@article{SchaeferBuehlerHeyeretal.2021, author = {Sch{\"a}fer, Natalie and B{\"u}hler, Michael and Heyer, Lisa and R{\"o}hr, Merle I. S. and Beuerle, Florian}, title = {Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {19}, doi = {10.1002/chem.202005276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256762}, pages = {6077-6085}, year = {2021}, abstract = {A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2'-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and \(^{1}\)H, \(^{13}\)C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages.}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254527}, pages = {3549}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} } @article{IvanovaKoesterHolsteinetal.2021, author = {Ivanova, Svetlana and K{\"o}ster, Eva and Holstein, Julian J. and Keller, Niklas and Clever, Guido H. and Bein, Thomas and Beuerle, Florian}, title = {Isoreticular crystallization of highly porous cubic covalent organic cage compounds}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {32}, doi = {10.1002/anie.202102982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256462}, pages = {17455-17463}, year = {2021}, abstract = {Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m\(^2\) g\(^{-1}\) and 1.84 cm\(^3\) g\(^{-1}\). Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97-2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker.}, language = {en} } @article{TurkinHolzapfelAgarwaletal.2021, author = {Turkin, Arthur and Holzapfel, Marco and Agarwal, Mohit and Fischermeier, David and Mitric, Roland and Schweins, Ralf and Gr{\"o}hns, Franziska and Lambert, Christoph}, title = {Solvent Induced Helix Folding of Defined Indolenine Squaraine Oligomers}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {32}, doi = {10.1002/chem.202101063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256869}, pages = {8380-8389}, year = {2021}, abstract = {A protecting group strategy was employed to synthesise a series of indolenine squaraine dye oligomers up to the nonamer. The longer oligomers show a distinct solvent dependence of the absorption spectra, that is, either a strong blue shift or a strong red shift of the lowest energy bands in the near infrared spectral region. This behaviour is explained by exciton coupling theory as being due to H- or J-type coupling of transition moments. The H-type coupling is a consequence of a helix folding in solvents with a small Hansen dispersity index. DOSY NMR, small angle neutron scattering (SANS), quantum chemical and force field calculations agree upon a helix structure with an unusually large pitch and open voids that are filled with solvent molecules, thereby forming a kind of clathrate. The thermodynamic parameters of the folding process were determined by temperature dependent optical absorption spectra.}, language = {en} } @article{BoldStolteShoyamaetal.2022, author = {Bold, Kevin and Stolte, Matthias and Shoyama, Kazutaka and Holzapfel, Marco and Schmiedel, Alexander and Lambert, Christoph and W{\"u}rthner, Frank}, title = {Macrocyclic donor-acceptor dyads composed of a perylene bisimide dye surrounded by oligothiophene bridges}, series = {Angewandte Chemie Internationale Edition}, volume = {61}, journal = {Angewandte Chemie Internationale Edition}, number = {1}, doi = {10.1002/anie.202113598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256569}, year = {2022}, abstract = {Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor-acceptor dyads show ultrafast F{\"o}rster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.}, language = {en} } @article{ZhangRadackiBraunschweigetal.2021, author = {Zhang, Fangyuan and Radacki, Krzysztof and Braunschweig, Holger and Lambert, Christoph and Ravat, Prince}, title = {Zinc-[7]helicenocyanine and its discrete π-stacked homochiral Dimer}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202109380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256534}, pages = {23656-23660}, year = {2021}, abstract = {In this communication, we demonstrate a novel approach to prepare a discrete dimer of chiral phthalocyanine (Pc) by exploiting the flexible molecular geometry of helicenes, which enables structural interlocking and strong aggregation tendency of Pcs. Synthesized [7]helicene-Pc hybrid molecular structure, zinc-[7]helicenocyanine (Zn-7HPc), exclusively forms a stable dimeric pair consisting of two homochiral molecules. The dimerization constants were estimated to be as high as 8.96×10\(^6\) M\(^{-1}\) and 3.42×107 M\(^{-1}\) in THF and DMSO, respectively, indicating remarkable stability of dimer. In addition, Zn\(^{-7}\)HPc exhibited chiral self-sorting behavior, which resulted in preferential formation of a homochiral dimer also in the racemic sample. Two phthalocyanine subunits in the dimeric form strongly communicate with each other as revealed by a large comproportionation constant and observation of an IV-CT band for the thermodynamically stable mixed-valence state.