFD generated a second PKD1 protein product of low molecular weight in mouse adipose tissue. Furthermore, constitutively active PKD1 predominantly displayed nuclear localization in 3T3-L1 adipocytes containing many fat vacuoles. However, adipocytes overexpressing non-functional PKD1 contained fewer lipid droplets and PKD1-KD was distributed in cytoplasm. Most importantly, deficiency of PKD1 in mouse adipose tissue caused expression of genes involved in adaptive thermogenesis such as UCP-1 and thus generated brown-like phenotype adipocytes. Thus, PKD1 is implicated in adipose tissue function and presents an interesting target for therapeutic approaches in the prevention of obesity and associated diseases.}, subject = {adipocyte}, language = {en} } @phdthesis{MonyNair2021, author = {Mony Nair, Rahul}, title = {Elucidating ubiquitin recognition by the HECT-type ubiquitin ligase HUWE1}, doi = {10.25972/OPUS-22103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221030}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The small protein modifier ubiquitin is at the heart of an immensely versatile posttranslational modification system that orchestrates countless physiological and disease-associated cellular processes. Key to this versatility are the manifold modifications that can be assembled from ubiquitin "building blocks" and are associated with specific functional outcomes for the modified substrates. In particular, ubiquitin molecules can form polymeric chains of distinct lengths and linkage types that give rise to distinct chain conformations, thereby providing recognition sites for specific signaling receptors/effectors. The class of E3 enzymes (ubiquitin ligases) provides critical specificity determinants in ubiquitin linkage formation; it is therefore crucial to unravel precisely how E3 enzymes operate in order to understand the structural basis of ubiquitin signaling and exploit these insights for therapeutic benefit. Overexpression and deregulation of the HECT-type ubiquitin ligase HUWE1 is implicated in several different cancer types and neurodegenerative disorders. It is largely unknown which factors control the ubiquitin modifications formed by HUWE1, how the catalytic HECT domain interacts with functionally distinct ubiquitin molecules (donor, acceptor and regulatory ubiquitin molecules) and which conformational transitions enable these interactions during ubiquitin chain formation. One aim of this study was to structurally elucidate the recognition of donor ubiquitin by the HECT domain of HUWE1. To this end I utilized a ubiquitin activity-based probe to reconstitute a proxy for a donor ubiquitin-linked conjugate of the HECT domain of HUWE1 and determined its structure by X-ray crystallography. This structure reveals that the donor ubiquitin binds to the C-lobe of HUWE1 in the same way as NEDD4-type ligases, corroborating the idea that HECT ligases utilize a conserved mode of donor ubiquitin recognition. independent of their linkage and substrate specificities. With the help of biochemical analyses, I also validated specific features of the structure, in particular the positioning of the C-terminal tail of the ligase, which was known to be critical for activity. In the newly determined structure, which reflects an "L-shaped", active state of the HECT domain, this tail is fully resolved and coordinated at the N-lobe-C-lobe interface. I defined residues that are critical for this coordination and showed that they are also essential for the activity of HUWE1, including auto-ubiquitination, free ubiquitin chain formation, and substrate ubiquitination. Furthermore, I discovered that the N-lobe of HUWE1 harbors a ubiquitin-binding exosite similar to NEDD4-type ligases and E6AP. My in-vitro activity and binding assays show that HUWE1 uses the exosite for isopeptide bond formation, but that it is dispensable for thioester bond formation. The binding assays further show that the donor ubiquitin loaded HECT domain binds an additional ubiquitin molecule at the exosite more tightly than the apo HECT domain, which possibly suggests allosteric communication between the two sites. Finally, I showed that the ubiquitin activity-based probe (ubiquitin-propargylamine) can label the catalytic cysteine of HUWE1 and NEDD4-type with close to quantitative turn- over, while it does not react with the HECT domain of the evolutionarily more divergent E6AP. The determinants underlying these differential reactivities remain to be explored. Taken, together my results significantly enhance our mechanistic understanding of the catalytic domain of HUWE1 and pinpoint linchpins for therapeutic interventions with the activity of this disease-relevant enzyme.