@article{SchleierReuschLummeletal.2019, author = {Schleier, Domenik and Reusch, Engelbert and Lummel, Lisa and Hemberger, Patrick and Fischer, Ingo}, title = {Threshold photoelectron spectroscopy of IO and IOH}, series = {ChemPhysChem}, volume = {20}, journal = {ChemPhysChem}, number = {19}, doi = {10.1002/cphc.201900813}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204751}, pages = {2413-2416}, year = {2019}, abstract = {Iodine oxides appear as reactive intermediates in atmospheric chemistry. Here, we investigate IO and HOI by mass-selective threshold photoelectron spectroscopy (ms-TPES), using synchrotron radiation. IO and HOI are generated by photolyzing iodine in the presence of ozone. For both molecules, accurate ionization energies are determined, 9.71±0.02 eV for IO and 9.79±0.02 eV for HOI. The strong spin-spin interaction in the 3Σ- ground state of IO+ leads to an energy splitting into the Ω=0 and Ω=±1 sublevels. Upon ionization, the I-O bond shortens significantly in both molecules; thus, a vibrational progression, assigned to the I-O stretch, is apparent in both spectra.}, language = {en} } @article{SchleierGerlachPratimMukhopadhyayetal.2022, author = {Schleier, Domenik and Gerlach, Marius and Pratim Mukhopadhyay, Deb and Karaev, Emil and Schaffner, Dorothee and Hemberger, Patrick and Fischer, Ingo}, title = {Ammonia Borane, NH\(_{3}\)BH\(_{3}\): A Threshold Photoelectron-Photoion Coincidence Study of a Potential Hydrogen-Storage Material}, series = {Chemistry-A European Journal}, volume = {28}, journal = {Chemistry-A European Journal}, number = {42}, doi = {10.1002/chem.202201378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318895}, year = {2022}, abstract = {We have investigated the photoionization of ammonia borane (AB) and determined adiabatic ionization energy to be 9.26±0.03 eV for the X\(^{+}\) \(^{2}\)E←X \(^{1}\)A\(_{1}\) transition. Although the threshold photoelectron spectrum appears at first glance to be similar to the one of the isosteric ethane, the electronic situation differs markedly, due to different orbital energies. In addition, an appearance energy AE\(_{0K}\)-(NH\(_{3}\)BH\(_{3}\), NH\(_{3}\)BH\(_{2}\)\(^{+}\))= 10.00±0.03 eV has been determined, corresponding to the loss of a hydrogen atom at the BH\(_{3}\)-site. From the data, a 0 K bond dissociation energy for the B-H bond in the cation of 71.5±3 kJ mol\(^{-1}\) was derived, whereas the one in the neutral compound has been estimated to be 419±10 kJ mol\(^{-1}\).}, language = {en} } @unpublished{RoederPetersenIssleretal.2019, author = {R{\"o}der, Anja and Petersen, Jens and Issler, Kevin and Fischer, Ingo and Mitric, Roland and Poisson, Lionel}, title = {Exploring the Excited-State Dynamics of Hydrocarbon Radicals, Biradicals and Carbenes using Time-Resolved Photoelectron Spectroscopy and Field-Induced Surface Hopping Simulations}, series = {The Journal of Physical Chemistry A}, journal = {The Journal of Physical Chemistry A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198734}, year = {2019}, abstract = {Reactive hydrocarbon molecules like radicals, biradicals and carbenes are not only key players in combustion processes and interstellar and atmospheric chemistry, but some of them are also important intermediates in organic synthesis. These systems typically possess many low-lying, strongly coupled electronic states. After light absorption, this leads to rich photodynamics characterized by a complex interplay of nuclear and electronic motion, which is still not comprehensively understood and not easy to investigate both experimentally and theoretically. In order to elucidate trends and contribute to a more general understanding, we here review our recent work on excited-state dynamics of open-shell hydrocarbon species using time-resolved photoelectron spectroscopy and field-induced surface hopping simulations, and report new results on the excited-state dynamics of the tropyl and the 1-methylallyl radical. The different dynamics are compared, and the difficulties and future directions of time-resolved photoelectron spectroscopy and excited state dynamics simulations of open-shell hydrocarbon molecules are discussed.