@phdthesis{Link2020, author = {Link, Yasmin}, title = {3D-Druck mikrofluidischer Systeme mittels Stereolithografie}, doi = {10.25972/OPUS-21152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211529}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Der 3D-Druck ist ein elementarer Bestandteil der Biofabrikation. Beispielsweise wird mittels Biotinten und einem geeigneten 3D-Druckverfahren Schicht f{\"u}r Schicht eine Geometrie aufgebaut. Durch die Gestaltung von mikrofluidischen Druckk{\"o}pfen wird eine M{\"o}glichkeit geschaffen multiple Materialans{\"a}tze im Druckkopf zu vermischen und so in einem bestimmten Mischungsverh{\"a}ltnis zu drucken. Mit dem DLP-SLA-Drucker Vida HD Crown and Bridge (EnvisionTEC) und dem Harz E-Shell 600 (EnvisionTEC) wurden zun{\"a}chst die Aufl{\"o}sungsgrenzen des Druckers ermittelt sowie Komponenten f{\"u}r die Realisierung eines mikrofluidischen Druckkopfes prozessiert. Bei den Komponenten handelt es sich zum einen um Geometrien, die beispielsweise als Mischeinheit im Kanal dienen k{\"o}nnen und des Weiteren um senkrechte Kan{\"a}le die Biotinten f{\"u}hren k{\"o}nnen, sowie um Kan{\"a}le, die als Zul{\"a}ufe f{\"u}r den Hauptkanal des mikrofluidischen Druckkopfs dienen k{\"o}nnen. Die Eigenschaften und die technische Realisierbarkeit der gedruckten Objekte wurden eruiert. Dabei wurden die jeweiligen Geometrien und Kanal{\"o}ffnungen vermessen, große Aspektverh{\"a}ltnisse der Geometrien untersucht und die Durchg{\"a}ngigkeit der Kan{\"a}le gepr{\"u}ft. Zuk{\"u}nftig k{\"o}nnen die prozessierten Komponenten f{\"u}r einen mikrofluidischen Druckkopf variabel kombiniert werden und auf dieser Basis weiterf{\"u}hrende Experimente stattfinden.}, subject = {3D-Druck}, language = {de} } @phdthesis{Kreczy2020, author = {Kreczy, Dorothea}, title = {Untersuchung des in vivo Einwachsverhaltens von Zementgranulaten und -pasten aus resorbierbaren Calcium-dotierten Magnesiumphosphat-Phasen}, doi = {10.25972/OPUS-20551}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205510}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In der vorliegenden Arbeit wurden unterschiedliche zementbasierte Knochenersatzmaterialien hinsichtlich ihres Potentials zur Behandlung kn{\"o}cherner Defekte in vivo untersucht. Zwei verschiedene Calcium-dotierten Magnesiumphosphat Zementformulierungen (CMPC) wurden mit einem Referenzmaterial aus Calciumphosphat Zement (CPC) verglichen. Dazu wurden auf Basis von CMPC pr{\"a}fabrizierte, injizierbare Pasten bzw. sph{\"a}rische Granulate hergestellt und anhand von orthotopen, potenziell kraftbelasteten Defekten in Kaninchenfemora getestet. Zentrales Ziel hierbei war es, herauszufinden, wie sich die Materialien in Defektsituationen mit Hartgewebekontakt biologisch verhalten und degradieren bzw. in Knochen umbauen. Nach einer Liegedauer von 6 bzw. 12 Wochen wurden die Knochenneubildung und die Degradation der Materialien mittels Histomorphometrie analysiert. Alle Materialien waren biokompatibel und f{\"u}hrten zur Bildung von neuem Knochen. Der CMPC-Zement zeigte im Vergleich zu CPC einen beschleunigten Abbau, w{\"a}hrend sich am Referenzmaterial mehr mineralisierter Knochen bildete. Die untersuchten Calcium-dotierten Struvit-bildenden Magnesiumphosphatzemente erwiesen sich als biokompatibel, gut resorbierbar und stellen mit ihrer F{\"a}higkeit zur Knochenbildung ein vielversprechendes Knochenersatzmaterial dar.}, subject = {Knochenzement}, language = {de} } @phdthesis{MeiningergebChrist2018, author = {Meininger [geb. Christ], Susanne}, title = {Processing of calcium and magnesium phosphate cements for bone substitution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The main focus of this thesis was the processing of different calcium and magnesium phosphate cements together with an optimization of mechanical and biological properties. Therefore, different manufacturing techniques like 3D powder printing and centrifugally casting were employed for the fabrication of reinforced or biomedically improved implants. One of the main problems during 3D powder printing is the low green strength of many materials, especially when they are only physically bonded and do not undergo a setting reaction. Such materials need post-treatments like sintering to exhibit their full mechanical performance. However, the green bodies have to be removed from the printer requiring a certain stability. With the help of fiber reinforcement, the green strength of printed gypsum samples could be increased by the addition of polymeric and glass fibers within the printing process. The results showed that fiber reinforcement during 3D powder printing is possible and opens up diverse opportunities to enhance the damage tolerance of green bodies as well as directly printed samples. The transfer to biomedically relevant materials like calcium and magnesium phosphate cements and biocompatible fibers would be the next step towards reinforced patient-specific implants. In a second approach, centrifugally casting derived from construction industries was established for the fabrication of hollow bioceramic cylinders. The aim was the replacement of the diaphysis of long bones, which exhibit a tubular structure with a high density of cortical bone on the fringe. By centrifugation, cement slurries with and without additives could be fabricated to tubes. As a first establishment, the processing parameters regarding the material (e.g. cement composition) as well as the set-up (e.g. rotation times) had to be optimized for each system. In respect of mechanics, such tubes can keep up with 3D powder printed tubes, although the mechanical performance of 3D printed tubes is strongly dependent on printing directions. Additionally, some material compositions like dual setting systems cannot be fabricated by 3D powder printing. Therefore, a transfer of such techniques to centrifugally casting enabled the fabrication of tubular structures with an extremely high damage tolerance due to high deformation ability. A similar effect was achieved by fiber (mesh) addition, as already shown for 3D powder printing. Another possibility of centrifugally casting is the combination of different materials resulting in graded structures to adjust implant degradation or bone formation. This became especially apparent for the incorporation of the antibiotic vancomycin, which is used for the treatment of bacterial implant infections. A long-term release could be achieved by the entrapment of the drug between magnesium phosphate cement layers. Therefore, the release of the drug could be regulated by the degradation of the outer shell, which supports the release into an acidic bacterial environment. The centrifugally casting technique exhibited to be a versatile tool for numerous materials and applications including the fabrication of non-centrosymmetric patient-specific implants for the reconstruction of human long bones. The third project aimed to manufacture strontium-substituted magnesium phosphate implants with improved biological behavior by 3D powder printing. As the promoting effect of strontium on bone formation and the inhibitory impact on bone resorption is already well investigated, the incorporation of strontium into a degradable magnesium phosphate cement promised a fast integration and replacement of the implant. Porous structures were obtained with a high pore interconnectivity that is favorable for cell invasion and bone ingrowth. Despite the porosity, the mechanical performance was comparable to pure magnesium phosphate cement with a high reliability of the printed samples as quantitatively determined by Weibull statistics. However, the biological testing was impeded by the high degradation rate and the relating ion release. The high release of phosphate ions into surrounding media and the detachment of cement particles from the surface inhibited osteoblast growth and activity. To distinguish those two effects, a direct and indirect cell seeding is always required for degradable materials. Furthermore, the high phosphate release compared to the strontium release has to be managed during degradation such that the adverse effect of phosphate ions does not overwhelm the bone promoting effect of the strontium ions. The manufacturing techniques presented in this thesis together with the material property improvement offer a diverse tool box for the fabrication of patient-specific implants. This includes not just the individual implant shape but also the application like bone growth promotion, damage tolerance and local drug delivery. Therefore, this can act as the basis for further research on specific medical indications.}, subject = {Calciumphosphate}, language = {en} } @phdthesis{Ruecker2017, author = {R{\"u}cker, Anja}, title = {Entwicklung eines photochemisch vernetzbaren, methacrylat- und isocyanathaltigen Knochenklebers mit degradierbaren keramischen F{\"u}llstoffen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154473}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Bisher getestete Knochenkleber zeigen h{\"a}ufig geringe Klebeeigenschaften auf Knochen bei Zutritt von Feuchtigkeit. Gegenstand dieser Arbeit war es, die Haftf{\"a}higkeit im feuchten Milieu zu verbessern. Hierf{\"u}r wurde der Einfluss sternf{\"o}rmiger, mit Isocyanaten funktionalisierter Poly(ethylenglykol) Molek{\"u}le (NCO-sP(EO-stat-PO)) auf die Klebefestigkeit und Alterungsbest{\"a}ndigkeit einer photopolymerisierbaren Poly(ethylenglykol)dimethacrylat-Basis (PEGDMA) untersucht. Die Polymerisation mittels energiereicher Strahlung erlaubt hohe Reaktionsraten bei K{\"o}rpertemperatur sowie zeitliche und {\"o}rtliche Kontrolle {\"u}ber die Polymerisationsreaktion. Durch den Zusatz degradierbarer, keramischer F{\"u}llstoffe auf Calciumsulfat- und Magnesiumphosphat-Basis in die Matrix sollten durch L{\"o}sungsprozesse Poren geschaffen werden. Diese k{\"o}nnten das Einwachsen neuer Knochensubstanz in das ausgeh{\"a}rtete Material erm{\"o}glichen. Die Ver{\"a}nderungen der kristallinen Strukturen wurden mittels R{\"o}ntgendiffraktometrie beobachtet. Zudem wurden die Proben infrarotspektroskopisch und mikroskopisch untersucht. Die Klebefestigkeit auf kortikalem Rinderknochen im Abscherversuch ebenso wie die Biegefestigkeit vor und nach Lagerung in feuchter Umgebung wurde unter Variation des NCO-sP(EO-stat-PO)-Gehaltes ermittelt. Anschließend sollten die mikroskopische Analyse und energiedispersive R{\"o}ntgenspektrometrie (EDX) Aufschluss {\"u}ber das Bruchverhalten des Materials beim Klebeversuch geben. Es konnte gezeigt werden, dass durch die Zugabe von 20 bis 40 Gew.-\% NCO sP(EO-stat-PO) zur Matrix die Klebefestigkeit auf Knochen von initial etwa 0,15 bis 0,2 MPa auf etwa 0,3 bis 0,5 MPa gesteigert werden kann. W{\"a}hrend alle Referenzproben ihre Haftung an Knochen innerhalb von weniger als 24 Stunden verloren, zeigten Proben mit NCO sP(EO-stat-PO) auch nach 7-t{\"a}giger Lagerung noch Festigkeiten von 0,18 bis 0,25 MPa. Die h{\"o}chste Festigkeit nach 7 Tagen war bei Proben mit dem F{\"u}llstoff Newberyit und einem NCO-sP(EO-stat-PO)-Anteil von 40 Gew.-\% zu verzeichnen. Diese Proben wiesen auch in der mikroskopischen Analyse und im EDX eindeutig ein rein koh{\"a}sives Versagen auf. 20\%-ige Proben zeigten zumindest in geringem Maße auch adh{\"a}sives Versagen. Die 3-Punkt Biegefestigkeit lag initial bei 3,5 bis 5,5 MPa. Durch die Lagerung in PBS sank die Festigkeit auf ~1 MPa. Die Zugabe von NCO-sP(EO-stat-PO) und die Art des eingesetzten F{\"u}llstoffes hatten kaum einen Einfluss auf diese.}, subject = {Isocyanate}, language = {de} } @phdthesis{Stengele2017, author = {Stengele, Anja}, title = {Systematische Analyse der Abbindereaktion von Magnesiumphosphat mit Polyacryls{\"a}ure im Vergleich zu klassischen w{\"a}ssrigen Zementsystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153871}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Gegenstand der vorliegenden Arbeit war eine systematische Analyse der Ver-arbeitbarkeit, Abbindedauer, pH Wert- und Temperatur-Verl{\"a}ufe w{\"a}hrend des Abbindens und der Eigenschaften der ausgeh{\"a}rteten Zementpaste, welche je-weils aus Farringtonit (Mg3(PO4)2) unterschiedlicher Reaktivit{\"a}t bestand und mit Diammoniumhydrogenphosphat und Polyacryls{\"a}ure zur Reaktion gebracht und konventionellen w{\"a}ssrigen Zementsystemen gegen{\"u}bergestellt wurde. Ein besonderer Fokus wurde hierbei auf die Beurteilbarkeit der Eignung dieser Zementsysteme als injizierbare Zementpasten in m{\"o}glicherweise lasttragenden Bereichen gelegt. Eine Reaktivierung von Farringtonit und anschließendes Ab-binden mit Wasser konnte durch Hochenergiemahlung f{\"u}r 2 h bis 24 h erzielt werden. Mechanisch aktiviertes Farringtonit mit Polyacryls{\"a}ure (100.000 g/mol) bzw. kurzzeitig gemahlenes Farringtonit mit h{\"o}her molekulargewichtiger Polyac-ryls{\"a}ure f{\"u}hrte auf Grund der zum Teil summierten Reaktivit{\"a}t in der sauren Umgebung der Polyacryls{\"a}ure zu einer schlechten Verarbeitbarkeit und unzu-reichenden Druckfestigkeiten. Um chelatisiertes Farringtonit mit angemessenen Festigkeiten zu erhalten, zeigte sich die Anwesenheit von Ammoniumionen als vielversprechende Strategie. Als hydratisierte Produkte wurden je nach Formu-lierung Struvit (MgNH4PO4·6H2O), Newberyit (MgHPO4·3H2O) oder Mag-nesiumphosphathydrat (Mg3(PO4)2·22H2O) gewonnen. Besonders die Kombina-tion von kurzzeitig gemahlenem Farringtonit mit 17,5 Gew.\%iger Poly-acryls{\"a}ure L{\"o}sung und 23,1 Gew.\%iger Diammoniumhydrogenphos-phat L{\"o}sung mit einem Pulver-zu-Fl{\"u}ssigkeitsverh{\"a}ltnis von 1,5 g/ml f{\"u}hrte zu Zementpasten, die hinsichtlich ihres Abbindeverhaltens und der mechanischen Eigenschaften denen der Einzelbestandteile {\"u}berlegen waren. Die entwickelten Zementsysteme zeigten 60 min nach Beginn des Abbindevor-gangs einen pH-Wert von 4,7 bis 6,4 und Temperaturmaxima von 28,5 °C bis 52 °C je nach Zusammensetzung. Der Mischzement, f{\"u}r welchen maximale Druckfestigkeiten von 15,0±4,1 MPa gemessen wurden, zeigte ein deutlich we-niger spr{\"o}des Bruchverhalten im Vergleich zu den reinen Verd{\"u}nnungen. Da der spr{\"o}de Charakter klassischer mineralische Knochenzemente einen limitie-renden Faktor f{\"u}r die Anwendung in lasttragenden Bereichen darstellt, kann dies als deutliche Verbesserung der mechanischen Eigenschaften beurteilt wer-den. Immerhin lagen die erzielten Festigkeitswerte in der Gr{\"o}ßenordnung der humanen Spongiosa. Besonders hervorzuheben ist außerdem der synergisti-sche Effekt, welcher bei Zementformulierungen aus kurzzeitig gemahlenem Farringtonit mit 17,5 Gew.\%iger Polyacryls{\"a}ure L{\"o}sung und 23,1 Gew.\%iger Diammoniumhydrogenphosphat L{\"o}sung mit einem Pulver-zu-Fl{\"u}ssigkeitsver-h{\"a}ltnis von 1,5 g/ml beobachtet werden konnte. Diese Formulierung wies bis zu vierfach h{\"o}here Festigkeitswerte als die Einzelbestandteile auf. Somit bildet das entwickelte Mischzement-System eine gute Basis f{\"u}r weitere Entwicklungen hin zu mechanisch lasttragenden Defekten.}, subject = {Magnesiumphosphate}, language = {de} } @phdthesis{Zipplies2018, author = {Zipplies, Theresa Leonora}, title = {Fluoreszenzmarkierte Nanogele auf Poly(glycidol)-Basis - Herstellung, Charakterisierung und deren Interaktion in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Ziel dieser Arbeit war die Herstellung fluoreszent markierter Pr{\"a}polymere sowie deren Optimierung, die kontrollierte und reproduzierbare Synthese von redox-sensitiven und nicht redox-sensitiven NG mit und ohne Fluoreszenzmarkierung in einem durchschnittlichen Partikelgr{\"o}ßenbereich von 150 - 300 nm und mit einer Konzentration > 10*10 Partikel/ml, die Charakterisierung der NG, ihre Untersuchung bez{\"u}glich ihrer Stabilit{\"a}t und des Assoziationsverhaltens zu BSA sowie die Erlangung von Erkenntnissen bez{\"u}glich des Aufnahmemechanismus der NG in Abh{\"a}ngigkeit vom Transportpeptid Tat. Abschließend kann zusammenfassend gesagt werden: 1. Das große Potential von PG-basierten NG f{\"u}r biologische bzw. medizinische Einsatzgebiete konnte weiter untermauert werden. 2. Das mit Cy5-Alkin markierte PG PG-SH-Cy5 erscheint aufgrund des relativ hohen erreichten Markierungsgrades bei der Herstellung als aussichtsreichster Kandidat f{\"u}r weitere Untersuchungen. Diese Umsetzung besitzt noch Optimierungspotentiale bez{\"u}glich einer Verringerung des Polymerverlusts bei der Aufarbeitung, des erreichbaren Markierungsgrades und der Markierungsausbeute. M{\"o}glichkeiten, dies zu erreichen, wurden diskutiert. 3. Klare Aussagen {\"u}ber den Einfluss des esterhaltigen bzw. esterfreien Ausgangspolymers PG-SH auf die Konzentration und die Partikelgr{\"o}ße konnten aufgrund einer nicht ausreichenden Datenlage nicht getroffen werden. 4. Die esterhaltigen PG-SH-Molek{\"u}le erscheinen aufgrund ihrer Labilit{\"a}t gegen{\"u}ber Hydrolyse f{\"u}r die NP-Synthese weniger geeignet (geringere Stabilit{\"a}t). 5. Die Charakterisierung der aus den markierten und unmarkierten Ausgangspolymeren hergestellten NG, welche teilweise zus{\"a}tzlich mit dem Transportpeptid Tat funktionalisiert wurden, erfolgte mittels NTA und zeigt f{\"u}r die meisten Spezies relativ schmale, gut definierte, monomodale Gr{\"o}ßenverteilungen mit einem Maximum um 100-200 nm im Bereich von ca. 40 - max. 400 nm mit Partikelkonzentrationen im Bereich von 1010 - 1011 Partikeln/ml. 6. Insgesamt konnte gezeigt werden, dass der untersuchte, von PG-SH abgeleitete NP-Typ (z. B. NG_3, redox-sensitiv unmarkiert) aufgrund seiner Einheitlichkeit, Partikelgr{\"o}ße und der Reproduzierbarkeit der Herstellung als gut geeignet f{\"u}r den geplanten Einsatz in biologischen Systemen erscheint. Von den weiter derivatisierten NG erscheinen die folgenden aufgrund der oben geschilderten Kriterien als besonders geeignet f{\"u}r den geplanten Einsatz in biologischen Systemen und weiterer Untersuchungen wert: NG680_(TAT)_1-4 (redox-sensitiv, markiert), NGCy5_(TAT)_1 (redox-sensitiv, markiert), NG_MA_2 (nicht redox-sensitiv, unmarkiert), NGCy7_MA_1 (nicht redox-sensitiv, markiert). Aufgrund des relativ hohen erreichbaren Markierungsgrades bei der Markierung der Ausgangspolymere erscheinen die mit Cy5-markierten Verbindungen als besonders vorteilhaft. 7. Die esterfreien, redox-sensitiven NP erwiesen sich bei 14-t{\"a}giger Lagerung unter physiologischen Bedingungen als stabil. Ihre Konzentration nahm {\"u}ber 14 Tage um ca. 60 \% vom Ausgangswert ab. Gleichzeitig nahm der Teilchendurchmesser w{\"a}hrend des Beobachtungszeitraums um ca. 25 \% zu. Die Abnahme der Teilchenzahl ist - zumindest teilweise - durch eine Vergr{\"o}ßerung des mittleren Teilchendurchmessers und m{\"o}gliche Adsorptionseffekte an die Gef{\"a}ßw{\"a}nde des Versuchsaufbaus zu erkl{\"a}ren. 8. Die Konzentration der esterfreien, nicht redox-sensitiven NP verringert sich bei 14-t{\"a}giger Inkubation unter physiologischen Bedingungen deutlich auf ca. 10 \% des Ausgangswerts. Der mittlere Durchmesser der Partikel bleibt innerhalb des Untersuchungszeitraums innerhalb der Fehlergrenzen konstant. Die starke Abnahme der Partikelkonzentration ist wahrscheinlich auf die Hydrolyse des verwendeten esterhaltigen Crosslinkers PEGDA zur{\"u}ckzuf{\"u}hren. Desweiteren sind Adsorptionsph{\"a}nomene an Oberfl{\"a}chen des Versuchsaufbaus nicht auszuschließen. Insgesamt hervorzuheben ist die wesentlich h{\"o}here Stabili{\"a}t der redox-sensitiven NP unter den Versuchsbedingungen. Diese Substanzklasse sollte daher weiter verfolgt werden. 9. Es wurde gezeigt, dass sowohl die NG, die das Aufnahmeprotein Tat enthalten, als auch die NG ohne Tat mit Fluoreszenz-markiertem BSA (8,3 µg/ml) wechselwirken und zusammen mit diesem bei der Zentrifugation abgeschieden werden. {\"U}ber die Art der Wechselwirkung kann keine Aussage getroffen werden. 10. Durch in vitro Zellaufnahmeuntersuchungen an Hela-Zellen konnte gezeigt werden, dass die mit Tat funktionalisierten, redox-sensitiven, Fluoreszenz-markierten NP von den Zellen aufgenommen werden. Die Aufnahme erfolgt {\"u}ber eine deutlich erkennbare Vesikelbildung, die an der Plasmamembran verst{\"a}rkt beobachtet werden kann. Im Gegensatz hierzu konnte bei den nicht mit Tat funktionalisierten NP keine vergleichbare in vitro Zellaufnahme beobachtet werden. Die Ergebnisse dieser Arbeit best{\"a}tigen insgesamt das große Potential der von Thiol-funktionalisierten PG abgeleiteten NG f{\"u}r die medizinische Forschung und zuk{\"u}nftige Anwendungen in der Diagnostik und Therapie. Es wird eine Reihe von Ansatzpunkten aufgezeigt, auf deren Basis weitere vertiefende Untersuchungen zur Charakterisierung und Optimierung sowie zu zuk{\"u}nftigen nutzbringenden Anwendungen vorgenommen werden sollten.}, subject = {Nanoparticles}, language = {de} } @phdthesis{Hochleitner2018, author = {Hochleitner, Gernot}, title = {Advancing melt electrospinning writing for fabrication of biomimetic structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162197}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In order to mimic the extracellular matrix for tissue engineering, recent research approaches often involve 3D printing or electrospinning of fibres to scaffolds as cell carrier material. Within this thesis, a micron fibre printing process, called melt electrospinning writing (MEW), combining both additive manufacturing and electrospinning, has been investigated and improved. Thus, a unique device was developed for accurate process control and manufacturing of high quality constructs. Thereby, different studies could be conducted in order to understand the electrohydrodynamic printing behaviour of different medically relevant thermoplastics as well as to characterise the influence of MEW on the resulting scaffold performance. For reproducible scaffold printing, a commonly occurring processing instability was investigated and defined as pulsing, or in extreme cases as long beading. Here, processing analysis could be performed with the aim to overcome those instabilities and prevent the resulting manufacturing issues. Two different biocompatible polymers were utilised for this study: poly(ε-caprolactone) (PCL) as the only material available for MEW until then and poly(2-ethyl-2-oxazoline) for the first time. A hypothesis including the dependency of pulsing regarding involved mass flows regulated by the feeding pressure and the electrical field strength could be presented. Further, a guide via fibre diameter quantification was established to assess and accomplish high quality printing of scaffolds for subsequent research tasks. By following a combined approach including small sized spinnerets, small flow rates and high field strengths, PCL fibres with submicron-sized fibre diameters (f{\O} = 817 ± 165 nm) were deposited to defined scaffolds. The resulting material characteristics could be investigated regarding molecular orientation and morphological aspects. Thereby, an alignment and isotropic crystallinity was observed that can be attributed to the distinct acceleration of the solidifying jet in the electrical field and by the collector uptake. Resulting submicron fibres formed accurate but mechanically sensitive structures requiring further preparation for a suitable use in cell biology. To overcome this handling issue, a coating procedure, by using hydrophilic and cross-linkable star-shaped molecules for preparing fibre adhesive but cell repellent collector surfaces, was used. Printing PCL fibre patterns below the critical translation speed (CTS) revealed the opportunity to manufacture sinusoidal shaped fibres analogously to those observed using purely viscous fluids falling on a moving belt. No significant influence of the high voltage field during MEW processing could be observed on the buckling phenomenon. A study on the sinusoidal geometry revealed increasing peak-to-peak values and decreasing wavelengths as a function of decreasing collector speeds sc between CTS > sc ≥ 2/3 CTS independent of feeding pressures. Resulting scaffolds printed at 100 \%, 90 \%, 80 \% and 70 \% of CTS exhibited significantly different tensile properties, foremost regarding Young's moduli (E = 42 ± 7 MPa to 173 ± 22 MPa at 1 - 3 \% strain). As known from literature, a changed morphology and mechanical environment can impact cell performance substantially leading to a new opportunity of tailoring TE scaffolds. Further, poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) as well as poly(ε-caprolactone-co-acryloyl carbonate) (PCLAC) copolymers could be used for MEW printing. Those exhibit the opportunity for UV-initiated radical cross-linking in a post-processing step leading to significantly increased mechanical characteristics. Here, single fibres of the polymer composed of 90 mol.\% CL and 10 mol.\% AC showed a considerable maximum tensile strength of σmax = 53 ± 16 MPa. Furthermore, sinusoidal meanders made of PCLAC yielded a specific tensile stress-strain characteristic mimicking the qualitative behaviour of tendons or ligaments. Cell viability by L929 murine fibroblasts and live/dead staining with human mesenchymal stem cells revealed a promising biomaterial behaviour pointing out MEW printed PCLAC scaffolds as promising choice for medical repair of load-bearing soft tissue. Indeed, one apparent drawback, the small throughput similar to other AM methods, may still prevent MEW's industrial application yet. However, ongoing research focusses on enlargement of manufacturing speed with the clear perspective of relevant improvement. Thereby, the utilisation of large spinneret sizes may enable printing of high volume rates, while downsizing the resulting fibre diameter via electrical field and mechanical stretching by the collector uptake. Using this approach, limitations of FDM by small nozzle sizes could be overcome. Thinking visionary, such printing devices could be placed in hospitals for patient-specific printing-on-demand therapies one day. Taking the evolved high deposition precision combined with the unique small fibre diameter sizes into account, technical processing of high performance membranes, filters or functional surface finishes also stands to reason.