}, language = {en} } @article{TruongvanLiMisraetal.2022, author = {Truongvan, Ngoc and Li, Shurong and Misra, Mohit and Kuhn, Monika and Schindelin, Hermann}, title = {Structures of UBA6 explain its dual specificity for ubiquitin and FAT10}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, doi = {10.1038/s41467-022-32040-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301161}, year = {2022}, abstract = {The covalent modification of target proteins with ubiquitin or ubiquitin-like modifiers is initiated by E1 activating enzymes, which typically transfer a single modifier onto cognate conjugating enzymes. UBA6 is an unusual E1 since it activates two highly distinct modifiers, ubiquitin and FAT10. Here, we report crystal structures of UBA6 in complex with either ATP or FAT10. In the UBA6-FAT10 complex, the C-terminal domain of FAT10 binds to where ubiquitin resides in the UBA1-ubiquitin complex, however, a switch element ensures the alternate recruitment of either modifier. Simultaneously, the N-terminal domain of FAT10 interacts with the 3-helix bundle of UBA6. Site-directed mutagenesis identifies residues permitting the selective activation of either ubiquitin or FAT10. These results pave the way for studies investigating the activation of either modifier by UBA6 in physiological and pathophysiological settings.}, language = {en} } @article{PaulsHamaratTrufasuetal.2019, author = {Pauls, Dennis and Hamarat, Yasmin and Trufasu, Luisa and Schendzielorz, Tim M. and Gramlich, Gertrud and Kahnt, J{\"o}rg and Vanselow, Jens and Schlosser, Andreas and Wegener, Christian}, title = {Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate}, series = {European Journal of Neuroscience}, volume = {50}, journal = {European Journal of Neuroscience}, number = {9}, doi = {10.1111/ejn.14516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204863}, pages = {3502-3519}, year = {2019}, abstract = {Neuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well-characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila melanogaster lacks a gene for carboxypeptidase E (CPE ), a key enzyme for mammalian peptide processing. By combining peptidomics and neurogenetics, we addressed the role of carboxypeptidase D (dCPD ) in global neuropeptide processing and selected peptide-regulated behaviours in Drosophila . We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD -encoding gene silver in the larva causes lethality, and leads to deficits in starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced viability and activity levels in adults. A phylogenomic analysis suggests that loss of CPE is not common to insects, but only occurred in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing and peptide-regulated behaviour in Drosophila . dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. The persistent occurrence of CPD in insect genomes may point to important further CPD functions beyond neuropeptide processing which cannot be fulfilled by CPE.}, language = {en} } @article{BalakrishnanHemmenChoudhuryetal.2022, author = {Balakrishnan, Ashwin and Hemmen, Katherina and Choudhury, Susobhan and Krohn, Jan-Hagen and Jansen, Kerstin and Friedrich, Mike and Beliu, Gerti and Sauer, Markus and Lohse, Martin J. and Heinze, Katrin G.}, title = {Unraveling the hidden temporal range of fast β2-adrenergic receptor mobility by time-resolved fluorescence}, series = {Communications Biology}, volume = {5}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-022-03106-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301140}, year = {2022}, abstract = {G-protein-coupled receptors (GPCRs) are hypothesized to possess molecular mobility over a wide temporal range. Until now the temporal range has not been fully accessible due to the crucially limited temporal range of available methods. This in turn, may lead relevant dynamic constants to remain masked. Here, we expand this dynamic range by combining fluorescent techniques using a spot confocal setup. We decipher mobility constants of β\(_{2}\)-adrenergic receptor over a wide time range (nanosecond to second). Particularly, a translational mobility (10 µm\(^{2}\)/s), one order of magnitude faster than membrane associated lateral mobility that explains membrane protein turnover and suggests a wider picture of the GPCR availability on the plasma membrane. And a so far elusive rotational mobility (1-200 µs) which depicts a previously overlooked dynamic component that, despite all complexity, behaves largely as predicted by the Saffman-Delbr{\"u}ck model.