@article{BialasZitzlerKunkelKirchneretal.2016, author = {Bialas, David and Zitzler-Kunkel, Andr{\´e} and Kirchner, Eva and Schmidt, David and W{\"u}rthner, Frank}, title = {Structural and quantum chemical analysis of exciton coupling in homo- and heteroaggregate stacks of merocyanines}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170200}, year = {2016}, abstract = {Exciton coupling is of fundamental importance and determines functional properties of organic dyes in (opto-)electronic and photovoltaic devices. Here we show that strong exciton coupling is not limited to the situation of equal chromophores as often assumed. Quadruple dye stacks were obtained from two bis(merocyanine) dyes with same or different chromophores, respectively, which dimerize in less-polar solvents resulting in the respective homo- and heteroaggregates. The structures of the quadruple dye stacks were assigned by NMR techniques and unambiguously confirmed by single-crystal X-ray analysis. The heteroaggregate stack formed from the bis(merocyanine) bearing two different chromophores exhibits remarkably different ultraviolet/vis absorption bands compared with those of the homoaggregate of the bis(merocyanine) comprising two identical chromophores. Quantum chemical analysis based on an extension of Kasha's exciton theory appropriately describes the absorption properties of both types of stacks revealing strong exciton coupling also between different chromophores within the heteroaggregate.}, language = {en} } @article{OrtizSotoSeibel2016, author = {Ortiz-Soto, Maria Elena and Seibel, J{\"u}rgen}, title = {Expression of Functional Human Sialyltransferases ST3Gal1 and ST6Gal1 in Escherichia coli}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0155410}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179807}, year = {2016}, abstract = {Sialyltransferases (STs) are disulfide-containing, type II transmembrane glycoproteins that catalyze the transfer of sialic acid to proteins and lipids and participate in the synthesis of the core structure oligosaccharides of human milk. Sialic acids are found at the outermost position of glycostructures, playing a key role in health and disease. Sialylation is also essential for the production of recombinant therapeutic proteins (RTPs). Despite their importance, availability of sialyltransferases is limited due to the low levels of stable, soluble and active protein produced in bacterial expression systems, which hampers biochemical and structural studies on these enzymes and restricts biotechnological applications. We report the successful expression of active human sialyltransferases ST3Gal1 and ST6Gal1 in commercial Escherichia coli strains designed for production of disulfide-containing proteins. Fusion of hST3Gal1 with different solubility enhancers and substitution of exposed hydrophobic amino acids by negatively charged residues (supercharging-like approach) were performed to promote solubility and folding. Co-expression of sialyltransferases with the chaperon/foldases sulfhydryl oxidase, protein disulfide isomerase and disulfide isomerase C was explored to improve the formation of native disulfide bonds. Active sialyltransferases fused with maltose binding protein (MBP) were obtained in sufficient amounts for biochemical and structural studies when expressed under oxidative conditions and co-expression of folding factors increased the yields of active and properly folded sialyltransferases by 20\%. Mutation of exposed hydrophobic amino acids increased recovery of active enzyme by 2.5-fold, yielding about 7 mg of purified protein per liter culture. Functionality of recombinant enzymes was evaluated in the synthesis of sialosides from the β-d-galactoside substrates lactose, N-acetyllactosamine and benzyl 2-acetamido-2-deoxy-3-O-(β-d-galactopyranosyl)-α-d-galactopyranoside.}, language = {en} } @article{AltmannMutWolfetal.2021, author = {Altmann, Stephan and Mut, J{\"u}rgen and Wolf, Natalia and Meißner-Weigl, Jutta and Rudert, Maximilian and Jakob, Franz and Gutmann, Marcus and L{\"u}hmann, Tessa and Seibel, J{\"u}rgen and Ebert, Regina}, title = {Metabolic glycoengineering in hMSC-TERT as a model for skeletal precursors by using modified azide/alkyne monosaccharides}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms22062820}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259247}, year = {2021}, abstract = {Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac\(_4\)ManNAz) and N-alkyneacetylmannosamine (Ac\(_4\)ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac\(_4\)ManNAz was detectable for up to six days while Ac\(_4\)ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.