}, subject = {scaffold}, language = {en} } @phdthesis{Renner2018, author = {Renner, Tobias}, title = {In vitro Testverfahren zur Qualifizierung von Knochenklebstoffen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Knochenklebstoffe, welche eine unkonventionelle M{\"o}glichkeit im Bereich der chirurgischen Frakturversorgung darstellen, m{\"u}ssen bereits in vitro eine Reihe an klinischen Anforderungen erf{\"u}llen. Hinsichtlich entsprechender Pr{\"u}fverfahren wurde noch keine Normierungsarbeit geleistet, weswegen Ergebnisse verschiedener Arbeiten schwierig vergleichbar sind. Ziel der Arbeit war es daher Pr{\"u}fverfahren vorzustellen, welche die Besonderheiten des „Werkstoffes Knochen" ber{\"u}cksichtigen. In diesem Rahmen werden zwei neuartigen Klebstoffsysteme, ein in situ h{\"a}rtender Knochenzement aus Trimagnesiumphosphat, Magnesiumoxid und organischer Phytins{\"a}ure und ein lichth{\"a}rtender Knochenklebstoff aus Polyethylenglycoldimethacrylat, NCO-sP(EO-stat-PO), Campherchinon und anorganischen Newberyit-F{\"u}llern, vorgestellt. Neben diesen sind drei kommerziell erh{\"a}ltliche Klebstoffe Gegenstand der Untersuchung. Dies sind zum einen Histoacryl® und TruGlue® Gewebekleber, zwei Klebstoffe auf Cyanoacrylat-Basis mit unterschiedlich langer Alkyl-Seitenkette, zum anderen Bioglue®, ein Gewebekleber aus Albumin und Glutaraldehyd. Bei den Klebstoffen wurde die Zug- und Scherfestigkeit unter Einfluss der physiologischen Klebstoffalterung, der Variation der Klebefugenbreite, der Variation von komplement{\"a}ren F{\"u}geteilen, sowie F{\"u}geteiloberfl{\"a}chen inspiziert. Makro- und mikroskopische, sowie elektronenmikroskopischen Untersuchung der Bruchfl{\"a}chen auf mikrostrukturelle Besonderheiten und Versagemechanismus wurden angestellt. Die neuartigen Klebstoffsysteme unterliegen zwar den konventionellen Cyanoacrylaten hinsichtlich mechanischer Parameter, weisen aber dennoch ad{\"a}quate Klebefestigkeiten auf bei zugleich zahlreichen Vorteilen gegen{\"u}ber konventionellen Systemen im Umgang mit Knochen. Gerade der Magnesiumphosphatzement scheint auf Grund mechanischer Parameter und Vorz{\"u}gen wie der guten Biokompatibilit{\"a}t und biologischen Abbaubarkeit, Osteoinduktivit{\"a}t, Osteokonduktivit{\"a}t, der einfachen Applizierbarkeit, einem hohen Kosten-Nutzen-Faktor oder dem g{\"u}nstigen Verhalten in w{\"a}ssrigen Milieu vielversprechend.}, subject = {bone}, language = {de} } @phdthesis{Saratsis2018, author = {Saratsis, Vasileios}, title = {Untersuchungen zum Abbindeverhalten und der Injizierbarkeit von Magnesiumphosphat-Knochenzementen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Ziel dieser Arbeit war die experimentelle Untersuchung von selbsth{\"a}rtenden Magnesiumphosphat Zementen als Knochenersatzmaterial bez{\"u}glich der Verarbeitungsqualit{\"a}t, der Temperaturentwicklung beim Abbinden, der Injizierbarkeit und der mechanischen Eigenschaften. Der Schwerpunkt wurde dabei auf die Anpassung der rheologischen Eigenschaften der Zementpaste f{\"u}r eine minimal-invasive Applikation gelegt. Durch eine elektrische Aufladung der Partikeloberfl{\"a}che von Farringtonit nach Adsorption von Citrat-Ionen und Zusatz der biokompatiblen F{\"u}llstoffe Struvit oder TiO2 f{\"u}r die Einstellung einer bimodalen Partikelgr{\"o}ßenverteilung, war es m{\"o}glich, die Viskosit{\"a}t der Pasten zu erniedrigen und den filter-pressing-Effekt w{\"a}hrend der Injektion zu unterdr{\"u}cken. Die Modifikation des Mg3(PO4)2 Pulvers und der fl{\"u}ssigen Phase erlaubte bei einer Verarbeitungszeit von ca. 10 min die nahezu quantitative Injektion des Zements durch eine 40 mm lange Kan{\"u}le mit einem inneren Durchmesser von ca. 800 μm. Zemente mit dem P/L-Verh{\"a}ltnis von 2,0 g/ml erreichten so eine Festigkeit von {\"u}ber 50 MPa nach 24 h Aush{\"a}rtung. Obwohl die exotherme Abbindereaktion der Zemente teilweise zu einer Erw{\"a}rmung auf bis zu 67 °C f{\"u}hrte, geben literaturbekannte in vivo Studien keinen Hinweis auf Nebenwirkungen innerhalb des umliegenden Hart- bzw. Weichgewebes, was den Verdacht einer m{\"o}glichen thermischen Nekrose aufgrund der exothermen Abbindereaktion ausschließt. Dies liegt eventuell auch darin begr{\"u}ndet, dass die Temperaturmessungen in dieser Arbeit mit einer verh{\"a}ltnism{\"a}ßig großen Menge an Zementpaste (∼15 g) durchgef{\"u}hrt wurden, w{\"a}hrend in vivo doch eher geringere Mengen (< 5 g) appliziert werden.}, subject = {Knochenzement}, language = {de} } @phdthesis{Schmitz2016, author = {Schmitz, Tobias}, title = {Functional coatings by physical vapor deposition (PVD) for biomedical applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144825}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Metals are the most used materials for implant devices, especially in orthopedics, but despite their long history of application issues such as material failure through wear and corrosion remain unsolved leading to a certain number of revision surgeries. Apart from the problems associated with insufficient material properties, another serious issue is an implant associated infection due to the formation of a biofilm on the surface of the material after implantation. Thus, improvements in implant technology are demanded, especially since there is a projected rise of implants needed in the future. Surface modification methods such as physical vapour deposition (PVD), oxygen diffusion hardening and electrochemical anodization have shown to be efficient methods to improve the surfaces of metallic bulk materials regarding biomedical issues. This thesis was focused on the development of functional PVD coatings that are suitable for further treatment with surface modification techniques originally developed for bulk metals. The aim was to precisely adjust the surface properties of the implant according to the targeted application to prevent possible failure mechanisms such as coating delamination, wear or the occurrence of post-operative infections. Initially,  tantalum layers with approx 5 µm thickness were deposited at elevated substrate temperatures on cp Ti by RF magnetron sputtering. Due to the high affinity of tantalum to oxygen, these coatings are known to provide a self healing capacity since the rapid oxide formation is known to close surface cracks. Here, the work aimed to reduce the abrupt change of mechanical properties between the hard and brittle coating and the ductile substrate by creating an oxygen diffusion zone. It was found that the hardness and adhesion could be significantly increased when the coatings were treated afterwards by oxygen diffusion hardening in a two step process. Firstly, the surface was oxidized at a pressure of 6.7•10-3 mbar at 350 450 °C, followed by 1-2 h annealing in oxygen-free atmosphere at the same temperature leading to a diffusion of oxygen atoms into deeper parts of the substrate as proved by X-ray diffraction (XRD) analysis. The hereby caused mechanical stress in the crystal lattice led to an increase in Vickers hardness of the Ta layers from 570 HV to over 900 HV. Investigations into the adhesion of oxygen diffusion treated samples by Rockwell measurements demonstrated an increase of critical force for coating delamination from 12 N for untreated samples up to 25 N for diffusion treated samples. In a second approach, the development of modular targets aimed to produce functional coatings by metallic doping of titanium with biologically active agents. This was demonstrated by the fabrication of antimicrobial Ti(Ag) coatings using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The deposition of both Ti and Ag was confirmed by X-ray diffraction and a clear correlation between the applied sputtering parameters and the silver content of the coatings was demonstrated by ICP-MS and EDX. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. SEM and AFM microscopy revealed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, which could even be enforced by applying a substrate bias voltage. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. In a final step, the applied Ti and Ti(Ag) coatings deposited on cp Ti, stainless steel (316L) and glass substrates were subsequently nanostructured using a self-ordering process induced by electrochemical anodization in aqueous fluoride containing electrolytes. SEM analysis showed that nanotube arrays could be grown from the Ti and Ti(Ag) coatings deposited at elevated temperatures on any substrate, whereby no influence of the substrate on nanotube morphology could be observed. EDX measurements indicated that the anodization process led to the selective etching of Ti from Ti(Ag) coating. Further experiments on coatings deposited on glass surfaces revealed that moderate substrate temperatures during deposition resulting in smooth Ti layers as determined by AFM measurements, are favorable for the generation of highly ordered nanotube arrays. Such arrays exhibited superhydrophilic behavior as proved by contact angle measurements. XRD analysis revealed that the nanostructured coatings were amorphous after anodization but could be crystallized to anatase structure by thermal treatment at temperatures of 450°C.}, subject = {PVD-Verfahren}, language = {en} } @article{SinnEichlerMuelleretal.2011, author = {Sinn, Stefan and Eichler, Mirjam and M{\"u}ller, Lothar and B{\"u}nger, Daniel and Groll, J{\"u}ergen and Ziemer, Gerhard and Rupp, Frank and Northoff, Hinnak and Geis-Gerstorfer, J{\"u}rgen and Gehring, Frank K. and Wendel, Hans P.}, title = {NCO-sP(EO-stat-PO) Coatings on Gold Sensors-a QCM Study of Hemocompatibility}, series = {Sensors}, volume = {11}, journal = {Sensors}, number = {5}, doi = {10.3390/s110505253}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141110}, pages = {5253-5269}, year = {2011}, abstract = {The reliability of implantable blood sensors is often hampered by unspecific adsorption of plasma proteins and blood cells. This not only leads to a loss of sensor signal over time, but can also result in undesired host vs. graft reactions. Within this study we evaluated the hemocompatibility of isocyanate conjugated star shaped polytheylene oxide-polypropylene oxide co-polymers NCO-sP(EO-stat-PO) when applied to gold surfaces as an auspicious coating material for gold sputtered blood contacting sensors. Quartz crystal microbalance (QCM) sensors were coated with ultrathin NCO-sP(EO-stat-PO) films and compared with uncoated gold sensors. Protein resistance was assessed by QCM measurements with fibrinogen solution and platelet poor plasma (PPP), followed by quantification of fibrinogen adsorption. Hemocompatibility was tested by incubation with human platelet rich plasma (PRP). Thrombin antithrombin-III complex (TAT), beta-thromboglobulin (beta-TG) and platelet factor 4 (PF4) were used as coagulation activation markers. Furthermore, scanning electron microscopy (SEM) was used to visualize platelet adhesion to the sensor surfaces. Compared to uncoated gold sensors, NCO-sP(EO-stat-PO) coated sensors revealed significant better resistance against protein adsorption, lower TAT generation and a lower amount of adherent platelets. Moreover, coating with ultrathin NCO-sP(EO-stat-PO) films creates a cell resistant hemocompatible surface on gold that increases the chance of prolonged sensor functionality and can easily be modified with specific receptor molecules.}, language = {en} } @phdthesis{Carrera2015, author = {Carrera, Eva-Maria}, title = {Modifikation von Calciumphosphat-Biokeramiken mit biologisch aktiven Metallionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141338}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Das Ziel dieser Arbeit war es, die Modifizierung von por{\"o}sem, calciumdefizit{\"a}rem, nanokristallinem Hydroxylapatit mit verschiedenen Metallionen zu testen. Es wurden α‑TCP‑basierende Zementproben hergestellt, die durch zwei verschiedene Dotierungsmethoden mit bestimmten Metallionen (Cu2+, Co2+, Mn2+, Ni2+, V3+, Zn2+) modifiziert wurden. Die eine Methode bestand in der Zusinterung der entsprechenden Metallionen zum α‑TCP‑Pulver. Bei der anderen Methode waren die Ionen in unterschiedlicher Konzentration (1 mmolar, 100 μmolar, 10 μmolar) in der Binderl{\"o}sung enthalten. Die hergestellten Zementproben wurden hinsichtlich bestimmter Eigenschaften wie der initialen Abbindezeit und Druckfestigkeit untersucht und zus{\"a}tzlich rasterelektronenmikroskopischen, r{\"o}ntgen-diffraktometrischen und massenspektrometrischen Analysen unterzogen. Als Referenz diente ein bereits am Menschen erfolgreich als Knochenersatzmaterial eingesetzter nanokristalliner, calciumarmer Hydroxylapatit-Zement. Da Hydroxylapatit nahezu nur durch Osteoklasten mittels einer lokalen pH‑Wert-Absenkung resorbiert werden kann, wurden in‑vitro‑Versuche mit einer immortalisierten Makrophagen-Zelllinie durchgef{\"u}hrt. {\"U}ber einen 15‑t{\"a}gigen Versuchszeitraum wurde die Zytokompatibilit{\"a}t mittels bestimmter Zellproliferations- und Zellaktivit{\"a}tsmessungen {\"u}berpr{\"u}ft. Zus{\"a}tzlich wurden die mit Zellen besiedelten Proben unter dem Rasterelektronenmikroskop betrachtet und eine TRAP‑F{\"a}rbung durchgef{\"u}hrt, um die Differenzierung zu osteoklasten{\"a}hnlichen Zellen beurteilen zu k{\"o}nnen. Bei der Auswertung der Versuche wurde deutlich, dass nicht das Metall alleine maßgeblich f{\"u}r Ver{\"a}nderungen der physikalischen Eigenschaften im Vergleich zum metallfreien Referenzzement war. Auch die Art der Metallionendotierung, ob durch Zugabe mit der Binderl{\"o}sung oder durch Zusinterung, hatte bei den Metallen unterschiedliche Auswirkungen auf die Zementeigenschaften. W{\"a}hrend der Versuche wurden Abbindezeiten von 18 Minuten bis {\"u}ber 60 Minuten gemessen und Druckfestigkeiten zwischen 9,3 MPa und 30,5 MPa festgestellt. Bei der Auswertung der Zellversuchsreihe wurde festgestellt, dass die Zellen auf den mit Metallionen modifizierten Zementpl{\"a}ttchen tendenziell eine niedrigere Aktivit{\"a}t bei gleich bleibender Proliferation aufwiesen als auf den metallfreien Referenzproben. Dieses Ergebnis konnte mikroskopisch best{\"a}tigt werden.}, subject = {Knochenzement}, language = {de} } @article{GeffersGrollGbureck2015, author = {Geffers, Martha and Groll, J{\"u}rgen and Gbureck, Uwe}, title = {Reinforcement strategies for load-bearing calcium phosphate biocements}, series = {Materials}, volume = {8}, journal = {Materials}, doi = {10.3390/ma8052700}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148636}, pages = {2700-2717}, year = {2015}, abstract = {Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement-hydrogel composites with largely unaffected application properties.}, language = {en} } @phdthesis{Meier2020, author = {Meier, Nadine Karola}, title = {Das kn{\"o}cherne Einwachsen von TiAgN - beschichteten Titanimplantaten im Kaninchenknochen. Eine histologische Analyse.}, doi = {10.25972/OPUS-20741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207413}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Infektionen von Endoprothesen sind auch heute noch, obgleich aufgrund aktueller Hygienestandards seltener, eine schwerwiegende Komplikation. Die Folgen k{\"o}nnen risikoreiche Revisionsoperationen bis hin zum kompletten Prothesenverlust sein. Um die Gefahr bakterieller Protheseninfektionen zu minimieren, r{\"u}ckten unter anderem Oberfl{\"a}chenbeschichtungen mit antimikrobieller Wirkung in den Fokus der Forscher. Eine Kombination aus dem antimikrobiell wirksamen Metall Silber und dem die H{\"a}rte verbessernden Stickstoff - als TiAgN - Beschichtung - zeigte bereits gute in vitro Ergebnisse (Moseke et al. 2011). Auf Grundlage dieser positiven in vitro Studie wurde die TiAgN - Beschichtung in der hier vorliegenden Arbeit in vivo im Tiermodell untersucht. Ziel der Studie war es das Einwachsen TiAgN - beschichteter Titanimplantate im Kaninchenknochen mit unbeschichteten Titanimplantaten zu vergleichen. Hierzu wurden bei insgesamt drei Kaninchen jeweils zwei TiAgN - beschichtete Proben und eine unbeschichtete Kontrolle in beide Femora implantiert. Der Einheilzeitraum betrug drei Monate. Nach der Entnahme der Femora wurde zun{\"a}chst durch R{\"o}ntgenaufnahmen die genaue Lage der Implantate festgesellt. Nach der Anfertigung von D{\"u}nnschliffen nach Donath und der Trichrom - F{\"a}rbung nach Masson - Goldner wurden f{\"u}r die histologische Auswertung lichtmikroskopische Bilder in 40 - facher Vergr{\"o}ßerung angefertigt. Um den gesamten Umfang der Implantatanschnitte vermessen zu k{\"o}nnen, wurden die aufgenommen Einzelbilder zu den urspr{\"u}nglichen Gesamtbildern zusammengesetzt. Die Vermessung der Implantatumf{\"a}nge erfolgte hinsichtlich der Untersuchungsparameter Knochen - Implantat - Kontakt (KIK), nicht mineralisierter Knochen (Osteoid), Bindegewebe und Spalten - Implantatoberfl{\"a}chenbereiche an denen kein Gewebe angewachsen ist. F{\"u}r die drei beobachteten Kaninchen ergab sich f{\"u}r die TiAgN - beschichteten Probeimplantate ein KIK von 94,87 \%, ein Osteoidanteil am KIK von 45,15 \% und ein Spaltanteil von 2,82 \% verglichen mit den unbeschichteten Kontrollen von 97,31 \% f{\"u}r den KIK, 60,12 \% f{\"u}r den Osteoid - sowie 2,69 \% f{\"u}r den Spaltanteil. Somit zeigt sich f{\"u}r TiAgN - beschichtete Titanimplantate kein signifikant schlechteres Einwachsen im Vergleich zu unbeschichteten Titanimplantaten. Ausgehend von der guten antimikrobiellen Wirksamkeit und Zytokompatibilit{\"a}t in vitro (Moseke et al. 2011) sowie der guten Osseointegration in vivo pr{\"a}sentiert sich diese Beschichtung sehr vielversprechend. Dennoch sind weitere Untersuchungen erforderlich, wie beispielsweise die {\"U}berpr{\"u}fung der Haftfestigkeit zwischen Beschichtung und Implantat sowie die antimikrobielle Wirksamkeit in vivo. Ergeben sich f{\"u}r diese Beschichtung weiterhin gute Ergebnisse, kann eine Studie am Menschen in Erw{\"a}gung gezogen werden.}, subject = {Beschichtung}, language = {de} } @phdthesis{Wiesbeck2019, author = {Wiesbeck, Christina}, title = {Fabrication and characterization of NCO-sP(EO-stat-PO)- crosslinked and functionalized electrospun gelatin scaffolds for tissue engineering applications}, doi = {10.25972/OPUS-19098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190988}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In Tissue Engineering, scaffolds composed of natural polymers often show a distinct lack in stability. The natural polymer gelatin is highly fragile under physiological conditions, nevertheless displaying a broad variety of favorable properties. The aim of this study was to fabricate electrospun gelatin nanofibers, in situ functionalized and stabilized during the spinning process with highly reactive star polymer NCO-sP(EO-stat-PO) ("sPEG"). A spinning protocol for homogenous, non-beaded, 500 to 1000 nm thick nanofibers from different ratios of gelatin and sPEG was successfully established. Fibers were subsequently characterized and tested with SEM imaging, tensile tests, water incubation, FTIR, EDX, and cell culture. It was shown that adding sPEG during the spinning process leads to an increase in visible fiber crosslinking, mechanical stability, and stability in water. The nanofibers were further shown to be biocompatible in cell culture with RAW 264.7 macrophages.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Bengel2019, author = {Bengel, Melanie}, title = {In vitro Testung neuer Anwendungsformen kalth{\"a}rtender Knochenzemente aus resorbierbaren Orthophosphaten}, doi = {10.25972/OPUS-18643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186435}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel der vorliegenden Arbeit war die Herstellung und Erprobung von innovativen Anwendungsformen kalth{\"a}rtender Knochenersatzmaterialien aus Calcium-, und Magnesiumphosphaten, die nach dem Abbindevorgang vorzugsweise aus dem Mineral Struvit (MgNH4PO4·6H2O) bestehen. Diese neuartigen Knochenzemente versprechen im Vergleich zu den herk{\"o}mmlichen Knochenersatzmaterialien eine deutlich schnellere kn{\"o}cherne Regeneration und Abbaubarkeit. Damit wird das Ziel verfolgt schneller Implantate setzen zu k{\"o}nnen und dem Patienten somit eine lange Wartezeit und dementsprechenden Leidensdruck ersparen zu k{\"o}nnen. Ebenso m{\"u}ssen konventionelle Produkte erst im OP anger{\"u}hrt und hiernach in einem schmalen Zeitfenser verarbeitet werden. Die pr{\"a}fabrizierten Zement-Pasten sind dagegen direkt applikationsbereit und h{\"a}rten erst nach Kontakt mit dem feuchten Milieu aus. In vorangegangenen Projekten wurden sowohl pr{\"a}fabrizierte Pasten als auch Granulate auf Basis Struvit-bildender Calcium-Magnesiumphosphate erfolgreich entwickelt. Vorteil dieser Granulate ist ihre sph{\"a}rische Form. Im Hinblick auf die klinische Anwendbarkeit sollten in der vorliegenden Studie beide Anwendungsformen vorgreifend auf eine tierexperimentelle Studie hinsichtlich ihrer Materialeigenschaften in vitro getestet werden.}, subject = {Knochenzemente}, language = {de} } @phdthesis{Wistlich2019, author = {Wistlich, Laura}, title = {NCO-sP(EO-stat-PO) as functional additive for biomaterials' development}, doi = {10.25972/OPUS-17836}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178365}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The aim of this thesis was the application of the functional prepolymer NCO-sP(EO-stat-PO) for the development of new biomaterials. First, the influence of the star-shaped polymers on the mechanical properties of biocements and bone adhesives was investigated. 3-armed star-shaped macromers were used as an additive for a mineral bone cement, and the influence on the mechanical properties was studied. Additionally, a previously developed bone adhesive was examined regarding cytocompatibility. The second topic was the examination of novel functionalization steps which were performed on the surface of electrospun fibers modified with NCO-sP(EO-stat-PO). This established method of functionalizing electrospun meshes was advanced regarding the modification with proteins which was then demonstrated in a biological application. Two different kinds of antibodies were immobilized on the fiber surface in a consecutive manner and the influence of these proteins on the cell behavior was investigated. The final topic involved the quantification of surface-bound peptide sequences. By functionalization of the peptides with the UV-reactive molecule 2-mercaptopyridine it was possible to quantify this compound via UV measurements by cleavage of disulfide bridges and indirectly draw conclusions about the number of immobilized peptides. In the field of mineral biocements and bone adhesives, NCO-sP(EO-stat-PO) was able to influence the setting behavior and mechanical performance of mineral bone cements based on calcium phosphate chemistry. The addition of NCO-sP(EO-stat-PO) resulted in a pseudo-ductile fracture behavior due to the formation of a hydrogel network in the cement, which was then mineralized by nanosized hydroxyapatite crystals following cement setting. Accordingly, a commercially available aluminum silicate cement from civil engineering could be modified. In addition, it could be shown that the use of NCO-sP(EO-stat-PO) is beneficial for adjusting specific material properties of bone adhesives. Here, the crosslinking behavior of the prepolymer in an aqueous medium was exploited to form an interpenetrating network (IPN) together with a photochemically curing poly(ethylene glycol) dimethacrylate (PEGDMA) matrix. This could be used for the development of a bone adhesive with an improved adhesion to bone in a wet environment. The developed bone adhesive was further investigated in terms of possible influences of the initiator systems. In addition, the material system was tested for cytocompatibility by using different cell lines. Moreover, the preparation of electrospun fiber meshes via solution electrospinning consisting of poly(lactide-co-glycolide) (PLGA) as a backbone polymer and NCO-sP(EO-stat-PO) as functional additive is an established method for the application of the meshes as a replacement of the native extracellular matrix (ECM). In general, these fibers reveal diameters in the nanometer range, are protein and cell repellent due to the hydrophilic properties of the prepolymer and show a specific biofunctionalization by immobilization of peptide sequences. Here, the isocyanate groups presented on the fiber surface after electrospinning were used to carry out various functionalization steps, while retaining the properties of protein and cell repellency. The modification of the electrospun fibers involved the immobilization of analogs or antagonists of tumor necrosis factor (TNF) and the indirect detection of these by interaction with a light-producing enzyme. Here, a multimodal modification of the fiber surface with RGD to mediate cell adhesion and two different antibodies could be achieved. After culturing the cell line HT1080, the pro- or anti-inflammatory response of cells could be detected by IL-8 specific ELISA measurements. Furthermore, the quantification of molecules on the surface of electrospun fibers was investigated. It was tested whether the detection by means of super-resolution microscopy would be possible. Therefore, experiments were performed with short amino acid sequences such as RGD for quantification by fluorescence microscopy. Based on earlier results, in which a UV-spectrometrically active molecule was used to detect the quantification of RGD, it was shown that short peptides can also be quantified in a small scale on flat functional substrates (2D) such as NCO-sP(EO-stat-PO) hydrogel coatings, and modified electrospun fibers produced from PLGA and NCO-sP(EO-stat-PO) (3D). In addition, a collagen sequence was used to prove that a successful quantification can be carried out as well for longer peptide chains. These studies have revealed that NCO-sP(EO-stat-PO) can serve as a functional additive for many applications and should be considered for further studies on the development of novel biomaterials. The rapid crosslinking reaction, the resulting hydrogel formation and the biocompatibility are to be mentioned as positive properties, which makes the prepolymer interesting for future applications.