@article{FazeliStetterLisacketal.2018, author = {Fazeli, Gholamreza and Stetter, Maurice and Lisack, Jaime N. and Wehman, Ann M.}, title = {C. elegans Blastomeres Clear the Corpse of the Second Polar Body by LC3-Associated Phagocytosis}, series = {Cell Reports}, volume = {23}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2018.04.043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227651}, pages = {2070-2082}, year = {2018}, abstract = {To understand how undifferentiated pluripotent cells cope with cell corpses, we examined the clearance of polar bodies born during female meiosis. We found that polar bodies lose membrane integrity and expose phosphatidylserine in Caenorhabditis elegans. Polar body signaling recruits engulfment receptors to the plasma membrane of embryonic blastomeres using the PI3K VPS-34, RAB-5 GTPase and the sorting nexin SNX-6. The second polar body is then phagocytosed using receptor-mediated engulfment pathways dependent on the Rac1 ortholog CED-10 but undergoes non-apoptotic programmed cell death independent of engulfment. RAB-7 GTPase is required for lysosome recruitment to the polar body phagosome, while LC3 lipidation is required for degradation of the corpse membrane after lysosome fusion. The polar body phagolysosome vesiculates in an mTOR- and ARL-8-dependent manner, which assists its timely degradation. Thus, we established a genetic model to study clearance by LC3-associated phagocytosis and reveal insights into the mechanisms of phagosome maturation and degradation.}, language = {en} } @phdthesis{Karwen2024, author = {Karwen, Till}, title = {Platelets promote insulin secretion of pancreatic β-cells}, doi = {10.25972/OPUS-31393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313933}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.}, subject = {Thrombozyt}, language = {en} } @article{SchurrSpindlerKurzetal.2019, author = {Schurr, Yvonne and Spindler, Markus and Kurz, Hendrikje and Bender, Markus}, title = {The cytoskeletal crosslinking protein MACF1 is dispensable for thrombus formation and hemostasis}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44183-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234966}, year = {2019}, abstract = {Coordinated reorganization of cytoskeletal structures is critical for key aspects of platelet physiology. While several studies have addressed the role of microtubules and filamentous actin in platelet production and function, the significance of their crosstalk in these processes has been poorly investigated. The microtubule-actin cross-linking factor 1 (MACF1; synonym: Actin cross-linking factor 7, ACF7) is a member of the spectraplakin family, and one of the few proteins expressed in platelets, which possess actin and microtubule binding domains thereby facilitating actin-microtubule interaction and regulation. We used megakaryocyte- and platelet-specific Macf1 knockout (Macf1fl/fl, Pf4-Cre) mice to study the role of MACF1 in platelet production and function. MACF1 deficient mice displayed comparable platelet counts to control mice. Analysis of the platelet cytoskeletal ultrastructure revealed a normal marginal band and actin network. Platelet spreading on fibrinogen was slightly delayed but platelet activation and clot traction was unaffected. Ex vivo thrombus formation and mouse tail bleeding responses were similar between control and mutant mice. These results suggest that MACF1 is dispensable for thrombopoiesis, platelet activation, thrombus formation and the hemostatic function in mice.}, language = {en} } @article{LeeLiRuanetal.2019, author = {Lee, Hong-Jen and Li, Chien-Feng and Ruan, Diane and He, Jiabei and Montal, Emily D. and Lorenz, Sonja and Girnun, Geoffrey D. and Chan, Chia-Hsin}, title = {Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10374-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236445}, year = {2019}, abstract = {Enormous efforts have been made to target metabolic dependencies of cancer cells for developing new therapies. However, the therapeutic efficacy of glycolysis inhibitors is limited due to their inability to elicit cell death. Hexokinase 2 (HK2), via its mitochondrial localization, functions as a central nexus integrating glycolysis activation and apoptosis resilience. Here we identify that K63-linked ubiquitination by HectH9 regulates the mitochondrial localization and function of HK2. Through stable isotope tracer approach and functional metabolic analyses, we show that HectH9 deficiency impedes tumor glucose metabolism and growth by HK2 inhibition. The HectH9/HK2 pathway regulates cancer stem cell (CSC) expansion and CSC-associated chemoresistance. Histological analyses show that HectH9 expression is upregulated and correlated with disease progression in prostate cancer. This work uncovers that HectH9 is a novel regulator of HK2 and cancer metabolism. Targeting HectH9 represents an effective strategy to achieve long-term tumor remission by concomitantly disrupting glycolysis and inducing apoptosis.