}, language = {en} } @unpublished{RoederHumeniukGiegerichetal.2017, author = {R{\"o}der, Anja and Humeniuk, Alexander and Giegerich, Jens and Fischer, Ingo and Poisson, Lionel and Mitric, Roland}, title = {Femtosecond Time-Resolved Photoelectron Spectroscopy of the Benzyl Radical}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP01437F}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159474}, year = {2017}, abstract = {We present a joint experimental and computational study of the nonradiative deactivation of the benzyl radical, C\(_7\)H\(_7\) after UV excitation. Femtosecond time-resolved photoelectron imaging was applied to investigate the photodynamics of the radical. The experiments were accompanied by excited state dynamics simulations using surface hopping. Benzyl has been excited at 265 nm into the D-band (\(\pi\pi^*\)) and the dynamics was probed using probe wavelengths of 398 nm or 798 nm. With 398 nm probe a single time constant of around 70-80 fs was observed. When the dynamics was probed at 798 nm, a second time constant \(\tau_2\)=1.5 ps was visible. It is assigned to further non-radiative deactivation to the lower-lying D\(_1\)/D\(_2\) states.}, language = {en} } @article{ReuschHolzmeierGerlachetal.2019, author = {Reusch, Engelbert and Holzmeier, Fabian and Gerlach, Marius and Fischer, Ingo and Hemberger, Patrick}, title = {Decomposition of Picolyl Radicals at High Temperature: A Mass Selective Threshold Photoelectron Spectroscopy Study}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {72}, doi = {10.1002/chem.201903937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208132}, pages = {16652-16659}, year = {2019}, abstract = {The reaction products of the picolyl radicals at high temperature were characterized by mass-selective threshold photoelectron spectroscopy in the gas phase. Aminomethylpyridines were pyrolyzed to initially produce picolyl radicals (m /z =92). At higher temperatures further thermal reaction products are generated in the pyrolysis reactor. All compounds were identified by mass-selected threshold photoelectron spectroscopy and several hitherto unexplored reactive molecules were characterized. The mechanism for several dissociation pathways was outlined in computations. The spectrum of m /z =91, resulting from hydrogen loss of picolyl, shows four isomers, two ethynyl pyrroles with adiabatic ionization energies (IE\(_{ad}\)) of 7.99 eV (2-ethynyl-1H -pyrrole) and 8.12 eV (3-ethynyl-1H -pyrrole), and two cyclopentadiene carbonitriles with IE′s of 9.14 eV (cyclopenta-1,3-diene-1-carbonitrile) and 9.25 eV (cyclopenta-1,4-diene-1-carbonitrile). A second consecutive hydrogen loss forms the cyanocyclopentadienyl radical with IE′s of 9.07 eV (T\(_0\)) and 9.21 eV (S\(_1\)). This compound dissociates further to acetylene and the cyanopropynyl radical (IE=9.35 eV). Furthermore, the cyclopentadienyl radical, penta-1,3-diyne, cyclopentadiene and propargyl were identified in the spectra. Computations indicate that dissociation of picolyl proceeds initially via a resonance-stabilized seven-membered ring.}, language = {en} } @article{RamlerPoaterHirschetal.2019, author = {Ramler, Jacqueline and Poater, Jordi and Hirsch, Florian and Ritschel, Benedikt and Fischer, Ingo and Bickelhaupt, F. Matthias and Lichtenberg, Crispin}, title = {Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, doi = {10.1039/C9SC00278B}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181627}, pages = {4169 - 4176}, year = {2019}, abstract = {Major advances in the chemistry of 5th and 6th row heavy p-block element compounds have recently uncovered intriguing reactivity patterns towards small molecules such as H\(_2\), CO\(_2\), and ethylene. However, well-defined, homogeneous insertion reactions with carbon monoxide, one of the benchmark substrates in this field, have not been reported to date. We demonstrate here, that a cationic bismuth amide undergoes facile insertion of CO into the Bi-N bond under mild conditions. This approach grants direct access to the first cationic bismuth carbamoyl species. Its characterization by NMR, IR, and UV/vis spectroscopy, elemental analysis, single-crystal X-ray analysis, cyclic voltammetry, and DFT calculations revealed intriguing properties, such as a reversible electron transfer at the bismuth center and an absorption feature at 353 nm ascribed to a transition involving σ- and π-type orbitals of the bismuth-carbamoyl functionality. A combined experimental and theoretical approach provided insight into the mechanism of CO insertion. The substrate scope could be extended to isonitriles.