}, subject = {Sternpolymere}, language = {en} } @phdthesis{SchaefergebStichler2019, author = {Sch{\"a}fer [geb. Stichler], Simone}, title = {Thiol-ene Cross-linked Poly(glycidol) / Hyaluronic Acid Based Hydrogels for 3D Bioprinting}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174713}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The aim of the work was the development of thiol-ene cross-linked hydrogels based on functionalized poly(glycidol)s (PG) and hyaluronic acid (HA) for extrusion based 3D bioprinting. Additionally, the functionalization of the synthesized PG with peptides and the suitability of these polymers for physically cross-linked gels were investigated, in a proof of principle study in order to demonstrate the versatile use of PG polymers in hydrogel development. First, the precursor polymers of the different hydrogel systems were synthesized. For thiol-ene cross-linked hydogels, linear allyl-functionalized PG (P(AGE-co-G)) and three different thiol-(SH-)functionalized polymers, ester-containing PG-SH (PG SHec), ester-free PG-SH (PG-SHef) and HA-SH were synthesized and analysed, The degree of functionalization of these polymers was adjustable. For physically cross-linked hydrogels, peptide-functionalized PG (P(peptide-co-G)), was synthesized through polymer analogue thiol-ene modification of P(AGE-co-G). Subsequently, thiol-ene cross-linked hydrogels were prepared with the synthesized thiol- and allyl-functionalized polymers. Depending on the origin of the used polymers, two different systems were obtained: on the one hand synthetic hydrogels consisting of PG-SHec/ef and P(AGE-co-G) and on the other hand hybrid gels, consisting of HA-SH and P(AGE-co-G). In synthetic gels, the degradability of the gels was determined by the applied PG-SH. The use of PG-SHec resulted in hydrolytically degradable hydrogels, whereas the cross-linking with PG-SHef resulted in non-degradable gels. The physical properties of these different hydrogel systems were determined by swelling, mechanical and diffusion studies and subsequently compared among each other. In swelling studies the differences of degradable and non-degradable synthetic hydrogels as well as the differences of synthetic compared to hybrid hydrogels were demonstrated. Next, the stiffness and the swelling ratios (SR) of the established hydrogel systems were examined in dependency of different parameters, such as incubation time, polymer concentration and UV irradiation. In general, these measurements revealed the same trends for synthetic and hybrid hydrogels: an increased polymer concentration as well as prolonged UV irradiation led to an increased network density. Moreover, it was demonstrated that the incorporation of additional non-bound HMW HA hampered the hydrogel cross-linking resulting in gels with decreased stiffness and increased SR. This effect was strongly dependent on the amount of additional HMW HA. The diffusion of different molecular weight fluorescein isothiocyanate-dextran (FITC-dextran) through hybrid hydrogels (with/without HMW HA) gave information about the mesh size of these gels. The smallest FITC-dextran (4 kDa) completely diffused through both hydrogel systems within the first week, whereas only 55 \% of 40 kDa and 5-10 \% HMW FITC-dextrans (500 kDa and 2 MDa) could diffuse through the networks. The applicability of synthetic and hybrid hydrogels for cartilage regeneration purpose was investigated through by biological examinations. It was proven that both gels support the survival of embedded human mesenchymal stromal cells (hMSCs) (21/28 d in vitro culture), however, the chondrogenic differentiation was significantly improved in hybrid hydrogels compared to synthetic gels. The addition of non-bound HMW HA resulted in a slightly less distinct chondrogenesis. Lastly the printability of the established hydrogel systems was examined. Therefore, the viscoelastic properties of the hydrogel solutions were adjusted by incorporation of non-bound HMW HA. Both systems could be successfully printed with high resolution and high shape fidelity. The introduction of the double printing approach with reinforcing PCL allowed printing of hydrogel solutions with lower viscosities. As a consequence, the amount of additional HMW HA necessary for printing could be reduced allowing successful printing of hybrid hydrogel solutions with embedded cells. It was demonstrated that the integrated cells survived the printing process with high viability measured after 21 d. Moreover, by this reinforcing technique, robust hydrogel-containing constructs were fabricated. In addition to thiol-ene cross-linked hydrogels, hydrogel cross-linking via ionic interactions was investigated with a hybrid hydrogel based on HMW HA and peptide-functionalized PG. Rheological measurements revealed an increase in the viscosity of a 2 wt.\% HMW HA solution by the addition of peptide-functionalized PG. The increase in viscosity could be attributed to the ionic interactions between the positively charge PG and the negatively charge HMW HA. In conclusion, throughout this thesis thiol-ene chemistry and PG were introduced as promising cross-linking reaction and polymer precursor for the field of biofabrication. Furthermore, the differences of hybrid and synthetic hydrogels as well as chemically and physically cross-linked hydrogels were demonstrated. Moreover, the double printing approach was demonstrated to be a promising tool for the fabrication of robust hydrogel-containing constructs. It opens the possibility of printing hydrogels that were not printable yet, due to too low viscosities.}, subject = {Hyalurons{\"a}ure}, language = {en} } @phdthesis{Behets2018, author = {Behets, Jean Nicolas}, title = {Biomimetic calcium phosphate modification of 3D-printed tissue engineering scaffolds using reactive star-shaped macromers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Biomimetic calcium phosphate (CaP) coatings imitate the trabecular bones surface structure and have shown to promote osteogenic differentiation in multipotent cells. The work of this thesis focused on the problem of former CaP coatings cracking and flaking off when being put on a bendable core structure like a 3D-printed poly (ε-caprolactone) (PCL) scaffold. The aim was to provide a chemical linkage between PCL and CaP using a star-shaped polymer (sPEG) and a phosphonate, 2-aminoethylphosphonic acid (2-AEP). First, a published CaP coating protocol was revised and investigated in terms of etching parameters for the PCL scaffold. Results presented reproducible thick coatings for all groups. The protocol was then broadened to include subsequent scaffold incubation in sPEG and 2-AEP solutions. Homogenous CaP coatings of decreased thickness presented themselves, proving feasibility. However, as is often found with physical CaP coating depositions, there were some irregular outcomes even during the same experimental group. A lower consumption of the chemical 2-AEP, for economic reasons, meant that the protocol was altered to simultaneously incubate scaffolds with sPEG and 2-AEP including preceding calculations for molar ratios. For ratios 1:1, 1:2 and 1:3, again a homogenous CaP coating was produced on most of the samples, although reproducibility issues maintained. However, the mechanical bending to induce surface cracking showed that the CaP did strongly bond to the sPEG/2-AEP, while the control CaP coating flaked off the surface in large pieces. This research demonstrates that chemically-bound CaP coatings resist flaking off the fiber surface. Future investigations should focus on the mechanisms of CaP crystallization, to improve reproducibility.}, subject = {Tissue engineering}, language = {en} } @phdthesis{Juengst2019, author = {J{\"u}ngst, Tomasz}, title = {Establishing and Improving Methods for Biofabrication}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173444}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die Biofabrikation ist ein junges und sehr dynamisches Forschungsgebiet mit viel Potential. Dieses Potential spiegelt sich unter anderem in den ambitionierten Zielen wieder, die man sich hier gesetzt hat. Wissenschaftler in diesem Gebiet wollen eines Tages beispielsweise funktionale menschliche Gewebe nachbilden, die aus patienteneigenen Zellen bestehen. Diese Gewebe sollen entweder f{\"u}r die Testung neuer Arzneimittel und Therapien oder sogar als Implantate einsetzt werden. Der Schl{\"u}ssel zum Erfolg soll hier die Verwendung automatisierter Prozesse in Verbindung mit innovativen Materialien sein, die es erm{\"o}glichen, die Hierarchie und Funktion des zu ersetzenden nat{\"u}rlichen Gewebes nachbilden. Obwohl in den letzten Jahren große Fortschritte gemacht worden sind, gibt es immer noch H{\"u}rden, die {\"u}berwunden werden m{\"u}ssen. Ziel dieser Arbeit war es deshalb, die derzeit eingeschr{\"a}nkte Auswahl kompatibler Materialien f{\"u}r die Biofabrikation zu erweitern und bereits etablierte Verfahren wie den extrusionsbasierten Biodruck noch besser verstehen zu lernen. Auch neue Verfahren, wie etwa das Melt Electrospinning Writing (MEW) sollten etabliert werden. In Kapitel 3 dieser Arbeit wurde das MEW dazu verwendet, tubul{\"a}re Strukturen zu fertigen, die sich aus Polymerfasern mit einem durchschnittlichen Durchmesser von nur etwa 12 μm zusammensetzen. Die mit Hilfe von Druckluft in Verbindung mit einer hohen elektrischen Spannung aus einer Nadelspitze austretende Polymerschmelze wurde hierbei auf zylinderf{\"o}rmigen Kollektoren mit Durchmessern zwischen 0.5 und 4.8mm gesammelt. Auf diese Weise wurden r{\"o}hrenf{\"o}rmige Faserkonstrukte generiert. Das Hauptaugenmerk lag auf dem Einfluss des Durchmessers, der Rotations- und Translationsbewegung des Kollektors auf die Morphologie der Faserkonstrukte. Hierzu wurden die Fasern erst auf unbewegten Kollektoren mit unterschiedlichen Durchmessern gesammelt und die entstehenden Muster analysiert. Es zeigte sich, dass das Fasermuster mit zunehmendem Durchmesser des Kollektors mehr den symmetrischen Konstrukten mit runder Grundfl{\"a}che glich, die auch von flachen Kollektoren bekannt sind. Je kleiner der Kollektordurchmesser wurde, desto ovaler wurde die Grundfl{\"a}che der Muster, was den Einfluss der Kr{\"u}mmung deutlich machte. In weiteren Experimenten wurden die zylindrischen Kollektoren mit Geschwindigkeiten von 4,2 bis 42 Umdrehungen pro Minute um ihre L{\"a}ngsachse gedreht. Die von flachen Kollektoren bekannten {\"U}berg{\"a}nge der Fasermorphologie konnten auch f{\"u}r runde Kollektoren best{\"a}tigt werden. So {\"a}nderte sich die Morphologie mit zunehmender Geschwindigkeit der Oberfl{\"a}che von einer achterf{\"o}rmigen Gestalt {\"u}ber eine sinusf{\"o}rmige Ausrichtung der Fasern hin zu einer geraden Linie. Der Einfluss des Kollektordurchmessers wurde auch hier deutlich, da sich etwa die Amplitude der bei Rotationsgeschwindigkeiten im Bereich sinusf{\"o}rmiger Ausrichtung abgelegten Fasern mit abnehmendem Radius erh{\"o}hte. Im n{\"a}chsten Schritt wurde neben der Rotation der Kollektoren auch eine Translation induziert. Durch geeignete Kombination von Rotation und Translation konnten Konstrukte mit definiertem Wickelwinkel hergestellt werden. Es zeigte sich, dass die Wiedergabe des vorher kalkulierten Winkels unter Verwendung von Oberfl{\"a}chengeschwindigkeiten, die nahe am {\"U}bergang zur geraden Faserausrichtung waren, am besten war. Im Rahmen dieser Arbeit konnten Winkel zwischen 5 und 60° mit hoher Pr{\"a}zision wiedergegeben werden. Im Falle von sich wiederholenden Mustern konnte auch in Bezug auf die Stapelbarkeit der Fasern aufeinander eine hohe Pr{\"a}zision erreicht werden. Kapitel 4 dieser Arbeit befasste sich mit dem extrusionsbasierten 3D-Druck. Das etabliere Verfahren wurde auf eine bisher wenig untersuchte Materialzusammensetzung von Nanopartikeln-beladenen Hydrogeltinten ausgeweitet. Die Tinte bestand aus einer Kombination von funktionalisierten Polyglyzidolen und einer unmodifizierten langkettingen Hyalurons{\"a}ure. Dieser wurden mesopor{\"o}se Silika-Nanopartikel mit unterschiedlicher Ladung zugesetzt und deren Freisetzung aus gedruckten Konstrukten mit einstellbarer Geometrien untersucht. Da die Hyalurons{\"a}ure selbst negativ geladen ist, wurde erwartet und auch gezeigt, dass aminofunktionalisierte Partikel mit positiver Ladung langsamer freigesetzt werden als carboxylfunktionalisierte Partikel mit negativer Ladung. Interessanterweise {\"a}nderten die Partikel nicht die rheologischen Eigenschaften der Tinte und es konnten Hydrogele, die mit positiv geladenen Partikeln beladen waren, bei den gleichen Druckparametern verdruckt werden, wie Hydrogele, die mit negativ geladenen Partikeln beladen waren. Die guten Druckeigenschaften der Tinten erm{\"o}glichten die pr{\"a}zise Fertigung von Konstrukten mit einer Gr{\"o}ße von 12x12x3mm^3, also von Konstrukten mit bis zu 16 aufeinanderfolgenden Lagen. Die Strangdurchmesser betrugen hierbei 627±31μm und die Verteilung der Partikel innerhalb der Str{\"a}nge war sehr homogen. Zudem konnten auch Strukturen gedruckt werden, bei denen beide Tintenarten, mit positiven und mit negativen Partikeln beladene Hydrogele, in einem Konstrukt kombiniert wurden. Hierbei zeigte sich, dass die Freisetzung der Partikel, die {\"u}ber 6 Wochen hinweg untersucht wurde, auch stark von der Geometrie der zwei-Komponenten-Konstrukte abhing. Insbesondere die Auswirkung des direkten Kontakts zwischen den Komponenten innerhalb eines Konstruktes war hier sehr deutlich. Wurden die Str{\"a}nge {\"u}ber Kreuz aufeinander abgelegt und hatten direkten Kontakt an den Kreuzungspunkten, konnte beobachtet werden, dass die positiv geladenen Partikel aus ihrem System in das mit den negativ geladenen Partikeln wanderten. Wurden die Str{\"a}nge ohne direkten Kontakt parallel nebeneinander abgelegt, wurden die positiv geladenen Partikel in umgebendes Medium freigesetzt, konnten aber selbst nach 6 Wochen nicht in den Str{\"a}ngen mit den negativ geladenen Partikeln nachgewiesen werden. Dies verdeutlicht, dass Geometrie und Ladung der Partikel einen Einfluss auf die Freisetzung der Partikel hatten und sich die Freisetzung der Partikel durch eine geschickte Kombination beider Parameter steuern l{\"a}sst. In Kapitel 5 dieser Arbeit wurde eine neue Materialklasse als Biotinte f{\"u}r den extrusionsbasierten Biodruck untersucht. Bei dem Material handelte es sich um Hydrogele auf Basis rekombinanter Spinnenseidenproteine. Diese konnten ab einer Proteinkonzentration von 3 \%Gew./Vol. ohne die Verwendung von Verdickungsmittel oder anderen Additiven und auch ohne eine nachtr{\"a}gliche Vernetzung verdruckt werden. Sowohl Hydrogele auf Basis des rekombinanten Proteins eADF4(C16) als auch eine mit einer RGD-Sequenz versehene Modifikation (eADF4(C16)-RGD) konnten mit einer hohen Formtreue verdruckt werden. Die RGD-Sequenz zeigte einen positiven Effekt auf das Anhaften von humanen Fibroblasten, die auf gedruckte Konstrukte ausges{\"a}t wurden. Zudem konnten mit Hilfe der Hydrogele auch zellbeladene Konstrukte gefertigt werden. Hierzu wurden die Hydrogele mit einer Zellsuspension so vermengt, dass eine finale Konzentration von 1,2 Millionen Zellen/ml erreicht wurde. Die beladenen Gele wurden verdruckt und es konnte eine {\"U}berlebensrate von 70,1±7,6\% nachgewiesen werden. Das in diesem Kapitel etablierte Materialsystem erm{\"o}glichte zum ersten Mal das Verdrucken lebender Zellen in einer neuen Klasse von Tinten, die weder die Beimengung von Verdickungsmittel noch einen zus{\"a}tzlichen Nachh{\"a}rtungsschritt f{\"u}r die Herstellung zellbeladener stabiler Konstrukte ben{\"o}tigt.}, subject = {3D-Druck}, language = {en} } @phdthesis{Feineis2018, author = {Feineis, Susanne}, title = {Thioether-poly(glycidol) as multifunctional coating system for gold nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The aim of this thesis was the development of a multifunctional coating system for AuNPs based on thioether polymers, providing both excellent colloidal stability and a variable possibility to introduce functionalities for biological applications. First, two thioether-polymer systems were synthesised as a systematic investigation into colloidal stabilisation efficacy. Besides commonly used monovalent poly(ethylene glycol) (PEG-SR), its structural analogue linear poly(glycidol) (PG-SR) bearing multiple statistically distributed thioether moieties along the backbone was synthesised. Additionally, respective thiol analogues (PEG-SH and PG-SH) were produced and applied as reference. Successive modification of varyingly large AuNPs with aforementioned thiol- and thioether-polymers was performed via ligand exchange reaction on citrate stabilised AuNPs. An increased stabilisation efficacy of both thioether-polymers against biological and physiological conditions, as well as against freeze-drying compared to thiol analogues was determined. Based on the excellent colloidal stabilisation efficacy and multi-functionalisability of thioether-PG, a plethora of functional groups, such as charged groups, hydrophilic/hydrophobic chains, as well as bio-active moieties namely diazirine and biotin was introduced to the AuNP surface. Moreover, the generic and covalent binding of diazirine-modified PG-SR with biomolecules including peptides and proteins was thoroughly demonstrated. Lastly, diverse applicability and bioactivity of aforementioned modified particles in various studies was displayed, once more verifying the introduction of functionalities. On the one hand the electrostatic interaction of charged AuNPs with hydrogels based on hyaluronic acid was applied to tune the release kinetics of particles from three-dimensional scaffolds. On the other hand the strong complexation of siRNA onto two positively charged AuNPs was proven. The amount of siRNA payload was tuneable by varying the surface charge, ionic strength of the surrounding medium and the N/P ratio. Moreover, the biological activity and selectivity of the biotin-streptavidin conjugation was verified with respectively functionalised particles in controlled agglomeration test and in laser-triggered cell elimination experiments. In the latter, streptavidin-functionalised AuNPs resulted in excellent depletion of biotinylated cells whereas unfunctionalised control particles failed, excluding unspecific binding of these particles to the cell surface.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Stuckensen2016, author = {Stuckensen, Kai}, title = {Fabrication of hierarchical cell carrier matrices for tissue regeneration by directional solidification}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145510}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The key hypothesis of this work represented the question, if mimicking the zonal composition and structural porosity of musculoskeletal tissues influences invading cells positively and leads to advantageous results for tissue engineering. Conventional approaches in tissue engineering are limited in producing monolithic "scaffolds" that provide locally variating biological key signals and pore architectures, imitating the alignment of collagenous fibres in bone and cartilage tissues, respectively. In order to fill this gap in available tissue engineering strategies, a new fabrication technique was evolved for the production of scaffolds to validate the hypothesis. Therefore, a new solidification based platform procedure was developed. This process comprises the directional solidification of multiple flowable precursors that are "cryostructured" to prepare a controlled anisotropic pore structure. Porous scaffolds are attained through ice crystal removal by lyophilisation. Optionally, electrostatic spinning of polymers may be applied to provide an external mesh on top or around the scaffolds. A consolidation step generates monolithic matrices from multi zonal structures. To serve as matrix for tissue engineering approaches or direct implantation as medical device, the scaffold is sterilized. An Adjustable Cryostructuring Device (ACD) was successively developed; individual parts were conceptualized by computer aided design (CAD) and assembled. During optimisation, a significant performance improvement of the ACDs accessible external temperature gradient was achieved, from (1.3 ± 0.1) K/mm to (9.0 ± 0.1) K/mm. Additionally, four different configurations of the device were made available that enabled the directional solidification of collagenous precursors in a highly controlled manner with various sample sizes and shapes. By using alginate as a model substance the process was systematically evaluated. Cryostructuring diagraphs were analysed yielding solidification parameters, which were associated to pore sizes and alignments that were determined by image processing. Thereby, a precise control over pore size and alignment through electrical regulation of the ACD could be demonstrated. To obtain tissue mimetic scaffolds for the musculoskeletal system, collagens and calcium phosphates had to be prepared to serve as raw materials. Extraction and purification protocols were established to generate collagen I and collagen II, while the calcium phosphates brushite and hydroxyapatite were produced by precipitation reactions. Besides the successive augmentation of the ACD also an optimization of the processing steps was crucial. Firstly, the concentrations and the individual behaviour of respective precursor components had to be screened. Together with the insights gained by videographic examination of solidifying collagen solutions, essential knowledge was gained that facilitated the production of more complex scaffolds. Phenomena of ice crystal growth during cryostructuring were discussed. By evolutionary steps, a cryostructuring of multi-layered precursors with consecutive anisotropic pores could be achieved and successfully transferred from alginate to collagenous precursors. Finally, very smooth interfaces that were hardly detectable by scanning electron microscopy (SEM) could be attained. For the used collagenous systems, a dependency relation between adjustable processing parameters and different resulting solidification morphologies was created. Dehydrothermal-, diisocyanate-, and carbodiimide- based cross linking methods were evaluated, whereby the "zero length" cross linking by carbodiimide was found to be most suitable. Afterwards, a formulation for the cross linking solution was elaborated, which generated favourable outcomes by application inside a reduced pressure apparatus. As a consequence, a pore collapse during wet chemical cross linking could be avoided. Complex monolithic scaffolds featuring continuous pores were fabricated that mimicked structure and respective composition of different areas of native tissues by the presence of biochemical key stimulants. At first, three types of bone scaffolds were produced from collagen I and hydroxyapatite with appropriate sizes to fit critical sized defects in rat femurs. They either featured an isotropic or anisotropic porosity and partly also contained glycosaminoglycans (GAGs). Furthermore, meniscus scaffolds were prepared by processing two precursors with biomimetic contents of collagen I, collagen II and GAGs. Here, the pore structures were created under boundary conditions, which allowed an ice crystal growth that was nearly orthogonal to the external temperature gradient. Thereby, the preferential alignment of collagen fibres in the natural meniscus tissue could be mimicked. Those scaffolds owned appropriate sizes for cell culture in well plates or even an authentic meniscus shape and size. Finally, osteochondral scaffolds, sized to either fit well plates or perfusion reactors for cell culture, were fabricated to mimic the composition of subchondral bone and different cartilage zones. Collagen I and the resorbable calcium phosphate brushite were used for the subchondral zone, whereas the cartilage zones were composed out of collagen I, collagen II and tissue mimetic contents of GAGs. The pore structure corresponded to the one that is dominating the volume of natural osteochondral tissue. Energy dispersive X-ray spectroscopy (EDX) and SEM were used to analyse the composition and pore structure of the individual scaffold zones, respectively. The cross section pore diameters were determined to (65 ± 25) µm, (88 ± 35) µm and(93 ± 42) µm for the anisotropic, the isotropic and GAG containing isotropic bone scaffolds. Furthermore, the meniscus scaffolds showed pore diameters of (93 ± 21) µm in the inner meniscus zone and (248 ± 63) µm inside the outer meniscus zone. Pore sizes of (82 ± 25) µm, (83 ± 29) µm and (85 ± 39) µm were present inside the subchondral, the lower chondral and the upper chondral zone of osteochondral scaffolds. Depending on the fabrication parameters, the respective scaffold zones were also found to feature a specific micro- and nanostructure at their inner surfaces. Degradation studies were carried out under physiological conditions and resulted in a mean mass loss of (0.52 ± 0.13) \%, (1.56 ± 0.10) \% and (0.80 ± 0.10) \% per day for bone, meniscus and osteochondral scaffolds, respectively. Rheological measurements were used to determine the viscosity changes upon cooling of different precursors. Micro computer tomography (µ-CT) investigations were applied to characterize the 3D microstructure of osteochondral scaffolds. To obtain an osteochondral scaffold with four zones of tissue mimetic microstructure alignment, a poly (D, L-lactide-co-glycolide) mesh was deposited on the upper chondral zone by electrostatic spinning. In case of the bone scaffolds, the retention / release capacity of bone morphogenetic protein 2 (BMP-2) was evaluated by an enzyme linked immunosorbent assay (ELISA). Due to the high presence of attractive BMP binding sites, only less than 0.1 \% of the initially loaded cytokine was released. The suitability of combining the cryostructuring process with 3D powder printed calcium phosphate substrates was evaluated with osteochondral scaffolds, but did not appear to yield more preferable results than the non-combined approach. A new custom build confined compression setup was elaborated together with a suitable evaluation procedure for the mechanical characterisation under physiological conditions. For bone and cartilage scaffolds, apparent elastic moduli of (37.6 ± 6.9) kPa and (3.14 ± 0.85) kPa were measured. A similar behaviour of the scaffolds to natural cartilage and bone tissue was demonstrated in terms of elastic energy storage. Under physiological frequencies, less than 1.0 \% and 0.8 \% of the exerted energy was lost for bone and cartilage scaffolds, respectively. With average relaxation times of (0.613 ± 0.040) sec and (0.815 ± 0.077) sec, measured for the cartilage and bone scaffolds, they respond four orders of magnitude faster than the native tissues. Additionally, all kinds of produced scaffolds were able to withstand cyclic compression at un-physiological frequencies as high as 20 Hz without a loss in structural integrity. With the presented new method, scaffolds could be fabricated whose extent in mimicking of native tissues exceeded the one of scaffolds producible by state of the art methods. This allowed a testing of the key hypothesis: The biological evaluation of an anisotropic pore structure in vivo revealed a higher functionality of immigrated cells and led finally to advantageous healing outcomes. Moreover, the mimicking of local compositions in combination with a consecutive anisotropic porosity that approaches native tissue structures could be demonstrated to induce zone specific matrix remodelling in stem cells in vitro. Additionally, clues for a zone specific chondrogenic stem cell differentiation were attained without the supplementation of growth factors. Thereby, the hypothesis that an increased approximation of the hierarchically compositional and structurally anisotropic properties of musculoskeletal tissues would lead to an improved cellular response and a better healing quality, could be confirmed. With a special focus on cell free in situ tissue engineering approaches, the insights gained within this thesis may be directly transferred to clinical regenerative therapies.