@article{BecamWalterBurgertetal.2017, author = {Becam, J{\´e}r{\^o}me and Walter, Tim and Burgert, Anne and Schlegel, Jan and Sauer, Markus and Seibel, J{\"u}rgen and Schubert-Unkmeir, Alexandra}, title = {Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-18071-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159367}, pages = {17627}, year = {2017}, abstract = {Certain fatty acids and sphingoid bases found at mucosal surfaces are known to have antibacterial activity and are thought to play a more direct role in innate immunity against bacterial infections. Herein, we analysed the antibacterial activity of sphingolipids, including the sphingoid base sphingosine as well as short-chain C\(_{6}\) and long-chain C\(_{16}\)-ceramides and azido-functionalized ceramide analogs against pathogenic Neisseriae. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) demonstrated that short-chain ceramides and a ω-azido-functionalized C\(_{6}\)-ceramide were active against Neisseria meningitidis and N. gonorrhoeae, whereas they were inactive against Escherichia coli and Staphylococcus aureus. Kinetic assays showed that killing of N. meningitidis occurred within 2 h with ω-azido-C\(_{6}\)-ceramide at 1 X the MIC. Of note, at a bactericidal concentration, ω-azido-C\(_{6}\)-ceramide had no significant toxic effect on host cells. Moreover, lipid uptake and localization was studied by flow cytometry and confocal laser scanning microscopy (CLSM) and revealed a rapid uptake by bacteria within 5 min. CLSM and super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy demonstrated homogeneous distribution of ceramide analogs in the bacterial membrane. Taken together, these data demonstrate the potent bactericidal activity of sphingosine and synthetic short-chain ceramide analogs against pathogenic Neisseriae.}, language = {en} } @article{WawraFeselWidmeretal.2016, author = {Wawra, Stephan and Fesel, Philipp and Widmer, Heidi and Timm, Malte and Seibel, J{\"u}rgen and Leson, Lisa and Kesseler, Leona and Nostadt, Robin and Hilbert, Magdalena and Langen, Gregor and Zuccaro, Alga}, title = {The fungal-specific beta-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13188}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165945}, pages = {13188}, year = {2016}, abstract = {β-glucans are well-known modulators of the immune system in mammals but little is known about β-glucan triggered immunity in planta. Here we show by isothermal titration calorimetry, circular dichroism spectroscopy and nuclear magnetic resonance spectroscopy that the FGB1 gene from the root endophyte Piriformospora indica encodes for a secreted fungal-specific β-glucan-binding lectin with dual function. This lectin has the potential to both alter fungal cell wall composition and properties, and to efficiently suppress β-glucan-triggered immunity in different plant hosts, such as Arabidopsis, barley and Nicotiana benthamiana. Our results hint at the existence of fungal effectors that deregulate innate sensing of β-glucan in plants.}, language = {en} } @article{OrtizSotoSeibel2016, author = {Ortiz-Soto, Maria Elena and Seibel, J{\"u}rgen}, title = {Expression of Functional Human Sialyltransferases ST3Gal1 and ST6Gal1 in Escherichia coli}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0155410}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179807}, year = {2016}, abstract = {Sialyltransferases (STs) are disulfide-containing, type II transmembrane glycoproteins that catalyze the transfer of sialic acid to proteins and lipids and participate in the synthesis of the core structure oligosaccharides of human milk. Sialic acids are found at the outermost position of glycostructures, playing a key role in health and disease. Sialylation is also essential for the production of recombinant therapeutic proteins (RTPs). Despite their importance, availability of sialyltransferases is limited due to the low levels of stable, soluble and active protein produced in bacterial expression systems, which hampers biochemical and structural studies on these enzymes and restricts biotechnological applications. We report the successful expression of active human sialyltransferases ST3Gal1 and ST6Gal1 in commercial Escherichia coli strains designed for production of disulfide-containing proteins. Fusion of hST3Gal1 with different solubility enhancers and substitution of exposed hydrophobic amino acids by negatively charged residues (supercharging-like approach) were performed to promote solubility and folding. Co-expression of sialyltransferases with the chaperon/foldases sulfhydryl oxidase, protein disulfide isomerase and disulfide isomerase C was explored to improve the formation of native disulfide bonds. Active sialyltransferases fused with maltose binding protein (MBP) were obtained in sufficient amounts for biochemical and structural studies when expressed under oxidative conditions and co-expression of folding factors increased the yields of active and properly folded sialyltransferases by 20\%. Mutation of exposed hydrophobic amino acids increased recovery of active enzyme by 2.5-fold, yielding about 7 mg of purified protein per liter culture. Functionality of recombinant enzymes was evaluated in the synthesis of sialosides from the β-d-galactoside substrates lactose, N-acetyllactosamine and benzyl 2-acetamido-2-deoxy-3-O-(β-d-galactopyranosyl)-α-d-galactopyranoside.}, language = {en} } @article{HomannTimmSeibel2012, author = {Homann, Arne and Timm, Malte and Seibel, J{\"u}rgen}, title = {Chemo-enzymatic synthesis and in vitro cytokine profiling of tailor-made oligofructosides}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76393}, year = {2012}, abstract = {Background It is well known that carbohydrates play fundamental roles in cell signaling and infection processes as well as tumor formation and progression. However, the interaction pathways and cellular receptors targeted by carbohydrates and glycoconjugates remain poorly examined and understood. This lack of research stems, at least to a major part, from accessibility problems of large, branched oligosaccharides. Results To test glycan - cell interactions in vitro, a variety of tailored oligosaccharides was synthesized chemo-enzymatically. Glycosyltransferases from the GRAS organisms Bacillus megaterium (SacB) and Aspergillus niger (Suc1) were used in this study. Substrate engineering of these glycosyltransferases generally acting on sucrose leads to the controlled formation of novel tailored di-, tri- and tetrasaccharides. Already industrially used as prebiotics in functional food, the immunogenic potential of novel oligosaccharides was characterized in this study. A differential secretion of CXCL8 and CCL2 was observed upon oligosaccharide co-cultivation with colorectal epithelial Caco-2 cells. Conclusion Pure carbohydrates are able to stimulate a cytokine response in human endothelial cells in vitro. The type and amount of cytokine secretion depends on the type of co-cultivated oligosaccharide.}, subject = {Chemie}, language = {en} }