}, language = {en} } @article{BaluapuriHofstetterDudvarskiStankovicetal.2019, author = {Baluapuri, Apoorva and Hofstetter, Julia and Dudvarski Stankovic, Nevenka and Endres, Theresa and Bhandare, Pranjali and Vos, Seychelle Monique and Adhikari, Bikash and Schwarz, Jessica Denise and Narain, Ashwin and Vogt, Markus and Wang, Shuang-Yan and D{\"u}ster, Robert and Jung, Lisa Anna and Vanselow, Jens Thorsten and Wiegering, Armin and Geyer, Matthias and Maric, Hans Michael and Gallant, Peter and Walz, Susanne and Schlosser, Andreas and Cramer, Patrick and Eilers, Martin and Wolf, Elmar}, title = {MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation}, series = {Molecular Cell}, volume = {74}, journal = {Molecular Cell}, doi = {10.1016/j.molcel.2019.02.031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221438}, pages = {674-687}, year = {2019}, abstract = {The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth.}, language = {en} } @article{ChenGehringerLorenz2018, author = {Chen, Dan and Gehringer, Matthias and Lorenz, Sonja}, title = {Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin Ligases for Therapeutic Applications: Challenges and Opportunities}, series = {ChemBioChem}, volume = {19}, journal = {ChemBioChem}, doi = {10.1002/cbic.201800321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222412}, pages = {2123-2135}, year = {2018}, abstract = {The ubiquitin system regulates countless physiological and disease-associated processes and has emerged as an attractive entryway for therapeutic efforts. With over 600 members in the human proteome, ubiquitin ligases are the most diverse class of ubiquitylation enzymes and pivotal in encoding specificity in ubiquitin signaling. Although considerable progress has been made in the identification of small molecules targeting RING ligases, relatively little is known about the "druggability" of HECT (homologous to E6AP C terminus) ligases, many of which are critically implicated in human pathologies. A major obstacle to optimizing the few available ligands is our incomplete understanding of their inhibitory mechanisms and the structural basis of catalysis in HECT ligases. Here, we survey recent approaches to manipulate the activities of HECT ligases with small molecules to showcase the particular challenges and opportunities these enzymes hold as therapeutic targets.}, language = {en} } @phdthesis{Nair2024, author = {Nair, Radhika Karal}, title = {Structural and biochemical characterization of USP28 inhibition by small molecule inhibitors}, doi = {10.25972/OPUS-28174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281742}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ubiquitination is an important post-translational modification that maintains cellular homeostasis by regulating various biological processes. Deubiquitinases (DUBs) are enzymes that reverse the ubiquitination process by catalyzing the removal of ubiquitin from a substrate. Abnormal expression or function of DUBs is often associated with the onset and progression of various diseases, including cancer. Ubiquitin specific proteases (USPs), which constitute the largest family of DUBs in humans, have become the center of interest as potential targets in cancer therapy as many of them display increased activity or are overexpressed in a range of malignant tumors or the tumor microenvironment. Two related members of the USP family, USP28 and USP25, share high sequence identities but play diverse biological roles. USP28 regulates cell proliferation, oncogenesis, DNA damage repair and apoptosis, whereas USP25 is involved in the anti-viral response, innate immunity and ER-associated degradation in addition to carcinogenesis. USP28 and USP25 also exhibit different oligomeric states - while USP28 is a constitutively active dimer, USP25 assumes an auto-inhibited tetrameric