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Schmitz2016, author = {Schmitz, Michael}, title = {Functional hydrophilic polymers for chemoselective coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145629}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Chemoselective poly(oxazolines) (POx) and poly[(oligo ethylene glycol) acrylates] were synthesized. An initiator was produced for the preparation of poly(oxazoline)s capable of participating in click chemistry reactions which allows the functionalization of the polymer at the α terminus which was confirmed by 1H NMR spectroscopy. The initiator was used for the polymerization of hydrophilic 2 methyl 2 oxazoline (MeOx), whereby chemoselective, alkyne functionalized polymers could be prepared for Cu-catalyzed azide-alkyne cycloaddition. The desired molecular weight could be achieved through the living, ring opening cationic polymerization and was confirmed by 1H NMR, SEC and MALDI ToF measurements. Polymers were terminated with piperidine if no further functionalization was needed, or with an ester derivate for enabling amine attachment in a subsequent step. In addition, polymers were functionalized by termination with NaN3 in order to provide the counterpart to the azide-alkyne reaction. IR spectroscopy was suitable for the azide detection. The coupling of polymers showed the reactivity and could be confirmed by SEC, 1H NMR and IR spectroscopy. The composition of cysteine functionalized POx was completed by thiol-ene chemistry. Since the commercially available iso 2 propyl 2 oxazoline is not available for the cationic polymerization, 2 butenyl and 2 decenyl 2 oxazoline (ButenOx and DecenOx) were first prepared. The synthesis of both copolymers, based on MeOx could be confirmed by 1H NMR as well as with SEC, whereby narrow distributions with dispersities of 1.06 could be achieved. The cysteine functionalization of the copolymers was enabled by the creation of a thiazolidine component which could be synthesized by acetal and formyl protection of cysteine and subsequent functionalization with a thiol. The component enabled the reaction with a polymer by thiol-ene reaction which was started by the addition of dimethoxyphenyl-acetophenone and was catalyzed by irradiation with UV light. Both copolymers, with a shorter (polymers with BuenOx) and longer (polymers with DecenOx) hydrophobic sidechain could be functionalized. 1H NMR spectroscopic analysis showed a quantitative reaction with the thiazolidine derivate. After deprotection by acidic workup the desired, cysteine functionalized polymer could be isolated. Quantification of cysteine functions was ensured by a modified TNBSA assay, whereby the thiols were first oxidized in order to confirm an independent measurement of amine functions. Both, the TNBSA assay as well as the NMR measurement showed the desired number of cysteine residues. The cytotoxicity of functionalized polymers with different compositions was tested by a luminescent cell viability assay (LCVA). Both, the amount of cysteine functions (5-10\%) in the copolymers as well as the length of the hydrophobic side chain were varied. All polymers did not show cytotoxicity up to concentrations of 10 mg∙mL-1. The cell activity and cell numbers only decreased below 50\% and 20\% respectively, when copolymers with 5\% cysteine and longer sidechains were measured, which was attributed to a contamination of the sample itself. The cooperation partner performed Native Chemical Ligation (NCL) with model peptides and purified the products by HPLC. A sterically non demanding peptide was synthesized, consisting of an aromatic amino acid and four glycine units. The aromatic unit was used for the quantification of the polymer-peptide conjugate in the 1H NMR spectroscopy. A polymer having five cysteine side chains has been fully implemented by NCL to a conjugate of one polymer with five peptides. A sterically more demanding peptide was additionally used and MALDI ToF measurements confirmed the successful conjugation. Furthermore the cysteine functionalized polymer was used for nanogel synthesis. The thiol of the cysteine function was oxidized in an inverse mini-emulsion by H2O2, resulting in nanogels (~500 nm) which could be confirmed by SEM, AFM, DLS and NTA measurements. Besides POx, oligo (ethylene glycol)acrylates (OEGA) were polymerized; by copolymerization with the reactive pentafluorophenyl acrylate (PFPA) reactive and amphiphilic polymers were obtained. The synthesis of PFPA could be confirmed spectroscopically by 1H , 19F NMR, and by FT IR. Copolymers were synthesized by RAFT polymerization with narrow dispersities. Functionalization with an amine functionalized thiazolidine led to a hydrophilic cysteine functionalized polymer after acidic deprotection. Apart from this polymer, a thioester functionalization was successfully performed by reaction of the active polymer with a cyclic amine functionalized thioester which does not release a toxic by product (such as the resulting thiol) during NCL and thus features a very high potential to replace former thioester.}, subject = {Konjugate}, language = {en} } @phdthesis{Bertlein2019, author = {Bertlein, Sarah}, title = {Hydrogels as Biofunctional Coatings and Thiol-Ene Clickable Bioinks for Biofabrication}, doi = {10.25972/OPUS-17422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174225}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel dieser Arbeit war die Entwicklung von funktionalisierbaren Hydrogel Beschichtungen f{\"u}r Schmelz-elektrogeschriebene PCL Ger{\"u}ste und von Bio-druckbaren Hydrogelen f{\"u}r die Biofabrikation. Hydrogel Beschichtungen von Schmelz-elektrogeschriebenen Konstrukten erm{\"o}glichten die Kontrolle der Oberfl{\"a}chen-Hydrophilie und damit Zell-Material Interaktionsstudien in minimal Protein-adh{\"a}siven Umgebungen. Zu diesem Zweck wurde ein hydrophiles sternf{\"o}rmiges vernetzbares Polymer verwendet und eine Optimierung der Beschichtungsbedingungen durchgef{\"u}hrt. Außerdem boten neu entwickelte photosensitive Konstrukte eine Zeit- und pH-unabh{\"a}ngige Biofunktionalisierung. Bio-druckbare Hydrogele f{\"u}r die Biofabrikation basierten auf der Allyl-Funktionalisierung von Gelatine (GelAGE) und modifizierten Hyalurons{\"a}ure-Produkten, die das Hydrogel-Vernetzen mittels Thiol-En Click Chemie erm{\"o}glichen. Die Optimierung der GelAGE Hydrogel-Eigenschaften wurde durch eine detaillierte Analyse der Syntheseparameter, variierender En:SH Verh{\"a}ltnisse, unterschiedlicher Vernetzungsmolek{\"u}le und Photoinitiatoren erreicht. Die Homogenit{\"a}t der Thiol-En Netzwerke wurde mit denen der freien radikalischen Polymerisation verglichen und die Verwendbarkeit von GelAGE als Bio-Tinte f{\"u}r den Extrusions-basierten Bio-Druck wurde untersucht. Es wurde angenommen, dass reine Hyalurons{\"a}ure-basierte Bio-Tinten eine Beibehaltung der mechanischen und rheologischen Eigenschaften, der Zellviabilit{\"a}t und der Prozessierbarkeit erm{\"o}glichen trotz geringerem Polymer- und Thiol-Anteil der Hydrogele. Hydrogel-Beschichtungen: Hoch definierte PCL Ger{\"u}ste wurden mittels MEW hergestellt und anschließend mit sechs armigen sternf{\"o}rmigen vernetzbaren Polymeren (sP(EO-stat-PO)) beschichtet. Die Vernetzung wird durch die w{\"a}ssrig-induzierte Hydrolyse reaktiver Isocyanatgruppen (NCO) von sP(EO-stat-PO) bedingt. Diese Beschichtung erh{\"o}hte die Oberfl{\"a}chen-Hydrophilie und stellte eine Plattform f{\"u}r weitere Biofunktionalisierungen, in minimal Protein-adh{\"a}siven Umgebungen, dar. Nicht nur das Beschichtungsprotokoll wurde hinsichtlich der sP(EO-stat-PO) Konzentrationen und der Beschichtungsdauern optimiert, sondern auch Vorbehandlungen der Ger{\"u}ste wurden entwickelt. Diese waren essentiell um die finale Hydrophilie von sP(EO-stat-PO) beschichteten Ger{\"u}ste so zu erh{\"o}hen, dass unspezifische Protein-Adh{\"a}sionen vollst{\"a}ndig unterbunden wurden. Die sP(EO-stat-PO) Schichtdicke, von ungef{\"a}hr 100 nm, erm{\"o}glicht generell in vitro Studien nicht nur in Abh{\"a}ngigkeit der Ger{\"u}st-Biofunktionalisierung, sondern auch in Abh{\"a}ngigkeit der Ger{\"u}st-Architektur durchzuf{\"u}hren. Das Ausmaß der Hydrogel-Beschichtung wurde mittels einer indirekten Quantifizierung der NCO-Hydrolyse-Produkte ermittelt. Kenntnis {\"u}ber die NCO-Hydrolyse-Kinetik erm{\"o}glichte ein Gleichgewicht zwischen ausreichend beschichteten Ger{\"u}sten und der Pr{\"a}senz der NCO-Gruppen herzustellen, welche f{\"u}r die anschließenden Biofunktionalisierungen genutzt wurden. Diese Zeit- und pH-abh{\"a}ngige Biofunktionalisierung war jedoch nur f{\"u}r kleine Biomolek{\"u}le m{\"o}glich. Um diese Beschr{\"a}nkung zu umgehen und auch hochmolekulare Biomolek{\"u}le kovalent anzubinden, wurde ein anderer Reaktionsweg entwickelt. Dieser basierte auf der Photolyse von Diazirin-Gruppen und erm{\"o}glichte eine Zeit- und pH-unabh{\"a}ngige Biofunktionalisierung der Ger{\"u}ste mit Streptavidin und Kollagen Typ I. Die Fibrillen bildende Eigenschaft von Kollagen wurde genutzt um auf den Ger{\"u}sten verschiedene Kollagen-Konformationen zu erhalten und eine erste in vitro Studie best{\"a}tigte die Anwendbarkeit f{\"u}r Zell-Material Interaktionsstudien. Die hier entwickelten Ger{\"u}ste k{\"o}nnten verwendet werden um tiefere Einblicke in die Grundlagen der zellul{\"a}ren Wahrnehmung zu erhalten. Insbesondere die Komplexit{\"a}t mit der Zellen z.B. Kollagen wahrnehmen bleibt weiterhin kl{\"a}rungsbed{\"u}rftig. Hierf{\"u}r k{\"o}nnten diverse Hierarchien von Kollagen-{\"a}hnlichen Konformationen an die Ger{\"u}ste gebunden werden, z.B. Gelatine oder Kollagen-abgeleitete Peptidsequenzen. Dann k{\"o}nnte die Aktivierung der DDR-Rezeptoren in Abh{\"a}ngigkeit der Komplexit{\"a}t der angebundenen Substanzen bestimmt werden. Aufgrund der starken Streptavidin-Biotin Bindung k{\"o}nnten Streptavidin funktionalisierte Ger{\"u}ste eine vielseitige Plattform f{\"u}r die Immobilisierung von jeglichen biotinylierten Molek{\"u}len darstellen. Gelatine-basierte Bio-Tinten: Zuerst wurden die GelAGE-Produkte hinsichtlich der Molekulargewichts-Verteilung und der Integrit{\"a}t der Aminos{\"a}uren-Zusammensetzung synthetisiert. Eine detailliert Studie, mit variierenden molaren Edukt-Verh{\"a}ltnissen und Synthese-Zeitspannen, wurde durchgef{\"u}hrt und implizierte, dass der Gelatine Abbau am deutlichsten f{\"u}r stark alkalische Synthesebedingungen mit langen Reaktionszeiten war. Gelatine beinhaltet mehrere funktionalisierbare Gruppen und anhand diverser Model-Substanzen und Analysen wurde die vorrangige Amingruppen-Funktionalisierung ermittelt. Die Homogenit{\"a}t des GelAGE-Polymernetzwerkes, im Vergleich zu frei radikalisch polymerisierten GelMA-Hydrogelen, wurde best{\"a}tigt. Eine ausf{\"u}hrliche Analyse der Hydrogel-Zusammensetzungen mit variierenden funktionellen Gruppen Verh{\"a}ltnissen und UV- oder Vis-Licht induzierbaren Photoinitiatoren wurde durchgef{\"u}hrt. Die UV-Initiator Konzentration ist aufgrund der Zell-Toxizit{\"a}t und der potenziellen zellul{\"a}ren DNA-Besch{\"a}digung durch UV-Bestrahlung eingeschr{\"a}nkt. Das Zell-kompatiblere Vis-Initiator System hingegen erm{\"o}glichte, durch die kontrollierte Photoinitiator-Konzentration bei konstanten En:SH Verh{\"a}ltnissen und Polymeranteilen, die Einstellung der mechanischen Eigenschaften {\"u}ber eine große Spanne hinweg. Die Flexibilit{\"a}t der GelAGE Bio-Tinte f{\"u}r unterschiedliche additive Fertigungstechniken konnte, durch Ausnutzung des temperaturabh{\"a}ngigen Gelierungsverhaltens unterschiedlich stark degradierter GelAGE Produkte, f{\"u}r Stereolithographie und Extrusions-basiertem Druck bewiesen werden. Außerdem wurde die Viabilit{\"a}t zellbeladener GelAGE Konstrukte bewiesen, die mittels Extrusions-basiertem Bio-Druck erhalten wurden. Die Verwendung diverser multifunktioneller und makromolekularer Thiol-Vernetzungsmolek{\"u}le erm{\"o}glichte eine Verbesserung der mechanischen und rheologischen Eigenschaften und ebenso der Prozessierbarkeit. Verglichen mit dem kleinen bis-Thiol-funktionellen Vernetzungsmolek{\"u}l waren geringere Thiol-Vernetzer-Konzentrationen notwendig um bessere mechanische Festigkeiten und physikochemische Eigenschaften der Hydrogele zu erhalten. Der Extrusions-basierte Bio-Druck unterschiedlicher eingekapselter Zellen verdeutlichte die Notwendigkeit der individuellen Optimierung von Zell-beladenen Hydrogel-Formulierungen. Nicht nur die Zellviabilit{\"a}t von eingekapselten Zellen in Extrusions-basierten biogedruckten Konstrukten sollte bewertet werden, sondern auch andere Parameter wie die Zellmorphologie oder die Kollagen- oder Glykosaminoglykan-Produktion, da diese einige der essentiellen Voraussetzungen f{\"u}r die Verwendung in Knorpel Tissue Engineering Konzepten darstellen. Außerdem sollten diese Studien auf die stereolithographischen Ans{\"a}tze erweitert werden und letztlich w{\"a}re die Flexibilit{\"a}t und Zellkompatibilit{\"a}t der Formulierungen mit makromolekularen Vernetzern von Interesse. Makromolekulare Vernetzer erm{\"o}glichten die Reduktion des Polymeranteils und des Thiol-Gehalts und k{\"o}nnen, insbesondere in Kombination mit dem Zell-kompatibleren Vis-Initiator-System, voraussichtlich zu einer gesteigerten Zellkompatibilit{\"a}t beitragen, was zu kl{\"a}ren bleibt. Hyalurons{\"a}ure-basierte Bio-Tinten: Unterschiedliche Hyalurons{\"a}ure-Produkte (HA) wurden synthetisiert, sodass diese En- (HAPA) oder Thiol-Funktionalit{\"a}ten (LHASH) beinhalteten, um reine HA Thiol-En vernetzte Hydrogele zu erhalten. In Abh{\"a}ngigkeit des Molekulargewichts der HA-Produkte, der Polymeranteile und des En:SH Verh{\"a}ltnisses, konnte eine große Spanne an mechanischen Festigkeiten abgedeckt werden. Aufgrund der hohen Viskosit{\"a}t war allerdings im Falle von hochmolekularen HA (HHAPA) Produkt-L{\"o}sungen (HHAPA + LHASH) die Handhabbarkeit auf 5.0 wt.-\% beschr{\"a}nkt. Die Verwendung der gleichen HA Thiol-Komponenten (LHASH) erm{\"o}glichte Hybrid-Hydrogele, mit HA und GelAGE, mit reinen HA-Hydrogelen zu vergleichen. Obwohl der Polymeranteil von HHAPA + LHASH Hydrogelen signifikant geringer war, als im Vergleich zu Hybrid-Hydrogelen (GelAGE + LHASH), wurden f{\"u}r gleiche En:SH Verh{\"a}ltnisse {\"a}hnliche mechanische und physikochemische Eigenschaften reiner HA-Hydrogele bestimmt. Aufgrund der geringen Viskosit{\"a}t niedermolekularer HA L{\"o}sungen (LHAPA + LHASH) konnten diese nicht f{\"u}r den Extrusions-basierten Druck verwendet werden. Das nicht temperaturabh{\"a}ngige HHAPA + LHASH System hingegen konnte mit nur einem Viertel des Polymeranteils der Hybrid Formulierungen gedruckt werden. Im Vergleich zu der Hybrid Bio-Tinte wurde angenommen, dass das hoch viskose Verhalten von HHAPA + LHASH L{\"o}sungen, der geringere Polymeranteil, der geringere Druck f{\"u}r das Drucken und eine demzufolge geringere Scherspannung, maßgeblich zu der hohen Zellviabilit{\"a}t in Extrusions-basiert-biogedruckten Konstrukten beisteuerten. Die niedrigmolekulare HA Formulierung (LHAPA + LHASH) konnte zwar nicht f{\"u}r den Extrusions-basierten Druck verwendet werden, allerdings besitzt dieses System Potential f{\"u}r andere additive Fertigungstechniken wie z.B. der Stereolithographie. Um dieses System weiterzuentwickeln w{\"a}re, analog zu dem GelAGE System, eine detailliertere Studie zu den Funktionen eingekapselter Zellen hilfreich. Außerdem sollte die Initiierung dieses Systems mit dem Vis-Initiator untersucht werden.}, subject = {Biomaterial}, language = {en} } @phdthesis{LiebschergebBloehbaum2020, author = {Liebscher [geb. Bl{\"o}hbaum], Julia}, title = {Side chain functional poly(2-oxazoline)s for biomedical applications}, doi = {10.25972/OPUS-20396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The aim of the thesis was to develop water soluble poly(2-oxazoline) (POx) copolymers with new side group functionalities, which can be used for the formation of hydrogels in biomedical applications and for the development of peptide-polymer conjugates. First, random copolymers of the monomer MeOx or EtOx with ButEnOx and EtOx with DecEnOx were synthesized and characterized. The vinyl functionality brought into the copolymer by the monomers ButEnOx and DecEnOx would later serve for post-polymerization functionalization. The synthesized copolymers were further functionalized with thiols via post-polymerization functionalization using a newly developed synthesis protocol or with a protected catechol molecule for hydrogel formation. For the formation of peptide-polymer conjugates, a cyclic thioester, namely thiolactone acrylamide and an azlactone precursor, whose synthesis was newly developed, were attached to the side chain of P(EtOx-co-ButEnOx) copolymers. The application of the functionalized thiol copolymers as hydrogels using thiol-ene chemistry for cross-linking was demonstrated. The swelling behavior and mechanical properties were characterized. The hydrophilicity of the network as well as the cross-linking density strongly influenced the swelling behavior and the mechanical strength of the hydrogels. All hydrogels showed good cell viability results. The hydrogel networks based on MeOx and EtOx were loaded with two dyes, fluorescein and methylene blue. It was observed that the uptake of the more hydrophilic dye fluorescein depended more on the ability of the hydrogel to swell. In contrast, the uptake of the more hydrophobic dye methylene blue was less dependent on the swelling degree, but much more on the hydrophilicity of the network. For the potential application as cartilage glue, (biohybrid) hydrogels were synthesized based on the catechol-functionalized copolymers, with and without additional fibrinogen, using sodium periodate as the oxidizing agent. The system allowed for degradation due to the incorporated ester linkages at the cross-linking points. The swelling behavior as well as the mechanical properties were characterized. As expected, hydrogels with higher degrees of cross-linking showed less swelling and higher elastic modulus. The addition of fibrinogen however increased the elasticity of the network, which can be favorable for the intended application as a cartilage glue. Biological evaluation clearly demonstrated the advantage of degradable ester links in the hydrogel network, where chondrocytes were able to bridge the artificial gap in contrast to hydrogels without any ester motifs. Lastly, different ways to form peptide-polymer conjugates were presented. Peptides were attached with the thiol of the terminal cysteine group to the vinyl side chain of P(EtOx-co-ButEnOx) copolymers by radical thiol-ene chemistry. Another approach was to use a cyclic thioester, thiolactone, or an azlactone functionality to bind a model peptide via native chemical ligation. The two latter named strategies to bind peptides to POx side chains are especially interesting as one and in the case of thiolactone two free thiols are still present at the binding site after the reaction, which can, for example, be used for further thiol-ene cross-linking to form POx hydrogels. In summary, side functional poly(oxazoline) copolymers show great potential for numerous biomedical applications. The various side chain functionalities can be introduced by an appropriate monomer or by post-polymerization functionalization, as demonstrated. By their multi-functionality, hydrogel characteristics, such as cross-linking degree and mechanical strength, can be fine-tuned and adjusted depending on the application in the human body. In addition, the presented chemoselective and orthogonal reaction strategies can be used in the future to synthesize polymer conjugates, which can, for example, be used in drug delivery or in tissue regeneration.}, subject = {Polymere}, language = {en} } @phdthesis{Heffels2012, author = {Heffels, Karl-Heinz}, title = {Functional nanofibres for regenerative medicine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75684}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This thesis concerned the design and examination of a scaffold for tissue engineering applications. The template for the presented scaffold came from nature itself: the intercellular space in tissues that provides structure and support to the cells of the respective tissue, known as extracellular matrix (ECM). Fibres are a predominant characteristic feature of ECM, providing adhesion sites for cell-matrix interactions. In this dissertation a fibrous mesh was generated using the electrospinning technique to mimic the fibrous structure of the ECM. Two base polymers were explored: a biodegradable polyester, poly(D,L-lactide-co-glycolide); and a functional PEG-based star polymer, NCO-sP(EO-stat-PO). This topic was described in three major parts: the first part was materials based, concerning the chemical design and characterisation of the polymer scaffolds; the focus was then shifted to the cellular response to this fibrous scaffold; and finally the in vivo performance of the material was preliminarily assessed. The first steps towards an electrospun mesh started with adjusting the spinning parameters for the generation of homogeneous fibres. As reported in Chapter 3 a suitable setup configuration was on the one hand comprised of a spinning solution that consisted of 28.5 w/v\% PLGA RG 504 and 6 w/v\% NCO-sP(EO-stat-PO) in 450 µL acetone, 50 µL DMSO and 10 µL of an aqueous trifluoroacetic acid solution. On the other hand an ideal spinning behaviour was achieved at process parameters such as a flow rate of 0.5 mL/h, spinneret to collector distance of 12-16 cm and a voltage of 13 kV. The NCO-sP(EO-stat-PO) containing fibres proved to be highly hydrophilic as the functional additive was present on the fibre surface. Furthermore, the fibres featured a bulk degradation pattern as a consequence of the proportion of PLGA. Besides the morphologic similarity to ECM fibres, the functionality of the electrospun fibres is also decisive for a successful ECM mimicry. In Chapter 4, the passive as well as active functionality of the fibres was investigated. The fibres were required to be protein repellent to prevent an unspecific cell adhesion. This was proven as even 6.5 \% sP(EO-stat-PO) in the PLGA fibres reduced any unspecific protein adsorption of bovine serum albumin and foetal calf serum to less than 1 \%. However, avidin based proteins attached to the fibres. This adhesion process was avoided by an additional fibre surface treatment with glycidol. The active functionalisation of NCO-sP(EO-stat-PO)/PLGA fibres was investigated with two fluorescent dyes and biocytin. A threefold, chemically orthogonal, fibre modification was achieved with these dyes. The chapters about the chemical and mechanical properties laid the basis for the in vitro chapters where a specific fibre functionalisation with peptides was conducted to analyse the cell adhesion and biochemical expressions. Beginning with fibroblasts in Chapter 5 the focus was on the specific cell adhesion on the electrospun fibres. While NCO-sP(EO-stat-PO)/PLGA fibres without peptides did not allow any adhesion of fibroblasts, a fibre modification with GRGDS (an adhesion mediating peptide sequence) induced the adhesion and spreading of human dermal fibroblasts on the fibrous scaffolds. The control sequence GRGES that has no adhesion mediating qualities did not lead to any cell adhesion as observed on fibres without modifications. While the experiments of Chapter 5 were a proof-of-concept, in Chapter 6 a possible application in cartilage tissue engineering was examined. Therefore, primary human chondrocytes were seeded on fibrous scaffolds with various peptide sequences. Though the chondrocytes exhibited high viability on all scaffolds, an active interaction of cells and fibres was only found for the decorin derived sequence CGKLER. Live-cell-imaging revealed both cell attachment and migration within CGKLER-modified meshes. As chondrocytes undergo a de-differentiation towards a fibroblast-like phenotype, the chondrogenic re-differentiation on these scaffolds was investigated in a long term cell culture experiment of 28 days. Therefore, the glycosaminoglycan production was analysed as well as the mRNA expression of genes coding for collagen I and II, aggrecan and proteoglycan 4. In general only low amounts of the chondrogenic markers were measured, suggesting no chondrogenic differentiation. For conclusive evidence follow-up experiments are required that support or reject the findings. The success of an implant for tissue engineering relies not only on the response of the targeted cell type but also on the immune reaction caused by leukocytes. Hence, Chapter 7 dealt with primary human macrophages and their behaviour and phenotype on two-dimensional (2D) surfaces compared to three-dimensional (3D) fibrous substrates. It was found that the general non-adhesiveness of NCO-sP(EO-stat-PO) surfaces and fibres does not apply to macrophages. The cells aligned along the fibres on surfaces or resided in the pores of the meshes. On flat surfaces without 3D structure the macrophages showed a retarded adhesion kinetic accompanied with a high migratory activity indicating their search for a topographical feature to adhere to. Moreover, a detailed investigation of cell surface markers and chemokine signalling revealed that macrophages on 2D surfaces exhibited surface markers indicating a healing phenotype while the chemokine release suggested a pro-inflammatory phenotype. Interestingly, the opposite situation was found on 3D fibrous substrates with pro-inflammatory surface markers and pro-angiogenic cytokine release. As the immune response largely depends on cellular communication, it was concluded that the NCO-sP(EO-stat-PO)/PLGA fibres induce an adequate immune response with promising prospects to be used in a scaffold for tissue engineering. The final chapter of this thesis reports on a first in vivo study conducted with the presented electrospun fibres. Here, the fibres were combined with a polypropylene mesh for the treatment of diaphragmatic hernias in a rabbit model. Two scaffold series were described that differed in the overall surface morphology: while the fibres of Series A were incorporated into a thick gel of NCO-sP(EO-stat-PO), the scaffolds of Series B featured only a thin hydrogel layer so that the overall fibrous structure could be retained. After four months in vivo the treated defects of the diaphragm were significantly smaller and filled mainly with scar tissue. Thick granulomas occurred on scaffolds of Series A while the implants of Series B did not induce any granuloma formation. As a consequence of the generally positive outcome of this study, the constructs were enhanced with a drug release system in a follow-up project. The incorporated drug was the MMP-inhibitor Ilomastat which is intended to reduce the formation of scar tissue. In conclusion, the simple and straight forward fabrication, the threefold functionalisation possibility and general versatile applicability makes the meshes of NCO-sP(EO-stat-PO)/PLGA fibres a promising candidate to be applied in tissue engineering scaffolds in the future.