}, language = {en} } @phdthesis{Balakrishnan2021, author = {Balakrishnan, Ashwin}, title = {Fast molecular mobility of β\(_2\)-adrenergic receptor revealed by time-resolved fluorescence spectroscopy}, doi = {10.25972/OPUS-25085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250856}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {G-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40\% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due to limitations of imaging and spectroscopic techniques commonly used, the relevant timescales are hard to access. The most commonly used techniques are electron paramagnetic resonance or double electronelectron resonance, nuclear magnetic resonance, time-resolved fluorescence, single particle tracking and fluorescence recovery after photobleaching. Among these techniques only fluorescence has the potential to probe live cells. In this thesis, I use different time-resolved fluorescence spectroscopic techniques to quantify diffusion dynamics / molecular mobility of β2-adrenergic receptor (β2-AR) in live cells. The thesis shows that β2-AR exhibits mobility over an exceptionally broad temporal range (nanosecond to second) that can be linked to its respective physiological scenario. I explain how β2-AR possesses surprisingly fast lateral mobility (~10 μm²/s) associated with vesicular transport in contrast to the prior reports of it originating from fluorophore photophysics and free fluorophores in the cytosol. In addition, β2-AR has rotational mobility (~100 μs) that makes it conform to the Saffman-Delbr{\"u}ck model of membrane diffusion unlike earlier studies. These contrasts are due to the limitations of the methodologies used. The limitations are overcome in this thesis by using different time-resolved fluorescence techniques of fluorescence correlation spectroscopy (FCS), time-resolved anisotropy (TRA) and polarisation resolved fullFCS (fullFCS). FCS is limited to microsecond to the second range and TRA is limited to the nanosecond range. fullFCS complements the two techniques by covering the blind spot of FCS and TRA in the microsecond range. Finally, I show how ligand stimulation causes a decrease in lateral mobility which could be a hint at cluster formation due to internalisation and how β2-AR possesses a basal oligomerisation that does not change on activation. Thus, through this thesis, I show how different complementary fluorescence techniques are necessary to overcome limitations of each technique and to thereby elucidate functional dynamics of GPCR activation and how it orchestrates downstream signalling.}, language = {en} } @article{KlenkHommersLohse2022, author = {Klenk, Christoph and Hommers, Leif and Lohse, Martin J.}, title = {Proteolytic cleavage of the extracellular domain affects signaling of parathyroid hormone 1 receptor}, series = {Frontiers in Endocrinology}, volume = {13}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2022.839351}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262055}, year = {2022}, abstract = {Parathyroid hormone 1 receptor (PTH1R) is a member of the class B family of G protein-coupled receptors, which are characterized by a large extracellular domain required for ligand binding. We have previously shown that the extracellular domain of PTH1R is subject to metalloproteinase cleavage in vivo that is regulated by ligand-induced receptor trafficking and leads to impaired stability of PTH1R. In this work, we localize the cleavage site in the first loop of the extracellular domain using amino-terminal protein sequencing of purified receptor and by mutagenesis studies. We further show, that a receptor mutant not susceptible to proteolytic cleavage exhibits reduced signaling to G\(_s\) and increased activation of G\(_q\) compared to wild-type PTH1R. These findings indicate that the extracellular domain modulates PTH1R signaling specificity, and that its cleavage affects receptor signaling.}, language = {en} } @phdthesis{Stetter2021, author = {Stetter, Maurice}, title = {LC3-associated phagocytosis seals the fate of the second polar body in \(Caenorhabditis\) \(elegans\)}, doi = {10.25972/OPUS-23198}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231981}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work investigates the death and degradation of the second polar body of the nematode C. elegans in order to improve our understanding how pluripotent undifferentiated cells deal with dying cells. With the use of fluorescence microscopy this work demonstrates that both polar bodies loose membrane integrity early. The second polar body has contact to embryonic cells and gets internalized, dependent on the Rac1-ortholog CED-10. The polar body gets degraded via LC3-associated phagocytosis. While lysosome recruitment depends on RAB-7, LC3 does not improve lysosome recruitment but still accelerates polar body degradation. This work establishes the second polar body as a genetic model to study cell death and LC3-associated phagocytosis and has revealed further aspects of phagosome maturation and degradation.