}, language = {en} } @phdthesis{Kiendl2020, author = {Kiendl, Benjamin}, title = {Application of diamond nanomaterials in catalysis}, doi = {10.25972/OPUS-17941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this work the catalytic activity of nanodiamond particles with different dopants and surface terminations and of diamond nanomaterials funtionalized with ruthenium-based photocatalysts was investigated, illustrating materials application in photoredox chemistry and the photo(electro)catalytic reduction of CO2. Regarding the application of diamond nanomaterials in photocatalysis, methods to fabricate and characterize several (un)doped nanoparticles with different surface termination were successfully developed. Various photocatalysts, attached to nanodiamond particles via linker systems, were tested in photoredox catalysis and the photo(electro)catalytic reduction of CO2.}, subject = {Fotokatalyse}, language = {en} } @article{KoleKošćakAmaretal.2022, author = {Kole, Goutam Kumar and Košćak, Marta and Amar, Anissa and Majhen, Dragomira and Božinović, Ksenija and Brkljaca, Zlatko and Ferger, Matthias and Michail, Evripidis and Lorenzen, Sabine and Friedrich, Alexandra and Krummenacher, Ivo and Moos, Michael and Braunschweig, Holger and Boucekkine, Abdou and Lambert, Christoph and Halet, Jean-Fran{\c{c}}ois and Piantanida, Ivo and M{\"u}ller-Buschbaum, Klaus and Marder, Todd B.}, title = {Methyl Viologens of Bis-(4'-Pyridylethynyl)Arenes - Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {40}, doi = {10.1002/chem.202200753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287126}, year = {2022}, abstract = {A series of bis-(4'-pyridylethynyl)arenes (arene=benzene, tetrafluorobenzene, and anthracene) were synthesized and their bis-N-methylpyridinium compounds were investigated as a class of π-extended methyl viologens. Their structures were determined by single crystal X-ray diffraction, and their photophysical and electrochemical properties (cyclic voltammetry), as well as their interactions with DNA/RNA were investigated. The dications showed bathochromic shifts in emission compared to the neutral compounds. The neutral compounds showed very small Stokes shifts, which are a little larger for the dications. All of the compounds showed very short fluorescence lifetimes (<4 ns). The neutral compound with an anthracene core has a quantum yield of almost unity. With stronger acceptors, the analogous bis-N-methylpyridinium compound showed a larger two-photon absorption cross-section than its neutral precursor. All of the dicationic compounds interact with DNA/RNA; while the compounds with benzene and tetrafluorobenzene cores bind in the grooves, the one with an anthracene core intercalates as a consequence of its large, condensed aromatic linker moiety, and it aggregates within the polynucleotide when in excess over DNA/RNA. Moreover, all cationic compounds showed highly specific CD spectra upon binding to ds-DNA/RNA, attributed to the rare case of forcing the planar, achiral molecule into a chiral rotamer, and negligible toxicity toward human cell lines at ≤10 μM concentrations. The anthracene-analogue exhibited intracellular accumulation within lysosomes, preventing its interaction with cellular DNA/RNA. However, cytotoxicity was evident at 1 μM concentration upon exposure to light, due to singlet oxygen generation within cells. These multi-faceted features, in combination with its two-photon absorption properties, suggest it to be a promising lead compound for development of novel light-activated theranostic agents.