}, subject = {Nanofaser}, language = {en} } @phdthesis{Blum2021, author = {Blum, Carina}, title = {A first step to an integral biointerface design for the early phase of regeneration}, doi = {10.25972/OPUS-21211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212117}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The implantation of any foreign material into the body automatically starts an immune reaction that serves as the first, mandatory step to regenerate tissue. The course of this initial immune reaction decides on the fate of the implant: either the biomaterial will be integrated into the host tissue to subsequently fulfill its intended function (e.g., tissue regeneration), or it will be repelled by fibrous encapsulation that determines the implant failure. Especially neutrophils and macrophages play major roles during this inflammatory response and hence mainly decide on the biomaterial's fate. For clinically relevant tissue engineering approaches, biomaterials may be designed in shape and morphology as well as in their surface functionality to improve the healing outcome, but also to trigger stem cell responses during the subsequent tissue regeneration phase. The main focus of this thesis was to unravel the influence of scaffold characteristics, including scaffold morphology and surface functionality, on primary human innate immune cells (neutrophils and macrophages) and human mesenchymal stromal cells (hMSCs) to assess their in vitro immune response and tissue regeneration capacity, respectively. The fiber-based constructs were produced either via melt electrowriting (MEW), when the precise control over scaffold morphology was required, or via solution electrospinning (ES), when the scaffold design could be neglected. All the fiber-based scaffolds used throughout this thesis were composed of the polymer poly(ε caprolactone) (PCL). A novel strategy to model and alleviate the first direct cell contact of the immune system with a peptide-bioactived fibrous material was presented in chapter 3 by treating the material with human neutrophil elastase (HNE) to imitate the neutrophil attack. The main focus of this study was put on the effect of HNE towards an RGDS-based peptide that was immobilized on the surface of a fibrous material to improve subsequent L929 cell adhesion. The elastase efficiently degraded the peptide-functionality, as evidenced by a decreased L929 cell adhesion, since the peptide integrated a specific HNE-cleavage site (AAPV-motif). A sacrificial hydrogel coating based on primary oxidized hyaluronic acid (proxHA), which dissolved within a few days after the neutrophil attack, provided an optimal protection of the peptide-bioactivated fibrous mesh, i.e, the hydrogel alleviated the neutrophil attack and largely ensured the biomaterial's integrity. Thus, according to these results, a means to protect the biomaterial is required to overcome the neutrophil attack. Chapter 4 was based on the advancement of melt electrowriting (MEW) to improve the printing resolution of MEW scaffolds in terms of minimal inter-fiber distances and a concomitant high stacking precision. Initially, to gain a better MEW understanding, the influence of several parameters, including spinneret diameter, applied pressure, and collector velocity on mechanical properties, crystallinity, fiber diameter and fiber surface morphology was analyzed. Afterward, innovative MEW designs (e.g., box-, triangle-, round , and wall-shaped scaffolds) have been established by pushing the printing parameters to their physical limits. Further, the inter-fiber distance within a standardized box-structured scaffold was successfully reduced to 40 µm, while simultaneously a high stacking precision was maintained. In collaboration with a co-worker of my department (Tina Tylek, who performed all cell-based experiments in this study), these novel MEW scaffolds have been proven to facilitate human monocyte-derived macrophage polarization towards the regenerative M2 type in an elongation-driven manner with a more pronounced effect with decreasing pore sizes. Finally, a pro-adipogenic platform for hMSCs was developed in chapter 5 using MEW scaffolds with immobilized, complex ECM proteins (e.g., human decellularized adipose tissue (DAT), laminin (LN), and fibronectin (FN)) to test for the adipogenic differentiation potential in vitro. Within this thesis, a special short-term adipogenic induction regime enabled to more thoroughly assess the intrinsic pro-adipogenic capacity of the composite biomaterials and prevented any possible masking by the commonly used long-term application of adipogenic differentiation reagents. The scaffolds with incorporated DAT consistently showed the highest adipogenic outcome and hence provided an adipo-inductive microenvironment for hMSCs, which holds great promise for applications in soft tissue regeneration. Future studies should combine all three addressed projects in a more in vivo-related manner, comprising a co-cultivation setup of neutrophils, macrophages, and MSCs. The MEW-scaffold, particularly due to its ability to combine surface functionality and adjustable morphology, has been proven to be a successful approach for wound healing and paves the way for subsequent tissue regeneration.}, subject = {Scaffold }, language = {en} } @phdthesis{Roedel2019, author = {R{\"o}del, Michaela}, title = {Development of Dual Setting Cement Systems as Composite Biomaterials with Ductile Properties}, doi = {10.25972/OPUS-18277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Synthetic bone replacement materials have their application in non-load bearing defects with the function of (re-)construction or substitution of bone. This tissue itself represents a biological composite material based on mineralized collagen fibrils and combines the mechanical strength of the mineral with the ductility of the organic matrix. By mimicking these outstanding properties with polymer-cement-composites, an imitation of bone is feasible. A promising approach for such replacement materials are dual setting systems, which are generated by dissolution-precipitation reaction with cement setting in parallel to polymerization and gelation of the organic phase forming a coherent hydrogel network. Hereby, the high brittleness of the pure inorganic network was shifted to a more ductile and elastic behavior. The aim of this thesis was focused on the development of different dual setting systems to modify pure calcium phosphate cements' (CPCs') mechanical performance by incorporation of a hydrogel matrix. A dual setting system based on hydroxyapatite (HA) and cross-linked 2-hydroxyethyl methacrylate (HEMA) via radical polymerization was advanced by homogenous incorporation of a degradable cross-linker composed of poly(ethylene glycol) (PEG) as well as poly(lactic acid) (PLA) with reactive terminal methacrylate functionalities (PEG-PLLA-DMA). By integration of this high molecular weight structure in the HEMA-hydrogel network, a significant increase in energy absorption (toughness) under 4-point bending testing was observed. An addition of only 10 wt\% hydrogel precursor (referred to the liquid phase) resulted in a duplication of stress over a period of 8 days. Additionally, the calculated elasticity was positively affected and up to six times higher compared to pure HA. With a constantly applied force during compressive strength testing, a deformation and thus strain levels of about 10 \% were reached immediately after preparation. For higher degradability, the system was modified in a second approach regarding organic as well as inorganic phase. The latter component was changed by brushite forming cement that is resorbable in vivo due to solubility processes. This CPC was combined with a hydrogel based on PEG-PLLA-DMA and other dimethacrylated PEGs with different molecular weights and concentrations. Hereby, new reaction conditions were created including a shift to acidic conditions. On this ground, the challenge was to find a new radical initiator system. Suitable candidates were ascorbic acid and hydrogen peroxide. that started the polymerization and successful gelation in this environment. These highly flexible dual set composites showed a very high ductility with an overall low strength compared to HA-based models. After removal of the applied force during compressive strength testing, a complete shape recovery was observed for the samples containing the highest polymeric amount (50 wt\%) of PEG-PLLA-DMA. Regarding phase distribution in the constructs, a homogenously incorporated hydrogel network was demonstrated in a decalcifying study with ethylenediaminetetraacetic acid. Intact, coherent hydrogels remained after dissolution of the inorganic phase via calcium ion complexation. In a third approach, the synthetic hydrogel matrix of the previously described system was replaced by the natural biopolymer gelatin. Simultaneously to brushite formation, physical as well as chemical cross-linking by the compound genipin was performed in the dual setting materials. Thanks to the incorporation of gelatin, elasticity increased significantly, in which concentrations up to 10.0 w/v\% resulted in a certain cohesion of samples after compressive strength testing. They did not dissociate in little pieces but remained intact cuboid specimens though having cracks or fissures. Furthermore, the drug release of two active pharmaceutical ingredients (vancomycin and rifampicin) was investigated over a time frame of 5 weeks. The release exponent was determined according to Korsmeyer-Peppas with n = 0.5 which corresponds to the drug liberation model of Higuchi. A sustained release was observed for the antibiotic vancomycin encapsulated in composites with a gelatin concentration of 10.0 w/v\% and a powder-to-liquid ratio of 2.5 g/mL. With respect to these developments of different dual setting systems, three novel approaches were successfully established by polymerization of monomers and cross-linking of precursors forming an incorporated, homogenous hydrogel matrix in a calcium phosphate network. All studies showed an essential transfer of mechanical performance in direction of flexibility and bendability.}, subject = {Calciumphosphate}, language = {en} } @phdthesis{Wittmann2014, author = {Wittmann, Katharina}, title = {Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107196}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm 'replace with alike', adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Spatz2013, author = {Spatz, Kerstin}, title = {Mechanische und rheologische Eigenschaften von Calciumphosphat-Zementen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Zur Erh{\"o}hung der mechanischen Stabilit{\"a}t mineralischer Knochenzemente aus Calciumorthophosphaten (CPC) wurde in einem TTCP/DCPA-System das Zementedukt TTCP mit verschiedenen biokompatiblen Oxiden (SiO2, TiO2, ZrO2) w{\"a}hrend des Herstellungsprozesses dotiert. Dies f{\"u}hrte zur Bildung von Calciummetallaten und einer Herabsetzung der L{\"o}slichkeit der TTCP-Komponente des Zements. Gegen{\"u}ber einem oxidfreien Zement konnte die Druckfestigkeit von 65 MPa auf 80 MPa (SiO2) bzw. 100 MPa (TiO2) gesteigert werden. In einem zweiten Ansatz zur Verbesserung der Injizierbarkeit wurden die Wechselwirkungen der Partikeloberfl{\"a}chen mit der fl{\"u}ssigen Zementphase betrachtet. Durch biokompatible Additive sollte eine repulsive elektrostatische Wechselwirkung eingestellt werden, um Partikelagglomerate effektiv zu dispergieren und eine verfl{\"u}ssigende Wirkung zu erreichen. Die Injizierbarkeit eines TTCP/DCPA-Zements durch eine Kan{\"u}le mit 800 µm Durchmesser konnte durch die Verwendung von 500 mM tri-Natriumzitrat-L{\"o}sung aufgrund einer deutlichen Herabsetzung der Viskosit{\"a}t der Zementpaste signifikant gesteigert werden (>95\%, P/L 3,3/1, Kraftaufwand 20 N). Abschließend wurde der Einfluss der Partikelgr{\"o}ßenverteilung auf die Festigkeit und Injizierbarkeit einer auf monomodaler Partikelgr{\"o}ßenverteilung basierten Zementmatrix untersucht. Hierzu wurden einem mechanisch aktivierten a-TCP-System unreaktive, feink{\"o}rnige F{\"u}llstoffpopulationen (TiO2, CaHPO4, CaCO3) zugesetzt und systematisch deren Effekt in Verbindung mit einer Partikelaufladung durch tri-Natriumzitrat auf die rheologischen und mechanischen Eigenschaften untersucht. Erst die Kombination einer bimodalen Partikelgr{\"o}ßenverteilung mit tri-Natriumzitrat-L{\"o}sung f{\"u}hrte zu einer starken Erniedrigung der Viskosit{\"a}t, damit zur nahezu vollst{\"a}ndigen Injizierbarkeit der Zemente und einer teilweise signifikanten Steigerung der mechanischen Festigkeiten (z.B. 72 MPa reiner a-TCP-Zement auf 142 MPa mit Zusatz von CaHPO4).}, subject = {Biomaterial}, language = {de} } @article{HuettenDhanasinghHessleretal.2014, author = {H{\"u}tten, Mareike and Dhanasingh, Anandhan and Hessler, Roland and St{\"o}ver, Timo and Esser, Karl-Heinz and M{\"o}ller, Martin and Lenarz, Thomas and Jolly, Claude and Groll, J{\"u}rgen and Scheper, Verena}, title = {In Vitro and In Vivo Evaluation of a Hydrogel Reservoir as a Continuous Drug Delivery System for Inner Ear Treatment}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0104564}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119375}, pages = {e104564}, year = {2014}, abstract = {Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX). To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO) prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.}, language = {en} } @phdthesis{Heise2020, author = {Heise, Kathrin Leonie}, title = {Charakterisierung eines 3D-Mikrotumormodells zur Untersuchung von Tumor-Stroma-Interaktionen}, doi = {10.25972/OPUS-21534}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215347}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Tumorzellen, Stromazellen, Extrazellul{\"a}rmatrix (EZM) und l{\"o}sliche Faktoren in der Tumormikroumgebung beeinflussen und verst{\"a}rken sich gegenseitig in der Ausbildung eines malignen Ph{\"a}notyps. Sowohl die fibrotische EZM als auch eine kleine Subpopulation von pluripotenten Tumorstammzellen sind bekanntermaßen f{\"u}r die Steigerung der Tumoraggressivit{\"a}t verantwortlich. Inwiefern diese beiden unabh{\"a}ngigen Faktoren im Kontext von Brustkrebs miteinander in Beziehung stehen, ist jedoch bis heute unklar. Um untersuchen zu k{\"o}nnen, welchen Beitrag Tumorzellen, Stromazellen, EZM und l{\"o}sliche Faktoren einzeln und im Zusammenspiel zur Malignit{\"a}t eines Tumors leisten, ist die Entwicklung geeigneter in-vitro-Modelle unabdingbar. Daher war es das Ziel dieser Arbeit, ein 3D-Mikrotumormodell zu generieren, in dem eine Analyse dieser genannten Faktoren stattfinden k{\"o}nnte. An diesem Modell wurden dar{\"u}ber hinaus erste Untersuchungen von im Tumorkontext bekannten EZM-Proteinen durchgef{\"u}hrt. Um die dreidimensionale Anordnung von Tumorzellen und ihrer Gewebeumgebung ad{\"a}quat wiedergeben zu k{\"o}nnen, beinhalteten die 3D-Tumorsph{\"a}roide sowohl Brustkrebszellen (MDA-MB-231) als auch Stromazellen (hASCs). Die EZM als wichtiger Bestandteil der (Tumor-) Mikroumgebung sollte {\"u}bersichtshalber durch H{\"a}matoxylin-Eosin-F{\"a}rbung und detaillierter durch immunhistochemische Analyse nach zwei verschiedenen Kulturzeitpunkten charakterisiert werden, um EZM-Ver{\"a}nderungen im zeitlichen Verlauf darzustellen. Im Fokus der Analyse standen die beiden wichtigsten profibrotischen EZM-Proteine Fibronektin und Kollagen I, die maßgeblich an der Pathogenese von Brustkrebs beteiligt sind. Zudem wurde das Vorkommen des Myofibroblastenmarkers α-SMA untersucht. An den Sph{\"a}roiden einer Kontrollgruppe, die lediglich hASCs beinhaltete, sollte vergleichend eine Analyse der genannten EZM-Proteine sowie α-SMA durchgef{\"u}hrt werden. Um schließlich den Einfluss der von Tumorzellen sezernierten l{\"o}slichen Faktoren in der Tumormikroumgebung herauszustellen, wurden Sph{\"a}roide aus hASCs in tumorkonditioniertem Medium gez{\"u}chtet und darin ebenfalls Matrixproteine und α-SMA untersucht. Abschließend erfolgte eine Korrelation der EZM-Analyse mit dem Vorhandensein von Tumorstammzellen in den 3D-Tumorsph{\"a}roiden. Daf{\"u}r wurden die Tumorstammzellen mithilfe eines GFP-basierten Reporters f{\"u}r den Stammzellmarker NANOG (NANOG-GFP-Reporterzelllinie) in mikroskopischen Aufnahmen der 3D-Tumorsph{\"a}roide nachgewiesen und im Kontext mit der EZM lokalisiert.}, subject = {Brustkrebs}, language = {de} } @phdthesis{Ryma2022, author = {Ryma, Matthias}, title = {Exploiting the Thermoresponsive Properties of Poly(2-oxazoline)s for Biofabrication}, doi = {10.25972/OPUS-24746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this thesis, non-modified POx, namely PnPrOx and PcycloPrOx, with an LCST in the physiological range between 20 and 37°C have been utilized as materials for three different biofabrication approaches. Their thermoresponsive behavior and processability were exploited to establish an easy-to-apply coating for cell sheet engineering, a novel method to create biomimetic scaffolds based on aligned fibrils via Melt Electrowriting (MEW) and the application of melt electrowritten sacrificial scaffolds for microchannel creation for hydrogels. Chapter 3 describes the establishment of a thermoresponsive coating for tissue culture plates. Here, PnPrOx was simply dissolved in water and dried in well plates and petri dishes in an oven. PnPrOx adsorbed to the surface, and the addition of warm media generated a cell culture compatible coating. It was shown that different cell types were able to attach and proliferate. After confluency, temperature reduction led to the detachment of cell sheets. Compared to standard procedures for surface coating, the thermoresponsive polymer is not bound covalently to the surface and therefore does not require specialized equipment and chemical knowledge. However, it should be noted that the detachment of the cell layer requires the dissolution of the PnPrOx-coating, leading to possible polymer contamination. Although it is only a small amount of polymer dissolved in the media, the detached cell sheets need to be washed by media exchange for further processing if required. ...}, subject = {Thermoresponsive Polymere}, language = {en} } @phdthesis{Haschke2021, author = {Haschke, Sebastian}, title = {Untersuchung Thiol-En vernetzter Gelatine Hydrogele und Vergleich mit Alginat-Gelatine in Bezug auf das in vitro Zellverhalten von Fibroblasten}, doi = {10.25972/OPUS-24872}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Hydrogele stehen als Material f{\"u}r den 3D-Biodruck zunehmend im Fokus aktueller Forschung, da sie aufgrund ihrer wasserhaltigen Struktur optimale Voraussetzungen f{\"u}r Anwendungen der Zellkultur aufweisen. Durch die Verarbeitung solcher Biotinten mittels additiver Fertigungstechniken der Biofabrikation erhofft man sich besch{\"a}digtes oder krankes Gewebe zu heilen oder zu ersetzen. Allerdings wird der Fortschritt in diesem Bereich durch einen Mangel an geeigneten Materialien gebremst, weshalb die Entwicklung neuer Biotinten von zentraler Bedeutung ist. Das Polymer GelAGE ist ein am Lehrstuhl f{\"u}r Funktionswerkstoffe der Medizin und Zahnheilkunde der Universit{\"a}t W{\"u}rzburg synthetisiertes Hydrogelsystem. Zu diesem {\"u}ber eine Thiol-En Reaktion vernetzenden Material stehen systematische Untersuchungen der f{\"u}r die in vitro Zellkultur relevanten Eigenschaften noch aus. Das Ziel dieser Arbeit war daher die biologische Evaluation von GelAGE und der Vergleich mit der Biotinte Alginat-Gelatine. Zu diesem Zweck wurden L929-Zellen f{\"u}r 7 Tage in verschiedenen Hydrogelzusammensetzungen in vitro kultiviert. Um die zytokompatiblen Eigenschaften in den verschiedenen Versuchsgruppen zu untersuchen, wurden die Proben mittels der in vitro Testverfahren Live/Dead F{\"a}rbung, DNA-Assay, CCK-8-Assay und Phalloidin-F{\"a}rbung analysiert. Im Rahmen dieser Arbeit konnte ein Herstellungsprotokoll f{\"u}r das Material GelAGE etabliert werden, welches eine Grundlage f{\"u}r die Durchf{\"u}hrung weiterer biologischer Experimente bietet. Das Resultat der biologischen Untersuchungen war, dass das Polymer GelAGE als zytokompatibel bewertet werden kann, es jedoch nicht die Qualit{\"a}t des Alginat-Gelatine Hydrogelsystems aufweist. Allerdings konnten die Eigenschaften der GelAGE Proben teilweise durch eine Modifikation mit Humanem Pl{\"a}ttchenlysat verbessert werden. Des Weiteren konnten deutliche Unterschiede in der Zell-Material- Interaktion zwischen den verschiedenen GelAGE Varianten nachgewiesen werden.}, subject = {Hydrogel}, language = {de} } @article{ShanBoeckKelleretal.2021, author = {Shan, Junwen and B{\"o}ck, Thomas and Keller, Thorsten and Forster, Leonard and Blunk, Torsten and Groll, J{\"u}rgen and Teßmar, J{\"o}rg}, title = {TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {19}, issn = {1420-3049}, doi = {10.3390/molecules26195963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248362}, year = {2021}, abstract = {Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer's backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker.}, language = {en} } @unpublished{SchaeferJanzenBakircietal.2019, author = {Schaefer, Natascha and Janzen, Dieter and Bakirci, Ezgi and Hrynevich, Andrei and Dalton, Paul D. and Villmann, Carmen}, title = {3D Electrophysiological Measurements on Cells Embedded within Fiber-Reinforced Matrigel}, series = {Advanced Healthcare Materials}, journal = {Advanced Healthcare Materials}, doi = {10.1002/adhm.201801226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244194}, year = {2019}, abstract = {2D electrophysiology is often used to determine the electrical properties of neurons, while in the brain, neurons form extensive 3D networks. Thus, performing electrophysiology in a 3D environment provides a closer situation to the physiological condition and serves as a useful tool for various applications in the field of neuroscience. In this study, we established 3D electrophysiology within a fiber-reinforced matrix to enable fast readouts from transfected cells, which are often used as model systems for 2D electrophysiology. Using melt electrowriting (MEW) of scaffolds to reinforce Matrigel, we performed 3D electrophysiology on a glycine receptor-transfected Ltk-11 mouse fibroblast cell line. The glycine receptor is an inhibitory ion channel associated when mutated with impaired neuromotor behaviour. The average thickness of the MEW scaffold was 141.4 ± 5.7µm, using 9.7 ± 0.2µm diameter fibers, and square pore spacings of 100 µm, 200 µm and 400 µm. We demonstrate, for the first time, the electrophysiological characterization of glycine receptor-transfected cells with respect to agonist efficacy and potency in a 3D matrix. With the MEW scaffold reinforcement not interfering with the electrophysiology measurement, this approach can now be further adapted and developed for different kinds of neuronal cultures to study and understand pathological mechanisms under disease conditions.