}, subject = {Polk{\"o}rper}, language = {en} } @article{KaiserSauerKisker2017, author = {Kaiser, Sebastian and Sauer, Florian and Kisker, Caroline}, title = {The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15907}, doi = {10.1038/ncomms15907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170769}, year = {2017}, abstract = {RecQ4 is a member of the RecQ helicase family, an evolutionarily conserved class of enzymes, dedicated to preserving genomic integrity by operating in telomere maintenance, DNA repair and replication. While reduced RecQ4 activity is associated with cancer predisposition and premature aging, RecQ4 upregulation is related to carcinogenesis and metastasis. Within the RecQ family, RecQ4 assumes an exceptional position, lacking several characteristic RecQ domains. Here we present the crystal structure of human RecQ4, encompassing the conserved ATPase core and a novel C-terminal domain that lacks resemblance to the RQC domain observed in other RecQ helicases. The new domain features a zinc-binding site and two distinct types of winged-helix domains, which are not involved in canonical DNA binding or helicase activity. Based on our structural and functional analysis, we propose that RecQ4 exerts a helicase mechanism, which may be more closely related to bacterial RecQ helicases than to its human family members.}, language = {en} } @article{KronhardtBeitzingerBarthetal.2016, author = {Kronhardt, Angelika and Beitzinger, Christoph and Barth, Holger and Benz, Roland}, title = {Chloroquine Analog Interaction with C2-and Iota-Toxin in Vitro and in Living Cells}, series = {Toxins}, volume = {8}, journal = {Toxins}, number = {8}, doi = {10.3390/toxins8080237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168286}, pages = {237}, year = {2016}, abstract = {C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells' receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.}, language = {en} } @phdthesis{Beer2021, author = {Beer, Katharina Beate}, title = {Identification and characterization of TAT-5 interactors that regulate extracellular vesicle budding}, doi = {10.25972/OPUS-20672}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cells from bacteria to man release extracellular vesicles (EV) such as microvesicles (MV) that carry signaling molecules like morphogens and miRNAs to control intercellular communication during health and disease. MV release also sculpts membranes, e.g. repairing damaged membranes to avoid cell death. HIV viruses also bud from the plasma membrane in a similar fashion. In order to determine the in vivo functions of MVs and regulate their release, we need to understand the mechanisms of MV release by plasma membrane budding (ectocytosis). The conserved phospholipid flippase TAT-5 maintains the asymmetric localization of phosphatidylethanolamine (PE) in the plasma membrane and was the only known inhibitor of ESCRT-mediated ectocytosis in C. elegans. Loss of TAT-5 lipid flipping activity increased the externalization of PE and accumulation of MVs. However, it was unclear how cells control TAT-5 activity to release the right amount of MVs at the right time, since no upstream regulators of TAT-5 were known. To identify conserved TAT-5 regulators we looked for new proteins that inhibit MV release. To do so, we first developed a degradation-based technique to specifically label MVs. We tagged a plasma membrane reporter with the endogenous ZF1 degradation tag (degron) and expressed it in C. elegans embryos. This reporter is protected from degradation inside MVs, but is degraded inside the cell. Thus, the fluorescence is selectively maintained inside MVs, creating the first MV-specific reporter. We identified four MV release inhibitors associated with retrograde recycling, including the class III PI3Kinase VPS-34, Beclin1 homolog BEC-1, DnaJ protein RME-8, and the uncharacterized Dopey homolog PAD-1. We found that VPS-34, BEC-1, RME-8, and redundant sorting nexins are required for the plasma membrane localization of TAT-5, which is important to maintain PE asymmetry and inhibit MV release. Although we confirmed that PAD-1 and the GEF-like protein MON-2 are required for endosomal recycling, they only traffic TAT-5 in the absence of sorting nexin-mediated recycling. Instead, PAD-1 is specifically required for the lipid flipping activity of TAT-5 that inhibits MV release. Thus, our work pinpoints TAT-5 and PE as key regulators of plasma membrane budding, further supporting the model that PE externalization drives ectocytosis. In addition, we uncovered redundant intracellular trafficking pathways, which affect organelle size and revealed new regulators of TAT-5 flippase activity. These newly identified ectocytosis inhibitors provide a toolkit to test the in vivo roles of MVs. In the long term, our work will help to identify the mechanisms that govern MV budding, furthering our understanding of the mechanisms that regulate disease-mediated EV release, membrane sculpting and viral budding.}, subject = {Caenorhabditis elegans}, language = {en} }