}, language = {en} } @article{LambovHensiekPoeppleretal.2020, author = {Lambov, Martin and Hensiek, Nicola and P{\"o}ppler, Ann-Christin and Lehmann, Matthias}, title = {Columnar Liquid Crystals from Star-Shaped Conjugated Mesogens as Nano-Reservoirs for Small Acceptors}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {10}, doi = {10.1002/cplu.202000341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218014}, pages = {2219 -- 2229}, year = {2020}, abstract = {Shape-persistent conjugated mesogens with oligothiophene arms of different lengths have been synthesized. Such mesogens possess free intrinsic space between their conjugated arms. They form columnar liquid-crystalline phases, in which the void is filled by dense helical packing in the neat phase similar to an oligo(phenylene vinylene) derivative of equal size. The void can also be compensated by the inclusion of the small acceptor molecule 2,4,7-trinitrofluorenone. In solution, the acceptor interacts with the core as the largest π-surface, while in the solid material, it is incorporated between the arms and sandwiched by the star-shaped neighbours along the columnar assemblies. The TNF acceptors are not nanosegregated from the star-shaped donors, thus the liquid crystal structure converts to a nano-reservoir for TNF (endo-receptor). These host-guest arrangements are confirmed by comprehensive X-ray scattering experiments and solid-state NMR spectroscopy. This results in ordered columnar hexagonal phases at high temperatures, which change to helical columnar mesophases or to columnar soft crystals at room temperature.}, language = {en} } @article{GeigerKerstingSchlegeletal.2022, author = {Geiger, Nina and Kersting, Louise and Schlegel, Jan and Stelz, Linda and F{\"a}hr, Sofie and Diesendorf, Viktoria and Roll, Valeria and Sostmann, Marie and K{\"o}nig, Eva-Maria and Reinhard, Sebastian and Brenner, Daniela and Schneider-Schaulies, Sibylle and Sauer, Markus and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The acid ceramidase is a SARS-CoV-2 host factor}, series = {Cells}, volume = {11}, journal = {Cells}, number = {16}, issn = {2073-4409}, doi = {10.3390/cells11162532}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286105}, year = {2022}, abstract = {SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2-RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor.}, language = {en} } @article{OkudaLenzSeitzetal.2023, author = {Okuda, Takumi and Lenz, Ann-Kathrin and Seitz, Florian and Vogel, J{\"o}rg and H{\"o}bartner, Claudia}, title = {A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells}, series = {Nature Chemistry}, journal = {Nature Chemistry}, doi = {10.1038/s41557-023-01320-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328762}, year = {2023}, abstract = {Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.}, language = {en} } @article{BruennertSeupelGoyaletal.2023, author = {Br{\"u}nnert, Daniela and Seupel, Raina and Goyal, Pankaj and Bach, Matthias and Schraud, Heike and Kirner, Stefanie and K{\"o}ster, Eva and Feineis, Doris and Bargou, Ralf C. and Schlosser, Andreas and Bringmann, Gerhard and Chatterjee, Manik}, title = {Ancistrocladinium A induces apoptosis in proteasome inhibitor-resistant multiple myeloma cells: a promising therapeutic agent candidate}, series = {Pharmaceuticals}, volume = {16}, journal = {Pharmaceuticals}, number = {8}, issn = {1424-8247}, doi = {10.3390/ph16081181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362887}, year = {2023}, abstract = {The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent.}, language = {en} } @article{SchneiderSeebauerBeuerleetal.2024, author = {Schneider, Tilman and Seebauer, Florian and Beuerle, Florian and W{\"u}rthner, Frank}, title = {A monodisperse, end-capped Ru(bda) oligomer with outstanding performance in heterogeneous electrochemical water oxidation}, series = {Advanced Materials Technologies}, volume = {9}, journal = {Advanced Materials Technologies}, number = {11}, issn = {2365-709X}, doi = {10.1002/admt.202301721}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363133}, year = {2024}, abstract = {AbstractWater oxidation catalysis is a key step for sustainable fuel production by water splitting into hydrogen and oxygen. The synthesis of a novel coordination oligomer based on four Ru(bda) (bda = 2,2′-bipyridine-6,6′-dicarboxylate) centers, three 4,4′-bipyridine (4,4′-bpy) linkers, and two 4-picoline (4-pic) end caps is reported. The monodispersity of this tetranuclear compound is characterized by NMR techniques. Heterogeneous electrochemical water oxidation after immobilization on multi-walled carbon nanotubes (MWCNTs) shows catalytic performance unprecedented for this compound class, with a turnover frequency (TOF) of 133 s\(^{-1}\) and a turnover number (TON) of 4.89 × 10\(^6\), at a current density of 43.8 mA cm\(^{-2}\) and a potential of 1.45 V versus normal hydrogen electrode (NHE).}, language = {en} }