}, language = {en} } @phdthesis{Bruns2015, author = {Bruns, Constanze}, title = {Der Einfluss von Laktobazillen auf Oberfl{\"a}che und Eigenschaften von verschiedenen Nahtmaterialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132982}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Hintergrund: Nach oralchirurgischen Eingriffen empfiehlt der Operateur allgemein die Vermeidung von Milchprodukten in Hinblick auf eine bessere Heilung im Wundgebiet. Dies st{\"u}tzt sich u.a. auf die Annahme, dass Laktobazillen und ihre Stoffwechselprodukte (z.B. Milchs{\"a}ure) Nahtmaterial angreifen k{\"o}nnen. Der Aufbau dieser Studie zielte darauf ab, diesen Sachverhalt in Frage zu stellen und Funktionsverluste bei Milchs{\"a}ureexposition sowie Besieldungsverhalten der Bakterien zu charakterisieren. Material und Methoden: Polyamid (PA), Polyester/Polyethylenterephtalat (PET), Polypropylen (PP), Polyvinylidenfluorid (PVDF), Seide, Polyglycols{\"a}ure (PGA bzw. PGACL), teilweise mit Polylactid (PLA), Polydioxanon (PDO) und Polytetrafluorethylen (PTFE) kamen zur Anwendung. Die F{\"a}den wurden mit L.acidophilus (LAC) beimpft, inkubiert und anschließen im Tensiometer mit verschiedenen Knotenvarianten getestet. F{\"u}r die Keimbesiedlung (CFU) wurden die F{\"a}den beimpft, inkubiert und das Keimmaterial anschließend mit Ultraschall- Vortex- Verfahren vom Faden abgel{\"o}st und ausgez{\"a}hlt. Dieses Verfahren wurde durch REM- Aufnahmen zus{\"a}tzlich bewertet. Ergebnisse: Reißfestigkeiten waren stets im Rahmen der Herstellerangaben bzw. dar{\"u}ber zu verzeichnen. Alle resorbierbaren F{\"a}den hatten h{\"o}here Ausgangsreißkr{\"a}fte als die nichtresorbierbaren Produkte. Die Applikation eines Knotens minderte ausschlaggebend f{\"u}r alle Produkte die maximale Reißfestigkeit eines Materials. Die Knotenhaltbarkeiten konnten sich w{\"a}hrend der Liegezeit im sauren w{\"a}ssrigen Milieu ver{\"a}ndern. Die f{\"u}r klinische Anwendungen besten Ergebnisse verzeichneten PA als nichtresorbierbare, monofiles PDO und polyfiles PGA/PLA + CHX als resorbierbare Vertreter. Eine erh{\"o}hte CFU-Zahl auf polyfilen F{\"a}den im Vergleich zu monofilen F{\"a}den wurde best{\"a}tigt. Seide (polyfil, nicht resorbierbar) hatte mit Abstand die h{\"o}chsten CFU, gefolgt von PGACL (polyfil, resorbierbar). PVDF (monofil, nichtresorbierbar) hatte die niedrigsten CFU- Werte. Im Schnitt war die CFU-Zahl von PGA/PLA+CHX (polyfil, resorbierbar) {\"a}hnlich hoch wie die von monofilen Produkten. Diskussion: Die Annahme, dass eine Kontamination mit LAC den Heilungserfolg beeinflussen kann, wurde im Hinblick auf Materialerm{\"u}dung durch S{\"a}ureexposition aus Stoffwechselprodukten des Bakteriums entkr{\"a}ftet. Die f{\"u}r klinische Anwendungen besten Ergebnisse verzeichneten PA als nichtresorbierbare, polyfiles PGA/PLA + CHX als resorbierbare Vertreter. Alle getesteten Produkte entsprachen trotz LAC- Einwirkungen den Herstellerangaben und haben somit die materiellen Voraussetzungen einer vorhersagbaren Nahthaltbarkeit erbracht.}, subject = {Lactobacillus acidophilus}, language = {de} } @phdthesis{Kessler2015, author = {Keßler, Martina}, title = {Biodegradable solvent cast films and solution electrospun meshes for the prevention of postsurgical adhesions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Intraperitoneal adhesions are fibrous bands that connect tissues in the peritoneal cavity that are usually separated. These adhesions form as a consequence of trauma, inflammation or surgical interventions and often result in severe consequences such as chronic pain, small bowel obstructions or female infertility. The aim of this thesis was to develop a synthetic barrier device for adhesion prevention made of modified poly(lactide) [PLA]. Solid PLA films (SurgiWrap®) are already successfully in clinical use due to the good biocompatibility and the biodegradability of the material resulting in non-toxic degradation products since lactic acid is naturally part of the metabolic circles of the human body. Considering the brittleness and stiffness of the films, the long degradation time of several months as well as the need for suturing, there is potential for optimization. Through a copolymerization with the hydrophilic poly(ethylene glycol) [PEG], a reduction of the degradation time was intendend. Moreover, the copolymerization should also lead to an improvement of the mechanical properties of the films since PEG acts as plasticizer for PLA. Linear PLA-PEG-PLA triblock copolymers as well as star-shaped PEG-PLA copolymers were synthesized via standard ring opening polymerization to tailor the barrier properties. Besides solid films, solution electrospun meshes from PLA and the synthesized PEG-PLA copolymers were investigated for a potential application as well. Since suturing of a barrier additionally induces adhesion formation, alginate coated membranes were prepared in order to achieve self-adhesiveness. With the intention to reduce infections and consequently inflammation, electrospun meshes and solvent cast films were loaded with the antibacterial drug triclosan and drug release as well as antibacterial efficacy was investigated. Mechanical tests confirmed that through the variation of the PEG content and branching the mechanical properties can be tailored and are in good accordance with the glass transition temperatures [Tg] of the polymers. Consequently, potentially adequate mechanical properties for surgical handling as well as for the performance within the patient's body were successfully achieved. Degradation studies revealed that the degradation time was significantly shorter for PEG-PLA membranes than for PLA films and with an appropriate PEG content could be adjusted to the intended time frame. Cell adhesion and viability tests confirmed the non-toxicity of the clinically used PLA films as well as of PEG-PLA films and meshes. With a bioadhesion test the benefit of an alginate coated side towards the pure PLA film concerning self-adhesiveness was successfully demonstrated. Moreover, optical evaluations and a T-peel test of different alginate coated PLA films showed that the cohesion between the chemically different layers was distinctly enhanced by the use of an appropriate PEG-PLA mesh as intermediate cohesion promoting layer. In in vitro release studies with triclosan loaded films a higher release was determined for PEG-PLA than for PLA films. In agar diffusion tests a higher and longer inhibition of staphylococcus aureus growth was observed confirming the release results. Moreover, drug loaded meshes (especially drug loaded after electrospinning) showed enhanced and elongated bacterial inhibition in comparison to films.}, subject = {Polymere}, language = {en} } @article{ProjahnSimsekyilmazSinghetal.2014, author = {Projahn, Delia and Simsekyilmaz, Sakine and Singh, Smriti and Kanzler, Isabella and Kramp, Birgit K. and Langer, Marcella and Burlacu, Alexandrina and Bernhagen, J{\"u}rgen and Klee, Doris and Zernecke, Alma and Hackeng, Tilman M. and Groll, J{\"u}rgen and Weber, Christian and Liehn, Elisa A. and Koenen, Roy R.}, title = {Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction}, series = {Journal of Cellular and Molecular Medicine}, volume = {18}, journal = {Journal of Cellular and Molecular Medicine}, number = {5}, issn = {1582-4934}, doi = {10.1111/jcmm.12225}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116597}, pages = {790-800}, year = {2014}, abstract = {Myocardial infarction (MI) induces a complex inflammatory immune response, followed by the remodelling of the heart muscle and scar formation. The rapid regeneration of the blood vessel network system by the attraction of hematopoietic stem cells is beneficial for heart function. Despite the important role of chemokines in these processes, their use in clinical practice has so far been limited by their limited availability over a long time-span in vivo. Here, a method is presented to increase physiological availability of chemokines at the site of injury over a defined time-span and simultaneously control their release using biodegradable hydrogels. Two different biodegradable hydrogels were implemented, a fast degradable hydrogel (FDH) for delivering Met-CCL5 over 24hrs and a slow degradable hydrogel (SDH) for a gradual release of protease-resistant CXCL12 (S4V) over 4weeks. We demonstrate that the time-controlled release using Met-CCL5-FDH and CXCL12 (S4V)-SDH suppressed initial neutrophil infiltration, promoted neovascularization and reduced apoptosis in the infarcted myocardium. Thus, we were able to significantly preserve the cardiac function after MI. This study demonstrates that time-controlled, biopolymer-mediated delivery of chemokines represents a novel and feasible strategy to support the endogenous reparatory mechanisms after MI and may compliment cell-based therapies.}, language = {en} } @article{KastenNaserBruellhoffetal.2014, author = {Kasten, Annika and Naser, Tamara and Br{\"u}llhoff, Kristina and Fiedler, J{\"o}rg and M{\"u}ller, Petra and M{\"o}ller, Martin and Rychly, Joachim and Groll, J{\"u}rgen and Brenner, Rolf E.}, title = {Guidance of Mesenchymal Stem Cells on Fibronectin Structured Hydrogel Films}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, doi = {10.1371/journal.pone.0109411}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114897}, pages = {e109411}, year = {2014}, abstract = {Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 mu m and 80 mu m and spacings between 5 mu m and 20 mu m that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.}, language = {en} } @article{RathBrandlHilleretal.2014, author = {Rath, Subha N. and Brandl, Andreas and Hiller, Daniel and Hoppe, Alexander and Gbureck, Uwe and Horch, Raymund E. and Boccaccini, Aldo R. and Kneser, Ulrich}, title = {Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0113319}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114339}, year = {2014}, abstract = {Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches.}, language = {en} } @phdthesis{Zimmermann2014, author = {Zimmermann, Sabine Annette}, title = {Mechanisch stabile Magnesiumphosphatsch{\"a}ume und deren Zytokompatibilit{\"a}t}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114055}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Magnesiumphosphatsch{\"a}ume nehmen auf Grund ihrer guten Resorbierbarkeit, unter physiologischen Bedingungen, einen immer gr{\"o}ßeren Stellenwert als Knochenersatzmaterial ein. Ein weiterer Vorteil ist der neutrale pH-Wert den das entstehende Material besitzt. Magnesiumphosphatsch{\"a}ume besitzen eine hochpor{\"o}se offenporige Struktur um zum einen den Knochen nachzuahmen und zum anderen die Steuerung und Bildung von Knochengewebe zu erm{\"o}glichen. In der vorliegenden Arbeit wurden die mechanischen Eigenschaften als auch die Zytokompatibilit{\"a}t der hergestellten Sch{\"a}ume untersucht. Es wurden unterschiedliche Herstellungsverfahren genutzt um Magnesiumphosphatsch{\"a}ume zu erhalten. Zum einen das Replika- Verfahren, die dabei entstandenen Farringtonit Sch{\"a}ume (Mg3(PO4)2, Farringtonit) wurden zu Struvit ((NH4)Mg(PO4)•6H2O) umgewandelt bzw. mit PLGA infiltriert und auf ihre mechanische Eigenschaften hin untersucht. Zum anderen wurde ein proteinbasierter Schaumbildner verwendet. Die Zytokompatibilit{\"a}tspr{\"u}fung wurde mit der Osteosarkomzelllinie MG-63 durchgef{\"u}hrt. Es erfolgte die Untersuchung der Zellproliferation und der Zellaktivit{\"a}t (WST). Zudem wurden Proben mittels Licht- und Elektronenmikroskopie analysiert. Die Feststellung der Proteinexpression erfolgte nach gelelektrophoretischer Auftrennung mittels Western Blot und PCR Analyse.}, subject = {Magnesiumphosphate}, language = {de} } @phdthesis{Hinderer2021, author = {Hinderer, Sandra}, title = {Charakterisierung der Freisetzung verschiedener Antibiotika aus resorbierbaren anorganischen Knochenersatzmaterialien sowie die Untersuchung des Einflusses auf materialcharakteristische Eigenschaften}, doi = {10.25972/OPUS-23083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230836}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Synthetische anorganische Knochenersatzmaterialien auf Calcium-Phosphat- und Magnesium-Phosphat-Basis wurden in der hier vorliegenden Dissertation mit verschiedenen handels{\"u}blichen Antibiotika versetzt und deren Freisetzungsverhalten charakterisiert. Zudem wurde der Einfluss des Antibiotikazusatzes auf bestimmte materialcharakteristische Eigenschaften untersucht, hierbei fanden die Quecksilberporosimetrie, die R{\"o}ntgendiffraktometrie und die Rasterelektronenmikroskopie ihre Anwendung. Insbesondere f{\"u}r die Knochenersatzmaterialien auf Calcium-Phosphat-Basis sollte eine klinisch praktikable und demnach m{\"o}glichst einfache Methode etabliert werden, um die Kombination mit einem Antibiotikum durchzuf{\"u}hren. Die Detektion der Antibiotika erfolgte mit Hilfe eines UV/VIS-Spektrophotometers. Zudem wurde f{\"u}r einige ausgew{\"a}hlte Kombinationen aus Antibiotikum und Knochenersatzmaterial durch einen Agardiffusionstest die antibakterielle Wirkung nach der Freisetzung aus dem jeweiligen Tr{\"a}germaterial best{\"a}tigt.}, subject = {Wirkstofffreisetzung}, language = {de} } @phdthesis{Jung2021, author = {Jung, Melissa}, title = {Entwicklung und Charakterisierung vorgemischter lagerstabiler Zementpasten f{\"u}r den 3D-Druck}, doi = {10.25972/OPUS-23018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230189}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ziel dieser Arbeit war die Entwicklung und Charakterisierung vorgemischter Calciumphosphatzementpasten sowie die {\"U}bertragung des Konzepts dieser Pasten auf den 3D-Druck. Es wurden drei verschiedene Zementformulierungen untersucht, basierend auf Pulvermischungen aus α-TCP/DCPA/CaCO3 (Biozement D), TTCP/DCPA und β-TCP/MCPA, die auf verschiedene Materialeigenschaften gepr{\"u}ft und einem 3D-Druckversuch unterzogen wurden. Die Biozement D Paste wurde mit drei Pulver-Fl{\"u}ssigkeits-Verh{\"a}ltnissen (PLR) (80/20, 85/15, 87/13), die TTCP/DCPA Paste mit zwei PLR (83/17, 85/15), und die β-TCP/MCPA Paste ebenfalls mit zwei PLR (67/33, 70/30) getestet. Alle Pasten konnten mit dem 3D-Drucker erfolgreich verdruckt werden. Die Biozement D Paste mit dem PLR 85/15 stellte sich in ihrer Gruppe als die geeignetste Paste heraus. Bessere Ergebnisse bez{\"u}glich der Injizierbarkeit und Druckbarkeit erreichte die TTCP/DCPA Paste. Hier wurden mit beiden PLR formstabile Scaffolds erzielt. Feine Wabenmuster konnten mit dem PLR von 83/17 in Kombination mit einer hohen Druckgeschwindigkeit hergestellt werden. Mit dem h{\"o}heren PLR (85/15) und einer niedrigeren Druckgeschwindigkeit stieg die Formstabilit{\"a}t weiter an, wodurch die hexagonale Struktur exakter gedruckt werden konnte. Ein gutes Druckergebnis konnte auch mit der β-TCP/MCPA Paste und dem PLR 70/30 erreicht werden.}, subject = {Knochenzemente}, language = {de} } @article{LorsonRuoppNadernezhadetal.2020, author = {Lorson, Thomas and Ruopp, Matthias and Nadernezhad, Ali and Eiber, Julia and Vogel, Ulrich and Jungst, Tomasz and L{\"u}hmann, Tessa}, title = {Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component}, series = {ACS Omega}, volume = {5}, journal = {ACS Omega}, number = {12}, doi = {10.1021/acsomega.9b04096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229460}, pages = {6481-6486}, year = {2020}, abstract = {Bioprinting has emerged as a valuable threedimensional (3D) biomanufacturing method to fabricate complex hierarchical cell-containing constructs. Spanning from basic research to clinical translation, sterile starting materials are crucial. In this study, we present pharmacopeia compendial sterilization methods for the commonly used bioink component alginate. Autoclaving (sterilization in saturated steam) and sterile filtration followed by lyophilization as well as the pharmacopeia non-compendial method, ultraviolet (UV)-irradiation for disinfection, were assessed. The impact of the sterilization methods and their effects on physicochemical and rheological properties, bioprinting outcome, and sterilization efficiency of alginate were detailed. Only sterile filtration followed by lyophilization as the sterilization method retained alginate's physicochemical properties and bioprinting behavior while resulting in a sterile outcome. This set of methods provides a blueprint for the analysis of sterilization effects on the rheological and physicochemical pattern of bioink components and is easily adjustable for other polymers used in the field of biofabrication in the future.}, language = {en} } @article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Horder, Hannes and Stahlhut, Philipp and Groll, J{\"u}rgen and Blunk, Torsten and Teßmar, J{\"o}rg}, title = {Bioink Platform Utilizing Dual-Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells}, series = {Macromolecular Bioscience}, volume = {22}, journal = {Macromolecular Bioscience}, number = {2}, doi = {10.1002/mabi.202100331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257556}, pages = {2100331}, year = {2022}, abstract = {3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell-hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual-stage crosslinking approach based on thiolated hyaluronic acid (HA-SH), which not only provides stand-alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA-SH with different molecular weights is synthesized and crosslinked with acrylated (PEG-diacryl) and allylated (PEG-diallyl) polyethylene glycol in a two-step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV-mediated thiol-ene reaction to stabilize the printed bioink for long-term cell culture. Bioinks with high molecular weight HA-SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long-term cultured constructs. The dual-stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.}, language = {en} } @article{WeissenbergerWeissenbergerGilbertetal.2020, author = {Weissenberger, M. and Weissenberger, M. H. and Gilbert, F. and Groll, J. and Evans, C. H. and Steinert, A. F.}, title = {Reduced hypertrophy in vitro after chondrogenic differentiation of adult human mesenchymal stem cells following adenoviral SOX9 gene delivery}, series = {BMC Musculoskeletal Disorders}, volume = {20}, journal = {BMC Musculoskeletal Disorders}, doi = {10.1186/s12891-020-3137-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229232}, year = {2020}, abstract = {Background Mesenchymal stem cell (MSC) based-treatments of cartilage injury are promising but impaired by high levels of hypertrophy after chondrogenic induction with several bone morphogenetic protein superfamily members (BMPs). As an alternative, this study investigates the chondrogenic induction of MSCs via adenoviral gene-delivery of the transcription factor SOX9 alone or in combination with other inducers, and comparatively explores the levels of hypertrophy and end stage differentiation in a pellet culture system in vitro. Methods First generation adenoviral vectors encoding SOX9, TGFB1 or IGF1 were used alone or in combination to transduce human bone marrow-derived MSCs at 5 x 10\(^2\) infectious particles/cell. Thereafter cells were placed in aggregates and maintained for three weeks in chondrogenic medium. Transgene expression was determined at the protein level (ELISA/Western blot), and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results SOX9 cDNA was superior to that encoding TGFB1, the typical gold standard, as an inducer of chondrogenesis in primary MSCs as evidenced by improved lacuna formation, proteoglycan and collagen type II staining, increased levels of GAG synthesis, and expression of mRNAs associated with chondrogenesis. Moreover, SOX9 modified aggregates showed a markedly lower tendency to progress towards hypertrophy, as judged by expression of the hypertrophy markers alkaline phosphatase, and collagen type X at the mRNA and protein levels. Conclusion Adenoviral SOX9 gene transfer induces chondrogenic differentiation of human primary MSCs in pellet culture more effectively than TGFB1 gene transfer with lower levels of chondrocyte hypertrophy after 3 weeks of in vitro culture. Such technology might enable the formation of more stable hyaline cartilage repair tissues in vivo.}, language = {en} } @phdthesis{Wettstein2020, author = {Wettstein, Lars}, title = {Elektrochemische Abscheidung von Bruschitschichten auf Titan in Gegenwart von Kristallisationsinhibitoren zur Steuerung von Kristallitgr{\"o}ße und biologischer Reaktion}, doi = {10.25972/OPUS-21750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217502}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Es erfolgte eine elektrochemische Abscheidung von Bruschitschichten auf Titan in Gegenwart von Kristallisationsinhibitoren. Dabei wurden die Kristallisationsinhibitoren Zitronens{\"a}ure, treta-Natriumdiphosphat-Decahydrat und Phytins{\"a}ure verwendet und die entstandenen Schichten mit denen ohne Inhibitorzugabe verglichen. Um das Ausmaß der Inhibierung zu verifizieren, wurde die Masse aller Schichten gemessen, welche f{\"u}r die Inhibition mit Zitronens{\"a}ure und Phytins{\"a}ure abnahm und f{\"u}r Natriumdiphosphat zunahm. Die kristallographische Zusammensetzung der mit und ohne Inhibierung abgeschiedenen Schichten wurde mit Hilfe der R{\"o}ntgendiffraktometrie bestimmt und zeigte, dass sich reine Bruschitschichten mit unterschiedlichem amorphem Anteil abschieden. Die daraus entstandenen Werte lieferten zugleich die Informationen {\"u}ber die einzelnen Kristallitgr{\"o}ßen innerhalb der Schichten. {\"U}ber den Einfluss der Inhibitoren auf die Schichtmorphologie gaben rasterelektronenmikroskopische Aufnahmen weiteren Aufschluss. Die Inhibition verursachte teils mit Rissen durchzogene Schichten, deren Kristallformationen sich von Standardelektrolyt unterschieden. Ausgew{\"a}hlte Proben wurden unter verschiedenen Bedingungen desinfiziert bzw. sterilisiert und nachfolgend erneut gewogen und mittels R{\"o}ntgendiffraktogrammetrie und Rasterelektronenmikroskopie analysiert. Nach der Desinfektion entstanden reine Bruschitschichten, die an Masse verloren aber trotzdem die typischen Kristallformationen zeigten. Die Sterilisation f{\"u}hrte zur Umwandlung von Bruschit in Monetit und Hydroxylapatit. Des Weiteren wurde die biologische Reaktion der Schichten auf humane f{\"o}tale Osteoblasten-Zelllinien zur {\"U}berpr{\"u}fung der Zellvertr{\"a}glichkeit ermittelt. Die entstandenen Ergebnisse waren nicht verwertbar und enthielt sehr hohe Standardabweichungen.}, subject = {Elektrochemische Abscheidung}, language = {de} } @phdthesis{Meininger2022, author = {Meininger, Markus}, title = {Calcium hydroxide as antibacterial implant coating}, doi = {10.25972/OPUS-26112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261122}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In modern medicine hip and knee joint replacement are common surgical procedures. However, about 11 \% of hip implants and about 7 \% of knee implants need re-operations. The comparison of implant registers revealed two major indications for re-operations: aseptic loosening and implant infections, that both severely impact the patients' health and are an economic burden for the health care system. To address these problems, a calcium hydroxide coating on titanium was investigated in this thesis. Calcium hydroxide is a well-known antibacterial agent and used with success in dentistry. The coatings were applied with electrochemically assisted deposition, a versatile tool that combines easiness of process with the ability to coat complex geometries homogeneously. The pH-gradient during coating was investigated and showed the surface confinement of the coating process. Surface pre-treatment altered the surface morphology and chemistry of the titanium substrates and was shown to affect the morphology of the calcium hydroxide coatings. The influence of the coating parameters stirring speed and current pulsing were examined in various configurations and combinations and could also affect the surface morphology. A change in surface morphology results in a changed adhesion and behavior of cells and bacteria. Thus, the parameters surface pre-treatment, stirring speed and current pulsing presented a toolset for tailoring cellular response and antibacterial properties. Microbiological tests with S. aureus and S. epidermidis were performed to test the time-dependent antibacterial activity of the calcium hydroxide coatings. A reduction of both strains could be achieved for 13 h, which makes calcium hydroxide a promising antibacterial coating. To give insight into biofilm growth, a protocol for biofilm staining was investigated on titanium disks with S. aureus and S. epidermidis. Biofilm growth could be detected after 5 days of bacterial incubation, which was much earlier than the 3 weeks that are currently assumed in medical treatment. Thus, it should be considered to treat infections as if a biofilm were present from day 5 on. The ephemeral antibacterial properties of calcium hydroxide were further enhanced and prolonged with the addition of silver and copper ions. Both ionic modifications significantly enhanced the bactericidal potential. The copper modification showed higher antibacterial effects than the silver modification and had a higher cytocompatibility which was comparable to the pure calcium hydroxide coating. Thus, copper ions are an auspicious option to enhance the antibacterial properties. Calcium hydroxide coatings presented in this thesis have promising antibacterial properties and can easily be applied to complex geometries, thus they are a step in fighting aseptic loosening and implant infections.}, subject = {Calciumhydroxid}, language = {en} } @phdthesis{Kade2023, author = {Kade, Juliane Carolin}, title = {Expanding the Processability of Polymers for a High-Resolution 3D Printing Technology}, doi = {10.25972/OPUS-27005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270057}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis identifies how the printing conditions for a high-resolution additive manufacturing technique, melt electrowriting (MEW), needs to be adjusted to process electroactive polymers (EAPs) into microfibers. Using EAPs based on poly(vinylidene difluoride) (PVDF), their ability to be MEW-processed is studied and expands the list of processable materials for this technology.