}, language = {en} } @article{KabingerStillerSchmitzovaetal.2021, author = {Kabinger, Florian and Stiller, Carina and Schmitzov{\´a}, Jana and Dienemann, Christian and Kokic, Goran and Hillen, Hauke S. and H{\"o}bartner, Claudia and Cramer, Patrick}, title = {Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis}, series = {Nature Structural \& Molecular Biology}, volume = {28}, journal = {Nature Structural \& Molecular Biology}, doi = {10.1038/s41594-021-00651-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254603}, pages = {740-746}, year = {2021}, abstract = {Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-d-\(N^4\)-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.}, language = {en} } @article{EltamanyAbdelmohsenHaletal.2021, author = {Eltamany, Enas E. and Abdelmohsen, Usama Ramadan and Hal, Dina M. and Ibrahim, Amany K. and Hassanean, Hashim A. and Abdelhameed, Reda F. A. and Temraz, Tarek A. and Hajjar, Dina and Makki, Arwa A. and Hendawy, Omnia Magdy and AboulMagd, Asmaa M. and Youssif, Khayrya A. and Bringmann, Gerhard and Ahmed, Safwat A.}, title = {Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber Holothuria spinifera: In Vitro and In Silico Studies}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules26061555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234058}, year = {2021}, abstract = {Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography-mass spectrometry (GC-MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC\(_{50}\) of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2-p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents.}, language = {en} } @article{AbdelhameedHabibGodaetal.2020, author = {Abdelhameed, Reda F. A. and Habib, Eman S. and Goda, Marwa S. and Fahim, John Refaat and Hassanean, Hashem A. and Eltamany, Enas E. and Ibrahim, Amany K. and AboulMagd, Asmaa M. and Fayez, Shaimaa and Abd El-kader, Adel M. and Al-Warhi, Tarfah and Bringmann, Gerhard and Ahmed, Safwat A. and Abdelmohsen, Usama Ramadan}, title = {Thalassosterol, a New Cytotoxic Aromatase Inhibitor Ergosterol Derivative from the Red Sea Seagrass Thalassodendron ciliatum}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {7}, doi = {10.3390/md18070354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236085}, year = {2020}, abstract = {Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC\(_{50}\) values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides.}, language = {en} } @article{BialasZitzlerKunkelKirchneretal.2016, author = {Bialas, David and Zitzler-Kunkel, Andr{\´e} and Kirchner, Eva and Schmidt, David and W{\"u}rthner, Frank}, title = {Structural and quantum chemical analysis of exciton coupling in homo- and heteroaggregate stacks of merocyanines}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170200}, year = {2016}, abstract = {Exciton coupling is of fundamental importance and determines functional properties of organic dyes in (opto-)electronic and photovoltaic devices. Here we show that strong exciton coupling is not limited to the situation of equal chromophores as often assumed. Quadruple dye stacks were obtained from two bis(merocyanine) dyes with same or different chromophores, respectively, which dimerize in less-polar solvents resulting in the respective homo- and heteroaggregates. The structures of the quadruple dye stacks were assigned by NMR techniques and unambiguously confirmed by single-crystal X-ray analysis. The heteroaggregate stack formed from the bis(merocyanine) bearing two different chromophores exhibits remarkably different ultraviolet/vis absorption bands compared with those of the homoaggregate of the bis(merocyanine) comprising two identical chromophores. Quantum chemical analysis based on an extension of Kasha's exciton theory appropriately describes the absorption properties of both types of stacks revealing strong exciton coupling also between different chromophores within the heteroaggregate.}, language = {en} }