}, language = {en} } @article{PreitschopfSturmStroganovaetal.2023, author = {Preitschopf, Tobias and Sturm, Floriane and Stroganova, Iuliia and Lemmens, Alexander K. and Rijs, Anouk M. and Fischer, Ingo}, title = {IR/UV Double Resonance Study of the 2-Phenylallyl Radical and its Pyrolysis Products}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {13}, doi = {10.1002/chem.202202943}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312338}, year = {2023}, abstract = {Isolated 2-phenylallyl radicals (2-PA), generated by pyrolysis from a nitrite precursor, have been investigated by IR/UV ion dip spectroscopy using free electron laser radiation. 2-PA is a resonance-stabilized radical that is considered to be involved in the formation of polycyclic aromatic hydrocarbons (PAH) in combustion, but also in interstellar space. The radical is identified based on its gas-phase IR spectrum. Furthermore, a number of bimolecular reaction products are identified, showing that the self-reaction as well as reactions with unimolecular decomposition products of 2-PA form several PAH efficiently. Possible mechanisms are discussed and the chemistry of 2-PA is compared with the one of the related 2-methylallyl and phenylpropargyl radicals.}, language = {en} } @article{OjhaForsterKumaretal.2013, author = {Ojha, Animesh K. and Forster, Stefan and Kumar, Sumeet and Vats, Siddharth and Negi, Segeeta and Fischer, Ingo}, title = {Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains}, series = {Journal of Nanobiotechnology}, volume = {11}, journal = {Journal of Nanobiotechnology}, number = {42}, issn = {1477-3155}, doi = {10.1186/1477-3155-11-42}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122837}, year = {2013}, abstract = {In the present contribution, we describe the synthesis of highly dispersed silver nanorods (NRs) of different aspect ratios using a chemical route. The shape and size of the synthesized NRs were characterized by Transmission Electron Microscopy (TEM) and UV-visible spectroscopy. Longitudinal and transverse absorptions bands confirm the rod type structure. The experimentally recorded UV-visible spectra of NRs solutions were fitted by using an expression of the extinction coefficient for rod like nano structures under the dipole approximation. Simulated and experimentally observed UV-visible spectra were compared to determine the aspect ratios (R) of NRs. The average values of R for NR1, NR2 and NR3 solutions are estimated to be 3.0 +/- 0.1, 1.8 +/- 0.1 and 1.2 +/- 0.1, respectively. These values are in good agreement with those obtained by TEM micrographs. The silver NRs of known aspect ratios are used to study antimicrobial activities against B. subtilis (gram positive) and E. coli (gram negative) microbes. We observed that the NRs of intermediate aspect ratio (R = 1.8) have greater antimicrobial effect against both, B. subtilis (gram positive) and E. coli (gram negative). The NRs of aspect ratio, R = 3.0 has better antimicrobial activities against gram positive than on the gram negative.}, language = {en} } @article{OjhaForsterKumaretal.2013, author = {Ojha, Animesh K. and Forster, Stefan and Kumar, Sumeet and Vats, Siddharth and Negi, Sangeeta and Fischer, Ingo}, title = {Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains}, series = {Journal of Nanobiotechnology}, volume = {11}, journal = {Journal of Nanobiotechnology}, number = {42}, doi = {10.1186/1477-3155-11-42}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132222}, year = {2013}, abstract = {In the present contribution, we describe the synthesis of highly dispersed silver nanorods (NRs) of different aspect ratios using a chemical route. The shape and size of the synthesized NRs were characterized by Transmission Electron Microscopy (TEM) and UV-visible spectroscopy. Longitudinal and transverse absorptions bands confirm the rod type structure. The experimentally recorded UV-visible spectra of NRs solutions were fitted by using an expression of the extinction coefficient for rod like nano structures under the dipole approximation. Simulated and experimentally observed UV-visible spectra were compared to determine the aspect ratios (R) of NRs. The average values of R for NR1, NR2 and NR3 solutions are estimated to be 3.0 ± 0.1, 1.8 ± 0.1 and 1.2 ± 0.1, respectively. These values are in good agreement with those obtained by TEM micrographs. The silver NRs of known aspect ratios are used to study antimicrobial activities against B. subtilis (gram positive) and E. coli (gram negative) microbes. We observed that the NRs of intermediate aspect ratio (R = 1.8) have greater antimicrobial effect against both, B. subtilis (gram positive) and E. coli (gram negative). The NRs of aspect ratio, R = 3.0 has better antimicrobial activities against gram positive than on the gram negative.