structure. The catalytic domains of both USP28 and USP25 comprise the canonical, globular USP-domain but contain an additional, extended insertion site called USP25/28 catalytic domain inserted domain (UCID) that mediates oligomerization of the proteins. Disruption of the USP25 tetramer leads to the formation of an activated dimeric protein. However, it is still not clear what triggers its activation. Due to their role in maintaining and stabilizing numerous oncoproteins, USP28 and USP25 have emerged as interesting candidates for anti-cancer therapy. Recent advances in small-molecular inhibitor development have led to the discovery of relatively potent inhibitors of USP28 and USP25. This thesis focuses on the structural elucidation of USP28 and the biochemical characterization of USP28/USP25, both in complex with representatives of three out of the eight compound classes reported as USP28/USP25-specific inhibitors. The crystal structures of USP28 in complex with the AZ compounds, Vismodegib and FT206 reveal that all three inhibitor classes bind into the same allosteric pocket distant from the catalytic center, located between the palm and the thumb subdomains (the S1-site). Intriguingly, this binding pocket is identical to the UCID-tip binding interface in the USP25 tetramer, rendering the protein in a locked, inactive conformation. Formation of the binding pocket in USP28 requires a shift in the helix α5, which induces conformational changes and local distortion of the binding channel that typically accommodates the C-terminal tail of Ubiquitin, thus preventing catalysis and abrogating USP28 activity. The key residues of the USP28-inhibitor binding pocket are highly conserved in USP25. Mutagenesis studies of these residues accompanied by biochemical and biophysical assays confirm the proposed mechanism of inhibition and similar binding to USP25. This work provides valuable insights into the inhibition mechanism of the small molecule compounds specifically for the DUBs USP28 and USP25. The USP28-inhibitor complex structures offer a framework to develop more specific and potent inhibitors.}, subject = {Unique Selling Proposition}, language = {en} } @article{AngayFriedrichPinneckeretal.2018, author = {Angay, Oguzhan and Friedrich, Mike and Pinnecker, J{\"u}rgen and Hintzsche, Henning and Stopper, Helga and Hempel, Klaus and Heinze, Katrin G.}, title = {Image-based modeling and scoring of Howell-Jolly Bodies in human erythrocytes}, series = {Cytometry Part A}, volume = {93}, journal = {Cytometry Part A}, doi = {10.1002/cyto.a.23123}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221140}, pages = {305-313}, year = {2018}, abstract = {The spleen selectively removes cells with intracellular inclusions, for example, detached nuclear fragments in circulating erythrocytes, called Howell-Jolly Bodies (HJBs). With absent or deficient splenic function HJBs appear in the peripheral blood and can be used as a simple and non-invasive risk-indicator for fulminant potentially life-threatening infection after spleenectomy. However, it is still under debate whether counting of the rare HJBs is a reliable measure of splenic function. Investigating HJBs in premature erythrocytes from patients during radioiodine therapy gives about 10 thousand times higher HJB counts than in blood smears. However, we show that there is still the risk of false-positive results by unspecific nuclear remnants in the prepared samples that do not originate from HJBs, but from cell debris residing above or below the cell. Therefore, we present a method to improve accuracy of image-based tests that can be performed even in non-specialized medical institutions. We show how to selectively label HJB-like clusters in human blood samples and how to only count those that are undoubtedly inside the cell. We found a "critical distance" dcrit referring to a relative HJB-Cell distance that true HJBs do not exceed. To rule out false-positive counts we present a simple inside-outside-rule based on dcrit—a robust threshold that can be easily assessed by combining conventional 2D imaging and straight-forward image analysis. Besides data based on fluorescence imaging, simulations of randomly distributed HJB-like objects on realistically modelled cell objects demonstrate the risk and impact of biased counting in conventional analysis. © 2017 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.}, language = {en} }