@article{KraftStanglKrauseetal.2017, author = {Kraft, Andreas and Stangl, Johannes and Krause, Ana-Maria and M{\"u}ller-Buschbaum, Klaus and Beuerle, Florian}, title = {Supramolecular frameworks based on [60]fullerene hexakisadducts}, series = {Beilstein Journal of Organic Chemistry}, volume = {13}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.13.1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171996}, pages = {1-9}, year = {2017}, abstract = {[60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements.}, language = {en} } @unpublished{StennettBissingerGriesbecketal.2019, author = {Stennett, Tom E. and Bissinger, Philipp and Griesbeck, Stefanie and Ullrich, Stefan and Krummenacher, Ivo and Auth, Michael and Sperlich, Andreas and Stolte, Matthias and Radacki, Krzysztof and Yao, Chang-Jiang and W{\"u}rthner, Frank and Steffen, Andreas and Marder, Todd B. and Braunschweig, Holger}, title = {Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201900889}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180391}, year = {2019}, abstract = {In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.}, language = {en} } @article{MerzMerzKirchneretal.2021, author = {Merz, Viktor and Merz, Julia and Kirchner, Maximilian and Lenhart, Julian and Marder, Todd B. and Krueger, Anke}, title = {Pyrene-Based "Turn-Off" Probe with Broad Detection Range for Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) Ions}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100594}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256803}, pages = {8118-8126}, year = {2021}, abstract = {Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na\(^{+}\), K\(^{+}\), Ca\(^{2+}\) and Mg\(^{2+}\). The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.}, language = {en} } @article{FullWoelflickRadackietal.2022, author = {Full, Felix and W{\"o}lflick, Quentin and Radacki, Krzysztof and Braunschweig, Holger and Nowak-Kr{\´o}l, Agnieszka}, title = {Enhanced Optical Properties of Azaborole Helicenes by Lateral and Helical Extension}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {62}, doi = {10.1002/chem.202202280}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293671}, year = {2022}, abstract = {The synthesis and characterization of laterally extended azabora[5]-, -[6]- and -[7]helicenes, assembled from N-heteroaromatic and dibenzo[g,p]chrysene building blocks is described. Formally, the π-conjugated systems of the pristine azaborole helicenes were enlarged with a phenanthrene unit leading to compounds with large Stokes shifts, significantly enhanced luminescence quantum yields (Φ) and dissymmetry factors (g\(_{lum}\)). The beneficial effect on optical properties was also observed for helical elongation. The combined contributions of lateral and helical extensions resulted in a compound showing green emission with Φ of 0.31 and |g\(_{lum}\)| of 2.2×10\(^{-3}\), highest within the series of π-extended azaborahelicenes and superior to emission intensity and chiroptical response of its non-extended congener. This study shows that helical and lateral extensions of π-conjugated systems are viable strategies to improve features of azaborole helicenes. In addition, single crystal X-ray analysis of configurationally stable [6]- and -[7]helicenes was used to provide insight into their packing arrangements.}, language = {en} } @article{WuDinkelbachKerneretal.2022, author = {Wu, Zhu and Dinkelbach, Fabian and Kerner, Florian and Friedrich, Alexandra and Ji, Lei and Stepanenko, Vladimir and W{\"u}rthner, Frank and Marian, Christel M. and Marder, Todd B.}, title = {Aggregation-Induced Dual Phosphorescence from (o-Bromophenyl)-Bis(2,6-Dimethylphenyl)Borane at Room Temperature}, series = {Chemistry—A European Journal}, volume = {28}, journal = {Chemistry—A European Journal}, number = {30}, doi = {10.1002/chem.202200525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318297}, year = {2022}, abstract = {Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T\(^M_1\) state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T\(^A_1\) state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently.}, language = {en} } @article{WuRoldaoRauchetal.2022, author = {Wu, Zhu and Roldao, Juan Carlos and Rauch, Florian and Friedrich, Alexandra and Ferger, Matthias and W{\"u}rthner, Frank and Gierschner, Johannes and Marder, Todd B.}, title = {Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP)}, series = {Angewandte Chemie}, volume = {61}, journal = {Angewandte Chemie}, number = {15}, doi = {10.1002/anie.202200599}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318308}, year = {2022}, abstract = {Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)\(_{3}\) does not luminesce in the solid state when irradiated at 250-400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP.}, language = {en} } @article{KoleKošćakAmaretal.2022, author = {Kole, Goutam Kumar and Košćak, Marta and Amar, Anissa and Majhen, Dragomira and Božinović, Ksenija and Brkljaca, Zlatko and Ferger, Matthias and Michail, Evripidis and Lorenzen, Sabine and Friedrich, Alexandra and Krummenacher, Ivo and Moos, Michael and Braunschweig, Holger and Boucekkine, Abdou and Lambert, Christoph and Halet, Jean-Fran{\c{c}}ois and Piantanida, Ivo and M{\"u}ller-Buschbaum, Klaus and Marder, Todd B.}, title = {Methyl Viologens of Bis-(4'-Pyridylethynyl)Arenes - Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {40}, doi = {10.1002/chem.202200753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287126}, year = {2022}, abstract = {A series of bis-(4'-pyridylethynyl)arenes (arene=benzene, tetrafluorobenzene, and anthracene) were synthesized and their bis-N-methylpyridinium compounds were investigated as a class of π-extended methyl viologens. Their structures were determined by single crystal X-ray diffraction, and their photophysical and electrochemical properties (cyclic voltammetry), as well as their interactions with DNA/RNA were investigated. The dications showed bathochromic shifts in emission compared to the neutral compounds. The neutral compounds showed very small Stokes shifts, which are a little larger for the dications. All of the compounds showed very short fluorescence lifetimes (<4 ns). The neutral compound with an anthracene core has a quantum yield of almost unity. With stronger acceptors, the analogous bis-N-methylpyridinium compound showed a larger two-photon absorption cross-section than its neutral precursor. All of the dicationic compounds interact with DNA/RNA; while the compounds with benzene and tetrafluorobenzene cores bind in the grooves, the one with an anthracene core intercalates as a consequence of its large, condensed aromatic linker moiety, and it aggregates within the polynucleotide when in excess over DNA/RNA. Moreover, all cationic compounds showed highly specific CD spectra upon binding to ds-DNA/RNA, attributed to the rare case of forcing the planar, achiral molecule into a chiral rotamer, and negligible toxicity toward human cell lines at ≤10 μM concentrations. The anthracene-analogue exhibited intracellular accumulation within lysosomes, preventing its interaction with cellular DNA/RNA. However, cytotoxicity was evident at 1 μM concentration upon exposure to light, due to singlet oxygen generation within cells. These multi-faceted features, in combination with its two-photon absorption properties, suggest it to be a promising lead compound for development of novel light-activated theranostic agents.}, language = {en} } @article{MerzDietzVonhausenetal.2020, author = {Merz, Julia and Dietz, Maximilian and Vonhausen, Yvonne and W{\"o}ber, Frederik and Friedrich, Alexandra and Sieh, Daniel and Krummenacher, Ivo and Braunschweig, Holger and Moos, Michael and Holzapfel, Marco and Lambert, Christoph and Marder, Todd B.}, title = {Synthesis, Photophysical and Electronic Properties of New Red-to-NIR Emitting Donor-Acceptor Pyrene Derivatives}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {2}, doi = {10.1002/chem.201904219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207486}, pages = {438-453}, year = {2020}, abstract = {We synthesized new pyrene derivatives with strong bis(para -methoxyphenyl)amine donors at the 2,7-positions and n -azaacene acceptors at the K-region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7-substituted pyrenes but not for K-region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin-Day class-II and delocalized Robin-Day class-III species.