}, language = {en} } @article{MukhopadhyaySchleierWirsingetal.2020, author = {Mukhopadhyay, Deb Pratim and Schleier, Domenik and Wirsing, Sara and Ramler, Jaqueline and Kaiser, Dustin and Reusch, Engelbert and Hemberger, Patrick and Preitschopf, Tobias and Krummenacher, Ivo and Engels, Bernd and Fischer, Ingo and Lichtenberg, Crispin}, title = {Methylbismuth: an organometallic bismuthinidene biradical}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, number = {29}, doi = {10.1039/D0SC02410D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251657}, pages = {7562-7568}, year = {2020}, abstract = {We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi-C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{-1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me-BiMe\(_2\) bonds could be achieved at moderate temperatures (60-120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions.}, subject = {Photoelektronenspektroskopie}, language = {en} } @unpublished{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159656}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @article{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159514}, pages = {25002-25015}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @article{HocheFlockMiaoetal.2021, author = {Hoche, Joscha and Flock, Marco and Miao, Xincheng and Philipp, Luca Nils and Wenzel, Michael and Fischer, Ingo and Mitric, Roland}, title = {Excimer formation dynamics in the isolated tetracene dimer}, series = {Chemical Science}, volume = {12}, journal = {Chemical Science}, number = {36}, doi = {10.1039/D1SC03214C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251559}, pages = {11965 -- 11975}, year = {2021}, abstract = {The understanding of excimer formation and its interplay with the singlet-correlated triplet pair state \(^{1}\)(TT) is of high significance for the development of efficient organic electronics. Here, we study the photoinduced dynamics of the tetracene dimer in the gas phase by time-resolved photoionisation and photoion imaging experiments as well as nonadiabatic dynamics simulations in order to obtain mechanistic insight into the excimer formation dynamics. The experiments are performed using a picosecond laser system for excitation into the S\(_{2}\) state and reveal a biexponential time dependence. The time constants, obtained as a function of excess energy, lie in the range between ≈10 ps and 100 ps and are assigned to the relaxation of the excimer on the S\(_{1}\) surface and to its deactivation to the ground state. Simulations of the quantum-classical photodynamics are carried out in the frame of the semi-empirical CISD and TD-lc-DFTB methods. Both theoretical approaches reveal a dominating relaxation pathway that is characterised by the formation of a perfectly stacked excimer. TD-lc-DFTB simulations have also uncovered a second relaxation channel into a less stable dimer conformation in the S\(_{1}\) state. Both methods have consistently shown that the electronic and geometric relaxation to the excimer state is completed in less than 10 ps. The inclusion of doubly excited states in the CISD dynamics and their diabatisation further allowed to observe a transient population of the \(^{1}\)(TT) state, which, however, gets depopulated on a timescale of 8 ps, leading finally to the trapping in the excimer minimum.}, language = {en} } @article{HirschPachnerFischeretal.2020, author = {Hirsch, Florian and Pachner, Kai and Fischer, Ingo and Issler, Kevin and Petersen, Jens and Mitric, Roland and Bakels, Sjors and Rijs, Anouk M.}, title = {Do Xylylenes Isomerize in Pyrolysis?}, series = {ChemPhysChem}, volume = {21}, journal = {ChemPhysChem}, number = {14}, doi = {10.1002/cphc.202000317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218316}, pages = {1515 -- 1518}, year = {2020}, abstract = {We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para-xylylene  was recorded, whereas ortho- and meta-xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength  for all molecules were carried out and provde an explanation for the observation of the isomerization products.