}, subject = {Polymere}, language = {en} } @article{GrollBurdickChoetal.2019, author = {Groll, J and Burdick, J A and Cho, D-W and Derby, B and Gelinsky, M and Heilshorn, S C and J{\"u}ngst, T and Malda, J and Mironov, V A and Nakayama, K and Ovsianikov, A and Sun, W and Takeuchi, S and Yoo, J J and Woodfield, T B F}, title = {A definition of bioinks and their distinction from biomaterial inks}, series = {Biofabrication}, volume = {11}, journal = {Biofabrication}, number = {1}, doi = {10.1088/1758-5090/aaec52}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253993}, year = {2019}, abstract = {Biofabrication aims to fabricate biologically functional products through bioprinting or bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are positioned at defined coordinates in three-dimensional space using automated and computer controlled techniques (Moroni et al 2018 Trends Biotechnol. 36 384-402), usually with the aid of biomaterials that are either (i) directly processed with the cells as suspensions/dispersions, (ii) deposited simultaneously in a separate printing process, or (iii) used as a transient support material. Materials that are suited for biofabrication are often referred to as bioinks and have become an important area of research within the field. In view of this special issue on bioinks, we aim herein to briefly summarize the historic evolution of this term within the field of biofabrication. Furthermore, we propose a simple but general definition of bioinks, and clarify its distinction from biomaterial inks.}, language = {en} } @article{TylekBlumHrynevichetal.2020, author = {Tylek, Tina and Blum, Carina and Hrynevich, Andrei and Schlegelmilch, Katrin and Schilling, Tatjana and Dalton, Paul D and Groll, J{\"u}rgen}, title = {Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages}, series = {Biofabrication}, volume = {12}, journal = {Biofabrication}, number = {2}, doi = {10.1088/1758-5090/ab5f4e}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254012}, year = {2020}, abstract = {Macrophages are key players of the innate immune system that can roughly be divided into the pro-inflammatory M1 type and the anti-inflammatory, pro-healing M2 type. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates a proper healing and subsequent regeneration. One promising strategy to drive macrophage polarization by biomaterials is precise control over biomaterial geometry. For regenerative approaches, it is of particular interest to identify geometrical parameters that direct human macrophage polarization. For this purpose, we advanced melt electrowriting (MEW) towards the fabrication of fibrous scaffolds with box-shaped pores and precise inter-fiber spacing from 100 μm down to only 40 μm. These scaffolds facilitate primary human macrophage elongation accompanied by differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 μm. These new findings can be important in helping to design new biomaterials with an enhanced positive impact on tissue regeneration.}, language = {en} } @article{SunStarlyDalyetal.2020, author = {Sun, Wei and Starly, Binil and Daly, Andrew C and Burdick, Jason A and Groll, J{\"u}rgen and Skeldon, Gregor and Shu, Wenmiao and Sakai, Yasuyuki and Shinohara, Marie and Nishikawa, Masaki and Jang, Jinah and Cho, Dong-Woo and Nie, Minghao and Takeuchi, Shoji and Ostrovidov, Serge and Khademhosseini, Ali and Kamm, Roger D and Mironov, Vladimir and Moroni, Lorenzo and Ozbolat, Ibrahim T}, title = {The bioprinting roadmap}, series = {Biofabrication}, volume = {12}, journal = {Biofabrication}, number = {2}, doi = {10.1088/1758-5090/ab5158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254027}, year = {2020}, abstract = {This bioprinting roadmap features salient advances in selected applications of the technique and highlights the status of current developments and challenges, as well as envisioned advances in science and technology, to address the challenges to the young and evolving technique. The topics covered in this roadmap encompass the broad spectrum of bioprinting; from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. The emerging application of printing-in-space and an overview of bioprinting technologies are also included in this roadmap. Due to the rapid pace of methodological advancements in bioprinting techniques and wide-ranging applications, the direction in which the field should advance is not immediately clear. This bioprinting roadmap addresses this unmet need by providing a comprehensive summary and recommendations useful to experienced researchers and newcomers to the field.}, language = {en} } @article{HochleitnerJuengstBrownetal.2015, author = {Hochleitner, Gernot and J{\"u}ngst, Tomasz and Brown, Toby D and Hahn, Kathrin and Moseke, Claus and Jakob, Franz and Dalton, Paul D and Groll, J{\"u}rgen}, title = {Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing}, series = {Biofabrication}, volume = {7}, journal = {Biofabrication}, number = {3}, doi = {10.1088/1758-5090/7/3/035002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254053}, year = {2015}, abstract = {The aim of this study was to explore the lower resolution limits of an electrohydrodynamic process combined with direct writing technology of polymer melts. Termed melt electrospinning writing, filaments are deposited layer-by-layer to produce discrete three-dimensional scaffolds for in vitro research. Through optimization of the parameters (flow rate, spinneret diameter, voltage, collector distance) for poly-ϵ-caprolactone, we could direct-write coherent scaffolds with ultrafine filaments, the smallest being 817 ± 165 nm. These low diameter filaments were deposited to form box-structures with a periodicity of 100.6 ± 5.1 μm and a height of 80 μm (50 stacked filaments; 100 overlap at intersections). We also observed oriented crystalline regions within such ultrafine filaments after annealing at 55 °C. The scaffolds were printed upon NCO-sP(EO-stat-PO)-coated glass slide surfaces and withstood frequent liquid exchanges with negligible scaffold detachment for at least 10 days in vitro.}, language = {en} } @article{PaxtonSmolanBoecketal.2017, author = {Paxton, Naomi and Smolan, Willi and B{\"o}ck, Thomas and Melchels, Ferry and Groll, J{\"u}rgen and Jungst, Tomasz}, title = {Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability}, series = {Biofabrication}, volume = {9}, journal = {Biofabrication}, number = {4}, doi = {10.1088/1758-5090/aa8dd8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254061}, year = {2017}, abstract = {The development and formulation of printable inks for extrusion-based 3D bioprinting has been a major challenge in the field of biofabrication. Inks, often polymer solutions with the addition of crosslinking to form hydrogels, must not only display adequate mechanical properties for the chosen application but also show high biocompatibility as well as printability. Here we describe a reproducible two-step method for the assessment of the printability of inks for bioprinting, focussing firstly on screening ink formulations to assess fibre formation and the ability to form 3D constructs before presenting a method for the rheological evaluation of inks to characterise the yield point, shear thinning and recovery behaviour. In conjunction, a mathematical model was formulated to provide a theoretical understanding of the pressure-driven, shear thinning extrusion of inks through needles in a bioprinter. The assessment methods were trialled with a commercially available cr{\`e}me, poloxamer 407, alginate-based inks and an alginate-gelatine composite material. Yield stress was investigated by applying a stress ramp to a number of inks, which demonstrated the necessity of high yield for printable materials. The shear thinning behaviour of the inks was then characterised by quantifying the degree of shear thinning and using the mathematical model to predict the window of printer operating parameters in which the materials could be printed. Furthermore, the model predicted high shear conditions and high residence times for cells at the walls of the needle and effects on cytocompatibility at different printing conditions. Finally, the ability of the materials to recover to their original viscosity after extrusion was examined using rotational recovery rheological measurements. Taken together, these assessment techniques revealed significant insights into the requirements for printable inks and shear conditions present during the extrusion process and allow the rapid and reproducible characterisation of a wide variety of inks for bioprinting.}, language = {en} } @phdthesis{Shan2022, author = {Shan, Junwen}, title = {Tailoring Hyaluronic Acid and Gelatin for Bioprinting}, doi = {10.25972/OPUS-29825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the field of biofabrication, biopolymer-based hydrogels are often used as bulk materials with defined structures or as bioinks. Despite their excellent biocompatibility, biopolymers need chemical modification to fulfill mechanical stability. In this thesis, the primary alcohol of hyaluronic acid was oxidized using TEMPO/TCC oxidation to generate aldehyde groups without ring-opening mechanism of glycol cleavage using sodium periodate. For crosslinking reaction of the aldehyde groups, adipic acid dihydrazide was used as bivalent crosslinker for Schiff Base chemistry. This hydrogel system with fast and reversible crosslinking mechanism was used successfully as bulk hydrogel for chondrogenic differentiation with human mesenchymal stem cells (hMSC). Gelatin was modified with pentenoic acid for crosslinking reaction via light controllable thiol-ene reaction, using thiolated 4-arm sPEG as multivalent crosslinker. Due to preservation of the thermo responsive property of gelatin by avoiding chain degradation during modification reaction, this gelatin-based hydrogel system was successfully processed via 3D printing with low polymer concentration. Good cell viability was achieved using hMSC in various concentrations after 3D bioprinting and chondrogenic differentiation showed promising results.}, subject = {Hydrogel}, language = {en} } @phdthesis{Boehm2023, author = {B{\"o}hm, Christoph}, title = {Thermal Stability of the Polyesters PCL and PLGA during Melt Electrowriting}, doi = {10.25972/OPUS-30613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The focus of this thesis was to investigate how PCL and PLGA react to the heat exposure that comes with the MEW process over a defined timespan. To assess the thermal stability of PCL during MEW over 25 d, an automated collection of fibers has been used to determine the CTS on each day of heating for three different temperatures. PCL is exceptionally stable over 25 d at 75 °C, whereas for 85 °C and 95 °C a slight upward trend during the last 10 d could be observed, which is an indication for thermal degradation. Same trend could be observed for diameter of fibers produced at a fixed collector speed. For all temperatures, CTS during the first 5 d decreased due to inhomogeneities of the melt. Physical analysis of the fibers by XRD and mechanical testing showed no significant changes. To investigate the chemical details of the thermal durability, PCL was artificially aged over 25 d at 75 °C, 85 °C and 95 °C. Data from GPC analysis and rheology revealed that PCL is degrading steadily at all three temperatures. Combined with GC-MS analysis, two different mechanisms for degradation could be observed: random chain scission and unzipping. Additional GPC experiment using a mixture of PCL and a fluorescence labelled PCL showed that PCL was undergoing ester interchange reactions, which could explain its thermal stability. PLGA was established successfully as material for MEW. GPC results revealed that PLGA degraded heavily in the one-hour preheating period. To reduce the processing temperature, ATEC was blended with PLGA in three mixtures. This slowed down degradation and a processing window of 6 h could be established. Mechanical testing with fibers produced with PLGA and all three blends was performed. PLGA was very brittle, whereas the blends showed an elastic behavior. This could be explained by ester interchange reactions that formed a loosely crosslinked network with ATEC.}, subject = {Degradation}, language = {en} } @article{RoedelTessmarGrolletal.2019, author = {R{\"o}del, Michaela and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Gbureck, Uwe}, title = {Tough and Elastic alpha-Tricalcium Phosphate Cement Composites with Degradable PEG-Based Cross-Linker}, series = {Materials}, volume = {12}, journal = {Materials}, number = {53}, doi = {10.3390/ma12010053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226437}, pages = {1-20}, year = {2019}, abstract = {Dual setting cements composed of an in situ forming hydrogel and a reactive mineral phase combine high compressive strength of the cement with sufficient ductility and bending strength of the polymeric network. Previous studies were focused on the modification with non-degradable hydrogels based on 2-hydroxyethyl methacrylate (HEMA). Here, we describe the synthesis of suitable triblock degradable poly(ethylene glycol)-poly(lactide) (PEG-PLLA) cross-linker to improve the resorption capacity of such composites. A study with four different formulations was established. As reference, pure hydroxyapatite (HA) cements and composites with 40 wt\% HEMA in the liquid cement phase were produced. Furthermore, HEMA was modified with 10 wt\% of PEG-PLLA cross-linker or a test series containing only 25\% cross-linker was chosen for composites with a fully degradable polymeric phase. Hence, we developed suitable systems with increased elasticity and 5-6 times higher toughn ess values in comparison to pure inorganic cement matrix. Furthermore, conversion rate from alpha-tricalcium phosphate (alpha-TCP) to HA was still about 90\% for all composite formulations, whereas crystal size decreased. Based on this material development and advancement for a dual setting system, we managed to overcome the drawback of brittleness for pure calcium phosphate cements.}, language = {en} } @article{HorvatVogelKampfetal.2020, author = {Horvat, Sonja and Vogel, Patrick and Kampf, Thomas and Brandl, Andreas and Alshamsan, Aws and Alhadlaq, Hisham A. and Ahamed, Maqusood and Albrecht, Krystyna and Behr, Volker C. and Beilhack, Andreas and Groll, J{\"u}rgen}, title = {Crosslinked Coating Improves the Signal-to-Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI)}, series = {ChemNanoMat}, volume = {6}, journal = {ChemNanoMat}, number = {5}, doi = {10.1002/cnma.202000009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214718}, pages = {755 -- 758}, year = {2020}, abstract = {Magnetic particle imaging is an emerging tomographic method used for evaluation of the spatial distribution of iron-oxide nanoparticles. In this work, the effect of the polymer coating on the response of particles was studied. Particles with covalently crosslinked coating showed improved signal and image resolution.}, language = {en} } @article{JanzenBakirciFaberetal.2022, author = {Janzen, Dieter and Bakirci, Ezgi and Faber, Jessica and Andrade Mier, Mateo and Hauptstein, Julia and Pal, Arindam and Forster, Leonard and Hazur, Jonas and Boccaccini, Aldo R. and Detsch, Rainer and Teßmar, J{\"o}rg and Budday, Silvia and Blunk, Torsten and Dalton, Paul D. and Villmann, Carmen}, title = {Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation}, series = {Advanced Healthcare Materials}, volume = {11}, journal = {Advanced Healthcare Materials}, number = {21}, doi = {10.1002/adhm.202201826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318682}, year = {2022}, abstract = {3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30-500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca\(^{2+}\) imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases.}, language = {en} } @phdthesis{Gruber2022, author = {Gruber, Julia}, title = {Gefrierstrukturierung von Biopolymer-Keramik-Kompositen}, doi = {10.25972/OPUS-25953}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259533}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Das Ziel der vorliegenden Arbeit war, die Gefrierstrukturierung von Biopolymer-Keramik-Kompositen zur Nachahmung von osteochondralem Gewebe zu untersuchen. Dies diente der Forschung an alternativen Therapiemethoden zur Regeneration von osteochondralen Defekten, da durch derzeitige Therapien oftmals nur ein minderwertiger Reparaturknorpel gebildet wird und keine langfristigen Erfolge erzielt werden. Die Herstellung der Proben zur Nachahmung von osteochondralem Gewebe erfolgte mit der Technik der Gefrierstrukturierung, wodurch anisotrope und hoch geordnete Systeme erhalten wurden. Im Rahmen einer systematischen Untersuchung wurden mehrere Parameter, wie beispielsweise der externe Temperaturgradient, variiert und deren Auswirkungen auf die Proben untersucht. Im ersten Versuchsteil wurde die bidirektionale Gefrierstrukturierung untersucht, um die Morphologie der hergestellten Proben zu optimieren. Anschließend wurden zweischichtige Alginat- bzw. Kollagen-Bruschit-Systeme zur Nachahmung von osteochondralem Gewebe hergestellt. Die erste Schicht sollte Knochen imitieren, w{\"a}hrend die zweite Schicht Knorpel nachahmte. Die Morphologie der hergestellten Proben wurde unter dem Stereo- und Rasterelektronenmikroskop untersucht. Zur Untersuchung des mechanischen Verbundes zwischen den Schichten wurden Zugversuche durchgef{\"u}hrt. Alle hergestellten Systeme waren hoch geordnet und anisotrop. Die zweischichtigen Systeme wiesen einen Verbund beider Schichten auf und durch die Variation verschiedenster Parameter konnte ein n{\"a}heres Verst{\"a}ndnis des Einflusses dieser auf die Probenmorphologie erlangt werden.}, subject = {Gerichtete Erstarrung}, language = {de} } @phdthesis{Smolan2022, author = {Smolan, Willi}, title = {Linear Multifunctional PEG-Alternatives for Bioconjugation and Hydrogel Formation}, doi = {10.25972/OPUS-27873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The objective of this thesis was the synthesis and characterisation of two linear multifunctional PEG-alternatives for bioconjugation and hydrogel formation: i) Hydrophilic acrylate based copolymers containing peptide binding units and ii) hydrophilic polyether based copolymers containing different functional groups for a physical crosslinking. In section 3.1 the successful synthesis of water soluble and linear acrylate based polymers containing oligo(ethylene glycol) methyl ether acrylate with either linear thioester functional 2-hydroxyethyl acrylate, thiolactone acrylamide, or vinyl azlactone via the living radical polymerisation technique Reversible Addition Fragmentation Chain Transfer (RAFT) and via free-radical polymerisation is described. The obtained polymers were characterized via GPC, 1H NMR, IR and RAMAN spectroscopy. The RAFT end group was found to be difficult to remove from these short polymer chains and accordingly underwent the undesired side reaction aminolysis with the peptide during the conjugation studies. Besides that, polymers without RAFT end groups did not show any binding of the peptide at the thioester groups, which can be improved in future by using higher reactant concentrations and higher amount of binding units at the polymer. Polymers containing the highly reactive azlactone group showed a peptide binding of 19 \%, but unfortunately this function also underwent spontaneous hydrolysis before the peptide could even be bound. In all cases, oligo(ethylene glycol) methyl ether acrylate was used with a relatively high molecular weight (Mn = 480 Da) was used, which eventually was efficiently shielding the introduced binding units from the added peptide. In future, a shorter monomer with Mn = 300 Da or less or hydrophilic N,N'-dialkyl acrylamide based polymers with less steric hindrance could be used to improve this bioconjugation system. Additionally, the amount of monomers containing peptide binding units in the polymer can be increased and have an additional spacer to achieve higher loading efficiency. The water soluble, linear and short polyether based polymers, so called polyglycidols, were successfully synthesized and modified as described in section 3.2. The obtained polymers were characterized using GPC, 1H NMR, 31P{1H} NMR, IR, and RAMAN spectroscopy. The allyl groups which were present up to 20 \% were used for radical induced thiol-ene chemistry for the introduction of functional groups intended for the formation of the physically crosslinking hydrogels. For the positively charged polymers, first a chloride group had to be introduced for the subsequent nucleophilic substitution with the imidazolium compound. There, degrees of modifications were found in the range 40-97 \% due to the repulsion forces of the charges, decreased concentration of active chloride groups, and limiting solution concentrations of the polymer for this reaction. For the negatively charged polymers, first a protected phosphonamide moiety was introduced with a deprotection step afterwards showing 100 \% conversion for all reactions. Preliminary hydrogel tests did not show a formation of a three-dimensional network of the polymer chains which was attributed to the short backbone length of the used polymers, but the gained knowledge about the synthetic routes for the modification of the polymer was successfully transferred to longer linear polyglycidols. The same applies to the introduction of electron rich and electron poor compounds showing π-π stacking interactions by UV-vis spectroscopy. Finally, long linear polyglycidyl ethers were synthesised successfully up to molecular weights of Mn ~ 30 kDa in section 3.3, which was also proven by GPC, 1H NMR, IR and RAMAN spectroscopy. This applies to the homopolymerisation of ethoxyethyl glycidyl ether, allyl glycidyl ether and their copolymerisation with an amount of the allyl compound ~ 10 \%. Attempts for higher molecular weights up to 100 kDa showed an uncontrolled polymerisation behaviour and eventually can be improved in future by choosing a lower initiation temperature. Also, the allyl side groups were modified via radical induced thiol-ene chemistry to obtain positively charged functionalities via imidazolium moieties (85 \%) and negatively charged functionalities via phosphonamide moieties (100 \%) with quantitative degree of modifications. Hydrogel tests have still shown a remaining solution by using long linear polyglycidols carrying negative charges with long/short linear polyglycidols carrying positive charges. The addition of calcium chloride led to a precipitate of the polymer instead of a three-dimensional network formation representing a too high concentration of ions and therefore shielding water molecules with prevention from dissolving the polymer. These systems can be improved by tuning the polymers structure like longer polymer chains, longer spacer between polymer backbone and charge, and higher amount of functional groups. The objective of the thesis was partly reached containing detailed investigated synthetic routes for the design and characterisation of functional polymers which could be used in future with improvements for bioconjugation and hydrogel formation tests.}, subject = {Wasserl{\"o}sliche Polymere}, language = {en} } @phdthesis{Weigl2023, author = {Weigl, Franziska}, title = {Correlation of FluidFM® Technology and Fluorescence Microscopy for the Visualization of Cellular Detachment Steps}, doi = {10.25972/OPUS-29876}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298763}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis aimed the development of a correlated device which combines FluidFM® with Fluorescence Microscopy (FL) (FL-FluidFM®) and enables the simultaneous quantification of adhesion forces and fluorescent visualization of mature cells. The implementation of a PIFOC was crucial to achieve a high-resolution as well as a stable but dynamic focus level. The functionality of SCFS after hardware modification was verified by comparing two force-curves, both showing the typical force progression and measured with the optimized and conventional hardware, respectively. Then, the integration of FL was examined by detaching fluorescently labeled REF52 cells. The fluorescence illumination of the cytoskeleton showed the expected characteristic force profile and no evidence of interference effects. Afterwards a corresponding correlative data analysis was addressed including manual force step fitting, the identification of visualized cellular unbinding, and a time-dependent correlation. This procedure revealed a link between the area of cytoskeletal unbinding and force-jumps. This was followed by a comparison of the detachment characteristics of intercellular connected HUVECs and individual REF52 cells. HUVECs showed maximum detachment forces in the same order of magnitude as the ones of single REF52 cells. This contrasted with the expected strong cohesiveness of endothelial cells and indicated a lack of cell-cell contact formation. The latter was confirmed by a comparison of HUVECs, primary HBMVECs, and immortalized EA.hy926 cells fluorescently labeled for two marker proteins of intercellular junctions. This unveiled that both the previous cultivation duration and the cell type have a major impact on the development of intercellular junctions. In summary, the correlative FL FluidFM® represents a powerful novel approach, which enables a truly contemporaneous performance and, thus, has the potential to reveal new insights into the mechanobiological properties of cell adhesion.