}, language = {en} } @article{FergerRogerKoesteretal.2022, author = {Ferger, Matthias and Roger, Chantal and K{\"o}ster, Eva and Rauch, Florian and Lorenzen, Sabine and Krummenacher, Ivo and Friedrich, Alexandra and Košćak, Marta and Nestić, Davor and Braunschweig, Holger and Lambert, Christoph and Piantanida, Ivo and Marder, Todd B.}, title = {Electron-Rich EDOT Linkers in Tetracationic bis-Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.202201130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287241}, year = {2022}, abstract = {Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212887}, pages = {13164 -- 13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{MerzDietrichNitschetal.2020, author = {Merz, Julia and Dietrich, Lena and Nitsch, J{\"o}rn and Krummenacher, Ivo and Braunschweig, Holger and Moos, Michael and Mims, David and Lambert, Christoph and Marder, Todd B.}, title = {Synthesis, Photophysical and Electronic Properties of Mono-, Di-, and Tri-Amino-Substituted Ortho-Perylenes, and Comparison to the Tetra-Substituted Derivative}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {52}, doi = {10.1002/chem.202001475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217835}, pages = {12050 -- 12059}, year = {2020}, abstract = {We synthesized a series of new mono-, di-, tri- and tetra-substituted perylene derivatives with strong bis(para-methoxyphenyl)amine (DPA) donors at the uncommon 2,5,8,11-positions. The properties of our new donor-substituted perylenes were studied in detail to establish a structure-property relationship. Interesting trends and unusual properties are observed for this series of new perylene derivatives, such as a decreasing charge transfer (CT) character with increasing number of DPA moieties and individual reversible oxidations for each DPA moiety. Thus, (DPA)-Per possesses one reversible oxidation while (DPA)\(_{4}\)-Per has four. The mono- and di-substituted derivatives display unusually large Stokes shifts not previously reported for perylenes. Furthermore, transient absorption measurements of the new derivatives reveal an excited state with lifetimes of several hundred microseconds, which sensitizes singlet oxygen with quantum yields of up to 0.83.}, language = {en} } @article{FullPanchalGoetzetal.2021, author = {Full, Julian and Panchal, Santosh P. and G{\"o}tz, Julian and Krause, Ana-Maria and Nowak-Kr{\´o}l, Agnieszka}, title = {Modulare Synthese helikal-chiraler Organobor-Verbindungen: Ausschnitte verl{\"a}ngerter Helices}, series = {Angewandte Chemie}, volume = {133}, journal = {Angewandte Chemie}, number = {8}, doi = {10.1002/ange.202014138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224385}, pages = {4396 -- 4403}, year = {2021}, abstract = {Zwei Arten helikal-chiraler Verbindungen mit einem oder zwei Boratomen wurden nach einem modularen Ansatz synthetisiert. Die Bildung der helikalen Strukturen erfolgte durch Einf{\"u}hrung von Bor in flexible Biaryl- bzw. Triaryl-Vorstufen, hergestellt aus kleinen achiralen Bausteinen. Die durchgehend ortho-fusionierten Azabora[7]helicene zeichnen sich dabei durch außergew{\"o}hnliche Konfigurationsstabilit{\"a}t, blaue oder gr{\"u}ne Fluoreszenz in L{\"o}sung mit Quantenausbeuten (Φ\(_{fl}\)) von 18-24 \%, gr{\"u}ne oder gelbe Emission im Festk{\"o}rper (Φ\(_{fl}\) bis zu 23 \%) und starke chiroptische Resonanz mit großen Anisotropiefaktoren von bis zu 1.12×10\(^{-2}\) aus. Azabora[9]helicene, aufgebaut aus winkelf{\"o}rmig sowie linear angeordneten Ringen, sind blaue Emitter mit Φ\(_{fl}\) von bis zu 47 \% in CH\(_{2}\)Cl\(_{2}\) und 25 \% im Festk{\"o}rper. DFT-Rechnungen zeigen, dass ihre P-M-Interkonversion {\"u}ber einen komplexeren Weg verl{\"a}uft als im Fall von H1. R{\"o}ntgenstrukturanalyse von Einkristallen zeigt deutliche Unterschiede in der Packungsanordnung von Methyl- und Phenylderivaten auf. Die Molek{\"u}le werden als Prim{\"a}rstrukturen verl{\"a}ngerter Helices vorgeschlagen.