}, language = {en} } @article{GerlachMonningerSchleieretal.2021, author = {Gerlach, Marius and Monninger, Sophie and Schleier, Domenik and Hemberger, Patrick and Goettel, James T. and Braunschweig, Holger and Fischer, Ingo}, title = {Photoelectron Photoion Coincidence Spectroscopy of NCl\(_{3}\) and NCl\(_{2}\)}, series = {ChemPhysChem}, volume = {22}, journal = {ChemPhysChem}, number = {21}, doi = {10.1002/cphc.202100537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257322}, pages = {2164-2167}, year = {2021}, abstract = {We investigate NCl\(_{3}\) and the NCl\(_{2}\) radical by photoelectron-photoion coincidence spectroscopy using synchrotron radiation. The mass selected threshold photoelectron spectrum (ms-TPES) of NCl\(_{3}\) is broad and unstructured due to the large geometry change. An ionization energy of 9.7±0.1 eV is estimated from the spectrum and supported by computations. NCl2 is generated by photolysis at 213 nm from NCl\(_{3}\) and its ms-TPES shows an extended vibrational progression with a 90 meV spacing that is assigned to the symmetric N-Cl stretching mode in the cation. An adiabatic ionization energy of 9.94 ± 0.02 eV is determined.}, language = {en} } @article{FischerHembergerBodietal.2013, author = {Fischer, Kathrin H. and Hemberger, Patrick and Bodi, Andras and Fischer, Ingo}, title = {Photoionisation of the tropyl radical}, series = {Beilstein Journal of Organic Chemistry}, volume = {9}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.9.77}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128652}, pages = {681-688}, year = {2013}, abstract = {We present a study on the photoionisation of the cycloheptatrienyl (tropyl) radical, \(C_7H_7\), using tunable vacuum ultraviolet synchrotron radiation. Tropyl is generated by flash pyrolysis from bitropyl. Ions and electrons are detected in coincidence, permitting us to record mass-selected photoelectron spectra. The threshold photoelectron spectrum of tropyl, corresponding to the \(X^{+1}A1' ← X^2E_2"\) transition, reveals an ionisation energy of 6.23 ± 0.02 eV, in good agreement with Rydberg extrapolations, but slightly lower than the value derived from earlier photoelectron spectra. Several vibrations can be resolved and are reassigned to the C-C stretch mode \(ν_{16}^+\) and to a combination of \(ν_{16}^+\) with the ring breathing mode \(ν_2^+\). Above 10.55 eV dissociative photoionisation of tropyl is observed, leading to the formation of \(C_5H_5^+\) and \(C_2H_2\).}, language = {en} } @article{AhmedOjhaHirschetal.2017, author = {Ahmed, Bilal and Ojha, Animesh K. and Hirsch, Florian and Fischer, Ingo and Patrice, Donfack and Materny, Arnulf}, title = {Tailoring of enhanced interfacial polarization in WO\(_3\) nanorods grown over reduced graphene oxide synthesized by a one-step hydrothermal method}, series = {RSC Advances}, volume = {7}, journal = {RSC Advances}, number = {23}, doi = {10.1039/c7ra00730b}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181829}, pages = {13985-13996}, year = {2017}, abstract = {In the present report, well-defined WO3 nanorods (NRs) and a rGO-WO\(_3\) composite were successfully synthesized using a one-pot hydrothermal method. The crystal phase, structural morphology, shape, and size of the as-synthesized samples were studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The optical properties of the synthesized samples were investigated by Raman, ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Raman spectroscopy and TEM results validate the formation of WO\(_3\) (NRs) on the rGO sheet. The value of the dielectric constant (ε′) of WO3 NRs and rGO-WO\(_3\) composite is decreased with an increase in frequency. At low frequency (2.5 to 3.5 Hz), the value of ε′ for the rGO-WO3 composite is greater than that of pure WO\(_3\) NRs. This could be due to the fact that the induced charges follow the ac signal. However, at higher frequency (3.4 to 6.0), the value of ε′ for the rGO-WO\(_3\) composite is less compared to that of the pure WO3 NRs. The overall decrease in the value of ε′ could be due to the occurrence of a polarization process at the interface of the rGO sheet and WO3 NRs. Enhanced interfacial polarization in the rGO-WO\(_3\) composite is observed, which may be attributed to the presence of polar functional groups on the rGO sheet. These functional groups trap charge carriers at the interface, resulting in an enhancement of the interfacial polarization. The value of the dielectric modulus is also calculated to further confirm this enhancement. The values of the ac conductivity of the WO\(_3\) NRs and rGO-WO\(_3\) composite were calculated as a function of the frequency. The greater value of the ac conductivity in the rGO-WO\(_3\) composite compared to that of the WO\(_3\) NRs confirms the restoration of the sp:\(^{++}\) network during the in situ synthesis of the rGO-WO\(_3\) composite, which is well supported by the results obtained by Raman spectroscopy.}, language = {en} }