}, language = {de} } @article{MuellerLuettigMalyetal.2019, author = {Mueller, Stefan and L{\"u}ttig, Julian and Mal{\´y}, Pavel and Ji, Lei and Han, Jie and Moos, Michael and Marder, Todd B. and Bunz, Uwe H. F. and Dreuw, Andreas and Lambert, Christoph and Brixner, Tobias}, title = {Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12602-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202529}, pages = {4735}, year = {2019}, abstract = {Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on One- and Two-Photon Absorption, Cell Viability and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204829}, pages = {13164-13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{HattoriMichailSchmiedeletal.2019, author = {Hattori, Yohei and Michail, Evripidis and Schmiedel, Alexander and Moos, Michael and Holzapfel, Marco and Krummenacher, Ivo and Braunschweig, Holger and M{\"u}ller, Ulrich and Pflaum, Jens and Lambert, Christoph}, title = {Luminescent Mono-, Di-, and Tri-radicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {68}, doi = {10.1002/chem.201903007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208162}, pages = {15463-15471}, year = {2019}, abstract = {Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.}, language = {en} } @article{ZhangRadackiBraunschweigetal.2021, author = {Zhang, Fangyuan and Radacki, Krzysztof and Braunschweig, Holger and Lambert, Christoph and Ravat, Prince}, title = {Zinc-[7]helicenocyanine and its discrete π-stacked homochiral Dimer}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202109380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256534}, pages = {23656-23660}, year = {2021}, abstract = {In this communication, we demonstrate a novel approach to prepare a discrete dimer of chiral phthalocyanine (Pc) by exploiting the flexible molecular geometry of helicenes, which enables structural interlocking and strong aggregation tendency of Pcs. Synthesized [7]helicene-Pc hybrid molecular structure, zinc-[7]helicenocyanine (Zn-7HPc), exclusively forms a stable dimeric pair consisting of two homochiral molecules. The dimerization constants were estimated to be as high as 8.96×10\(^6\) M\(^{-1}\) and 3.42×107 M\(^{-1}\) in THF and DMSO, respectively, indicating remarkable stability of dimer. In addition, Zn\(^{-7}\)HPc exhibited chiral self-sorting behavior, which resulted in preferential formation of a homochiral dimer also in the racemic sample. Two phthalocyanine subunits in the dimeric form strongly communicate with each other as revealed by a large comproportionation constant and observation of an IV-CT band for the thermodynamically stable mixed-valence state.}, language = {en} } @article{WildervanckHechtNowakKrol2022, author = {Wildervanck, Martijn J. and Hecht, Reinhard and Nowak-Kr{\´o}l, Agnieszka}, title = {Synthesis and strong solvatochromism of push-pull thienylthiazole boron complexes}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {17}, issn = {1420-3049}, doi = {10.3390/molecules27175510}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286186}, year = {2022}, abstract = {The solvatochromic behavior of two donor-π bridge-acceptor (D-π-A) compounds based on the 2-(3-boryl-2-thienyl)thiazole π-linker and indandione acceptor moiety are investigated. DFT/TD-DFT calculations were performed in combination with steady-state absorption and emission measurements, along with electrochemical studies, to elucidate the effect of two different strongly electron-donating hydrazonyl units on the solvatochromic and fluorescence behavior of these compounds. The Lippert-Mataga equation was used to estimate the change in dipole moments (Δµ) between ground and excited states based on the measured spectroscopic properties in solvents of varying polarity with the data being supported by theoretical studies. The two asymmetrical D-π-A molecules feature strong solvatochromic shifts in fluorescence of up to ~4300 cm\(^{-1}\) and a concomitant change of the emission color from yellow to red. These changes were accompanied by an increase in Stokes shift to reach values as large as ~5700-5800 cm\(^{-1}\). Quantum yields of ca. 0.75 could be observed for the N,N-dimethylhydrazonyl derivative in nonpolar solvents, which gradually decreased along with increasing solvent polarity, as opposed to the consistently reduced values obtained for the N,N-diphenylhydrazonyl derivative of up to ca. 0.20 in nonpolar solvents. These two push-pull molecules are contrasted with a structurally similar acceptor-π bridge-acceptor (A-π-A) compound.}, language = {en} }