}, language = {en} } @phdthesis{Schaufler2023, author = {Schaufler, Christian Thomas Siegfried}, title = {Osteogenes Potential additiv gefertigter Calciummagnesiumphosphat-Keramiken}, doi = {10.25972/OPUS-31179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311798}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Der steigende Bedarf an Knochenersatzmaterialien (KEM) in Medizin und Zahnmedizin verdeutlicht die Notwendigkeit der Etablierung weiterer alloplastischer, also synthetisch hergestellter, KEMs. Additive Fertigung erm{\"o}glicht die Herstellung patientenspezifischer Implantate. Hierf{\"u}r wird auf Basis von 3D Bildgebung eines Knochendefekts, ein Implantat mittels CAD geplant und anschließend mittels additiver Fertigung, zum Beispiel durch 3D Pulverdruck hergestellt. Ziel dieser Arbeit war die Untersuchung des osteogenen Potentials in vitro von Calciummagnesiumphosphatkeramiken mit der allgemeinen Strukturformel CaxMg(3-x)(PO4)2 mit x = 0; 0,25; 0,75; 1,5; 3 aus additiver Fertigung. Hierf{\"u}r wurden Pr{\"u}fk{\"o}rper mittels 3D Pulverdruck gedruckt, anschließend durch Hochtemperatursinterung verfestigt und durch Behandlung mit reaktiven L{\"o}sungen nachgeh{\"a}rtet. Abh{\"a}ngig von der reaktiven L{\"o}sung wandelte sich die Keramik teilweise in Struvit, Bruschit und Newberyit um. Die biologische Testung in vitro erfolgte mit hFOB 1.19 Zellen und ergab eine gute Biokompatibilit{\"a}t sowie die Ausdifferenzierung osteogener Progenitorzellen f{\"u}r fast alle Keramikphasen, wobei die newberyithaltigen Keramiken tendenziell bessere Ergebnisse erzielten.}, subject = {Knochenzement}, language = {de} } @article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Groll, J{\"u}rgen and Teßmar, J{\"o}rg and Blunk, Torsten}, title = {Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020924}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284239}, year = {2022}, abstract = {In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.}, language = {en} } @phdthesis{Seifert2022, author = {Seifert, Annika Kristina}, title = {Unidirectional freezing of soft and hard matter for biomedical applications}, doi = {10.25972/OPUS-27728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277281}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A multitude of human tissues, such as bones, tendons, or muscles, are characterized by a hierarchical and highly ordered structure. In many cases, the loss of these tissues requires reconstruction using biocompatible replacement materials. In the field of bone replacement, the pore structure of the material has a crucial influence. Anisotropic porosity would have the advantage of facilitating the ingrowth of cells and newly formed blood vessels as well as the transport of nutrients. In this thesis, scaffolds with a highly ordered and anisotropic pore structure were fabricated using unidirectional freezing. Systematic investigations were carried out on biopolymer solutions (alginate and chitosan) to gain a deeper understanding of the freeze-structuring process. The knowledge gained was then applied to the development of anisotropically structured bone substitute materials. Here, the previously existing material platform for anisotropically structured calcium phosphates was extended to low-temperature phases such as calcium deficient hydroxyapatite (CDHA) or the secondary phosphates monetite and brushite. After the implantation of a biomaterial, the inevitably triggered initial immune response plays a key role in the success of a graft, with immune cells such as neutrophils or macrophages being of particular importance. In this thesis, the influence of anisotropically structured alpha-TCP and CDHA scaffolds as well as their unstructured references on human monocytes/macrophages was investigated. Macrophages produced extracellular traps (ETs) due to mineral nanoparticles formed by the binding of phosphate and calcium ions to human platelet lysate. In particular, incubation of alpha-TCP samples in lysate containing cell culture medium resulted in pronounced particle formation and enhanced release of ETs.}, subject = {Freezing}, language = {en} } @phdthesis{Nadolinski2022, author = {Nadolinski, Annemarie}, title = {Einfluss des extrusionsbasierten 3D-Drucks von Einzelzellen und Sph{\"a}roiden in Alginat-Gelatine-Hydrogelen auf die chondrogene Differenzierung humaner mesenchymaler Stromazellen}, doi = {10.25972/OPUS-28047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280472}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Knorpeldefekte gelten in der Medizin als besonders schwierig zu beheben, da das avaskul{\"a}re und aneurale hyaline Knorpelgewebe nur {\"u}ber sehr begrenzte Selbstheilungskr{\"a}fte verf{\"u}gt. Die Entwicklung neuer klinischer Therapien f{\"u}r eine erfolgreiche Regeneration bis hin zum vollst{\"a}ndigen Ersatz von besch{\"a}digtem oder erkranktem Knorpel stellt daher das Ziel umfangreicher Forschung dar. Dar{\"u}ber hinaus zeichnet sich Knorpel durch eine organisierte, zonale Zell-Matrix-Verteilung und -Dichte aus, die m{\"o}glichst naturgetreu nachgebildet werden muss, um einen ad{\"a}quaten Gelenkknorpelersatz zu schaffen. Das dreidimensionale Bioprinting von humanen mesenchymalen Stromazellen (hMSCs) in Hydrogelen ist hierbei ein vielversprechender Ansatz. Es sind jedoch umfangreiche Studien erforderlich, um herauszufinden, wie 3D-Stammzellkonstrukte mit unterschiedlichen Zelldichten und Zell-Zell-Wechselwirkungen in einer gedruckten Hydrogel Matrix interagieren. Deshalb wurde in dieser Arbeit untersucht, ob die mesenchymalen Stromazellen in Form von Einzelzellen oder Sph{\"a}roiden durch das Extrusionsdruckverfahren in ihrer Proliferationsf{\"a}higkeit und ihrem chondrogenen Differenzierungspotential beeintr{\"a}chtigt werden. Hierf{\"u}r wurden in dieser Arbeit sowohl das Zell{\"u}berleben als auch Proliferations- und Differenzierungsmarker in gedruckten und nicht gedruckten Proben mit Einzelzellkonzentrationen von 2-20 Millionen Zellen sowie bei Sph{\"a}roiden mit ca 4000 Zellen/Sph{\"a}roid untersucht. Es konnte gezeigt werden, dass das extrusionsbasierte Druckverfahren keine negativen Auswirkungen auf die {\"U}berlebensf{\"a}higkeit und die Proliferation der hMSCs hat. Zum Nachweis der chondrogenen Differenzierung wurden mehrere Experimente durchgef{\"u}hrt. Durch die Expression von Typ-II-Kollagen und Aggrecan sowie durch die Quantifizierung von GAG welches zu einem großen Teil in der ECM von Knorpelgewebe zu finden ist, konnte best{\"a}tigt werden, dass die mesenchymalen Stromazellen durch den Druckprozess ihr chondrogenes Differenzierungspotential nicht einb{\"u}ßen. Die beim 3D-Bioprinting auftretenden Scherkr{\"a}fte scheinen die in-vitro Chondrogenese sogar ohne chemische Stimulation durch TGF-β1 anzustoßen. Außerdem zeigten die Sph{\"a}roidgruppen ein h{\"o}heres chondrogenes Differenzierungspotential als die Einzelzellgruppen. Um dies im Zusammenhang mit dem 3D Extrusionsdruckverfahren zu best{\"a}tigen, erscheint es sinnvoll, weitere Versuche mit noch h{\"o}heren Zellkonzentrationen in Form von Sph{\"a}roiden durchzuf{\"u}hren. Zusammenfassend zeigte sich in dieser Arbeit, dass das extrusionsbasierte Druckverfahren in Alginat/Gelatine Hydrogelen keine Zellsch{\"a}digung verursacht und weder die chondrogene Differenzierung von Einzelzellen noch von Sph{\"a}roiden beeintr{\"a}chtigt.}, subject = {Tissue Engineering}, language = {de} } @article{HorderGuazaLasherasGrummeletal.2021, author = {Horder, Hannes and Guaza Lasheras, Mar and Grummel, Nadine and Nadernezhad, Ali and Herbig, Johannes and Erg{\"u}n, S{\"u}leyman and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Fabry, Ben and Bauer-Kreisel, Petra and Blunk, Torsten}, title = {Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, doi = {10.3390/cells10040803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236496}, year = {2021}, abstract = {Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell-cell and cell-matrix interplay within the tumor-stroma microenvironment}, language = {en} } @article{PienBartolf–KoppParmentieretal.2022, author = {Pien, Nele and Bartolf-Kopp, Michael and Parmentier, Laurens and Delaey, Jasper and de Vos, Lobke and Mantovani, Diego and van Vlierberghe, Sandra and Dubruel, Peter and Jungst, Tomasz}, title = {Melt Electrowriting of a Photo-Crosslinkable Poly(ε-caprolactone)-Based Material into Tubular Constructs with Predefined Architecture and Tunable Mechanical Properties}, series = {Macromolecular Materials and Engineering}, volume = {307}, journal = {Macromolecular Materials and Engineering}, number = {7}, issn = {1438-7492}, doi = {10.1002/mame.202200097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318524}, year = {2022}, abstract = {Melt electrowriting (MEW) is an additive manufacturing process that produces highly defined constructs with elements in the micrometer range. A specific configuration of MEW enables printing tubular constructs to create small-diameter tubular structures. The small pool of processable materials poses a bottleneck for wider application in biomedicine. To alleviate this obstacle, an acrylate-endcapped urethane-based polymer (AUP), using a poly(ε-caprolactone) (PCL) (molar mass: 20 000 g mol\(^{-1}\)) (AUP PCL20k) as backbone material, is synthesized and utilized for MEW. Spectroscopic analysis confirms the successful modification of the PCL backbone with photo-crosslinkable acrylate endgroups. Printing experiments of AUP PCL20k reveal limited printability but the photo-crosslinking ability is preserved post-printing. To improve printability and to tune the mechanical properties of printed constructs, the AUP-material is blended with commercially available PCL (AUP PCL20k:PCL in ratios 80:20, 60:40, 50:50). Print fidelity improves for 60:40 and 50:50 blends. Blending enables modification of the constructs' mechanical properties to approximate the range of blood vessels for transplantation surgeries. The crosslinking-ability of the material allows pure AUP to be manipulated post-printing and illustrates significant differences in mechanical properties of 80:20 blends after crosslinking. An in vitro cell compatibility assay using human umbilical vein endothelial cells also demonstrates the material's non-cytotoxicity.}, language = {en} } @phdthesis{BruecknergebChristel2019, author = {Br{\"u}ckner [geb. Christel], Theresa}, title = {Novel application forms and setting mechanisms of mineral bone cements}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157045}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications. Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 \% was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting. While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes. Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength. Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications. The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.\% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes.}, subject = {Knochenzement}, language = {en} } @article{WielandStrisselSchorleetal.2021, author = {Wieland, Annalena and Strissel, Pamela L. and Schorle, Hannah and Bakirci, Ezgi and Janzen, Dieter and Beckmann, Matthias W. and Eckstein, Markus and Dalton, Paul D. and Strick, Reiner}, title = {Brain and breast cancer cells with PTEN loss of function reveal enhanced durotaxis and RHOB dependent amoeboid migration utilizing 3D scaffolds and aligned microfiber tracts}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {20}, issn = {2072-6694}, doi = {10.3390/cancers13205144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248443}, year = {2021}, abstract = {Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.}, language = {en} } @phdthesis{Weichhold2023, author = {Weichhold, Jan Lukas}, title = {Injectable calcium phosphate-based bone replacement cements}, doi = {10.25972/OPUS-32661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The human body has very good self-healing capabilities for numerous different injuries to a variety of different tissues. This includes the main human mechanical framework, the skeleton. The skeleton is limited in its healing without additional aid by medicine mostly by the defect size. When the defect reaches a size above 2.5 cm the regeneration of the defect ends up faulty. Here is where implants, defect fillers and other support approaches developed in medicine can help the body to heal the big defect still successfully. Usually sturdy implants (auto-/allo-/xenogenic) are implanted in the defect to bridge the distance, but for auto- and allogenic implants a suitable donor site must be found and for all sources the implant needs to be shaped into the defect specific site to ensure a perfect fit, the best support and good healing. This shaping is very time consuming and prone to error, already in the planning phase. The use of a material that is moldable and sets in the desired shape shortly after applying negates these disadvantages. Cementitious materials offer exactly this property by being in a pasty stage after the powder and liquid components have been mixed and the subsequently hardening to a solid implant. These properties also enable the extrusion, and therefore may also enable the injection, of the cement via a syringe in a minimal invasive approach. To enable a good injection of the cement modifications are necessary. This work aimed to modify commonly used calcium phosphate-based cement systems based on α-TCP (apatitic) and β-TCP (brushitic). These have been modified with sodium phytate and phytic acid, respectively. Additionally, the α-TCP system has been modified with sodium pyrophosphate, in a second study, to create a storable aqueous paste that can be activated once needed with a highly concentrated sodium orthophosphate solution. The powder phase of the α-TCP cement system consisted of nine parts α-TCP and one part CDHA. These were prepared to have different particle sizes and therefore enable a better powder flowability through the bimodal size distribution. α-TCP had a main particle size of 20 μm and CDHA of 2.6 μm. The modification with sodium phytate led to an adsorption of phytate ions on the surface of the α-TCP particles, where they started to form complexes with the Ca2+ ions in the solution. This adsorption had two effects. The first was to make the calcium ions unavailable, preventing supersaturation and ultimately the precipitation of CDHA what would lead to the cement hardening. The second was the increase of the absolute value of the surface charge, zeta potential, of the powder in the cement paste. Here a decrease from +3 mV to -40 mV could be measured. A strong value for the zeta potential leads to a higher repulsion of similarly charged particles and therefore prevents powder agglomeration and clogging on the nozzle during injection. These two modifications (bimodal particles size distribution and phytic acid) lead to a significant increase in the paste injectability. The unmodified paste was injectable for 30 \% only, where all modified pastes were practically fully injectable ~90 \% (the residual paste remained in the nozzle, while the syringe plunger already reached the end of the syringe). A very similar observation could be made for the β-TCP system. This system was modified with phytic acid. The zeta potential was decreased even stronger from -10 ± 1.5 mV to -71.5 ± 12 mV. The adsorption of the phytate ions and subsequent formation of chelate complexes with the newly dissolved Ca2+ ions also showed a retarding effect in the cements setting reaction. Where the unmodified cement was not measurable in the rheometer, as the reaction was faster than the measurement setup (~1.5 min), the modified cements showed a transition through the gel point between 3-6 min. This means the pastes stayed between 2 and 4 times longer viscous than without the modification. Like with the first cement system also here the effects of the phytate addition showed its beneficial influence in the injectability measurement. The unmodified cement was not injectable at all, due to the same issue already encountered at the rheology measurements, but all modified pastes were fully injectable for at least 5 min (lowest phytate concentration) and at least 10 min (all other concentrations) after the mixing of powder and liquid. The main goal of the last modification with sodium pyrophosphate was to create a paste that was stable in aqueous environment without setting until the activation takes place, but it should still show good injectability as this was the desired way of application after activation. Like before also the zeta potential changed after the addition of pyrophosphate. It could be lowered from -22 ± 2mV down to -61 to -68 ± 4mV (depending on the pyrophosphate concentration). The pastes were stored in airtight containers at room temperature and checked for their phase composition over 14 days. The unmodified paste showed a beginning phase conversion to hydroxyapatite between 7 and 14 days. All other pastes were still stable and unreacted. The pastes were activated with a high concentrated (30 wt\%) sodium orthophosphate solution. After the activation the pastes were checked for their injectability and showed an increase from -57 ± 11\% for the unmodified paste to -89 ± 3\% (practically fully injectable as described earlier) for the best modified paste (PP005). It can be concluded that the goal of enabling full injection of conventional calcium phosphate bone cement systems was reached. Additional work produced a storage stable paste that still ensures full injectability. Subsequent work already used the storable paste and modified it with hyaluronic acid to create an ink for 3D extrusion printing. The first two cement systems have also already been investigated in cell culture for their influence on osteoblasts and osteoclasts. The next steps would have to go more into the direction of translation. Figuring out what properties still need to be checked and where the modification needs adjustment to enable a clinical use of the presented systems.}, subject = {Calciumphosphat}, language = {en} } @phdthesis{Mittmann2023, author = {Mittmann, Silvia}, title = {Etablierung von Hydroxylapatit-Pr{\"u}fk{\"o}rpern zur in-vitro Qualifizierung von Knochenklebern}, doi = {10.25972/OPUS-29914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299140}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Im Rahmen dieser Arbeit sollte herausgefunden werden, inwiefern Calciumorthophosphatzemente (CPC) daf{\"u}r geeignet sind, um als Pr{\"u}fk{\"o}rper zur Qualifizierung von Knochenklebern zu dienen, und worin ihre Limitationen bestehen. Dazu sollte nicht nur ein materieller Vergleich verschiedener hydroxylapatitbildender Zemente mit Knochen erfolgen. Es sollte auch das Adh{\"a}sionsverhalten neuartiger Knochenkleber auf den verschiedenen Pr{\"u}fk{\"o}rpermaterialien verglichen werden, um m{\"o}gliche R{\"u}ckschl{\"u}sse f{\"u}r die Eignung als standardisierbares in-vitro Pr{\"u}fk{\"o}rpermaterial ziehen zu k{\"o}nnen. Gegenstand der Untersuchung war ein α-Tricalciumphosphat (α-TCP)-System und ein Tetracalciumphosphat (TTCP)-System welche im Rahmen einer Zement-Abbindereaktion calciumdefizit{\"a}ren Hydroxylapatit (CDHA) bzw. st{\"o}chiometrischen Hydroxylapatit (HA) bilden. Die Materialien wurden dazu verwendet Pr{\"u}fk{\"o}rperteile in Form von Zylindern (5 x 5 mm) und Pl{\"a}ttchen (20 x 10 x 5 mm) herzustellen, die dann mit verschiedenen Knochenklebern verklebt werden konnten. Der st{\"a}rkste der verwendeten Kleber war ein Cyanoacrylat-Kleber (Truglue®). Er erzielte auf Pr{\"u}fk{\"o}rpern aus Knochen nach 24-st{\"u}ndiger Lagerung in PBS mittlere Abscherfestigkeiten von ca. 4,22 ± 1,92 MPa. Als zweitst{\"a}rkster Kleber erwies sich ein neuartiger zementbasierter Kleber, der aus w{\"a}rmebehandeltem Trimagnesiumphosphat-Hydrat und Phosphoserin bestand. Dieser Kleber erzielte unter den gleichen Umst{\"a}nden mittlere Abscherfestigkeiten von ca. 1,89 ± 0,29 MPa. Etwas schw{\"a}cher schnitt ein ebenfalls neuartiger zementbasierter Kleber ab, der aus dem Magnesiumphosphat Farringtonit, sowie aus Magnesiumoxid und 25 \% Phytins{\"a}ure bestand. Dieser Kleber erzielte mittlere Abscherfestigkeiten von ca. 0,51 ± 0,16 MPa. Insgesamt haben die Untersuchungen gezeigt, dass die in-vitro Qualifizierung von Knochenklebern unter Verwendung von Pr{\"u}fk{\"o}rpern aus Zement m{\"o}glich w{\"a}re. Die Pr{\"u}fk{\"o}rper aus CDHA vereinten die meisten Vorteile und w{\"a}ren f{\"u}r Klebesysteme mit Abscherfestigkeiten von bis zu 2 MPa geeignet. Dabei erzeugten die Knochenkleber auf CDHA zwar abweichende Abscherfestigkeiten als auf Knochen, doch ließ sich ein vergleichbarer Trend bei stets reduzierten Varianzen erkennen. Durch die gute Konsistenz der Zementpaste war die Herstellung homogener Pr{\"u}fk{\"o}rper m{\"o}glich. Aufgrund der Stabilit{\"a}t von CDHA unter w{\"a}ssrigen Bedingungen konnten Langzeitversuche ohne Einschr{\"a}nkungen vorgenommen werden. Die Limitationen der Pr{\"u}fk{\"o}rper aus CDHA bestanden allerdings darin, dass sie nicht f{\"u}r Abscherversuche von st{\"a}rkeren Klebern geeignet waren. In solchen F{\"a}llen versagten die Pr{\"u}fk{\"o}rper noch bevor die maximale Abscherfestigkeit des jeweiligen Klebers gemessen werden konnte.}, subject = {Knochenersatz}, language = {de} } @phdthesis{Vogt2023, author = {Vogt, Fabian}, title = {Elektrochemisch abgeschiedenes Calciumhydroxid Ca(OH)\(_2\) als antibakterielle, antiinflammatorische und proosseointegrative Titanimplantat-Oberfl{\"a}chen-Modifikation im In vivo Versuch}, doi = {10.25972/OPUS-34634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346343}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Das Ziel der experimentellen Studie war die Erprobung der (bereits in vitro erfolgreich getesteten) Ca(OH)2-Beschichtung In vivo unter dem Aspekt, ob und inwieweit die antibakteriellen und somit auch antiinflammatorischen bzw. entz{\"u}ndungsmoderierenden Eigenschaften der Ca(OH)2-Beschichtung eine sinnvolle und effektive Erg{\"a}nzung zu den bisher erfolgreich eingesetzten Calciumphosphat(CaP)-Beschichtungen mit bewiesenen, guten proosseointegrativen Eigenschaften bei lasttragenden Implantaten sein k{\"o}nnen. Zusammenfassend kann festgestellt werden, dass die Ergebnisse der In vitro Untersuchung durch die In vivo Versuche in den Bereichen 0-100 KBE grunds{\"a}tzlich als gest{\"u}tzt gelten k{\"o}nnen. Die Zuverl{\"a}ssigkeit der Wirkung durch Ca(OH)2 nimmt jedoch mit steigender KBE-Zahl ab, sodass weitere Testreihen sinnvoll sind.}, subject = {Calciumhydroxid}, language = {de} } @article{OuhaddiCharbonnierPorgeetal.2023, author = {Ouhaddi, Yassine and Charbonnier, Baptiste and Porge, Juliette and Zhang, Yu-Ling and Garcia, Isadora and Gbureck, Uwe and Grover, Liam and Gilardino, Mirko and Harvey, Edward and Makhoul, Nicholas and Barralet, Jake}, title = {Development of neovasculature in axially vascularized calcium phosphate cement scaffolds}, series = {Journal of Functional Biomaterials}, volume = {14}, journal = {Journal of Functional Biomaterials}, number = {2}, issn = {2079-4983}, doi = {10.3390/jfb14020105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304026}, year = {2023}, abstract = {Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.}, language = {en} } @article{SchmitzJannaschWeigeletal.2020, author = {Schmitz, Tobias and Jannasch, Maren and Weigel, Tobias and Moseke, Claus and Gbureck, Uwe and Groll, J{\"u}rgen and Walles, Heike and Hansmann, Jan}, title = {Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages}, series = {Materials}, volume = {13}, journal = {Materials}, number = {5}, issn = {1996-1944}, doi = {10.3390/ma13051142}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203378}, year = {2020}, abstract = {Implants elicit an immunological response after implantation that results in the worst case in a complete implant rejection. This biomaterial-induced inflammation is modulated by macrophages and can be influenced by nanotopographical surface structures such as titania nanotubes or fractal titanium nitride (TiN) surfaces. However, their specific impact on a distinct macrophage phenotype has not been identified. By using two different levels of nanostructures and smooth samples as controls, the influence of tubular TiO2 and fractal TiN nanostructures on primary human macrophages with M1 or M2-phenotype was investigated. Therefore, nanotopographical coatings were either, directly generated by physical vapor deposition (PVD) or by electrochemical anodization of titanium PVD coatings. The cellular response of macrophages was quantitatively assessed to demonstrate a difference in biocompatibility of nanotubes in respect to human M1 and M2-macrophages. Depending on the tube diameter of the nanotubular surfaces, low cell numbers and impaired cellular activity, was detected for M2-macrophages, whereas the impact of nanotubes on M1-polarized macrophages was negligible. Importantly, we could confirm this phenotypic response on the fractal TiN surfaces. The results indicate that the investigated topographies specifically impact the macrophage M2-subtype that modulates the formation of the fibrotic capsule and the long-term response to an implant.}, language = {en} } @article{BoehmMeiningerTeschetal.2018, author = {Boehm, Anne and Meininger, Susanne and Tesch, Annemarie and Gbureck, Uwe and M{\"u}ller, Frank A.}, title = {The mechanical properties of biocompatible apatite bone cement reinforced with chemically activated carbon fibers}, series = {Materials}, volume = {11}, journal = {Materials}, number = {2}, issn = {1996-1944}, doi = {10.3390/ma11020192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197808}, pages = {192}, year = {2018}, abstract = {Calcium phosphate cement (CPC) is a well-established bone replacement material in dentistry and orthopedics. CPC mimics the physicochemical properties of natural bone and therefore shows excellent in vivo behavior. However, due to their brittleness, the application of CPC implants is limited to non-load bearing areas. Generally, the fiber-reinforcement of ceramic materials enhances fracture resistance, but simultaneously reduces the strength of the composite. Combining strong C-fiber reinforcement with a hydroxyapatite to form a CPC with a chemical modification of the fiber surface allowed us to adjust the fiber-matrix interface and consequently the fracture behavior. Thus, we could demonstrate enhanced mechanical properties of CPC in terms of bending strength and work of fracture to a strain of 5\% (WOF5). Hereby, the strength increased by a factor of four from 9.2 ± 1.7 to 38.4 ± 1.7 MPa. Simultaneously, the WOF5 increased from 0.02 ± 0.004 to 2.0 ± 0.6 kJ∙m-2, when utilizing an aqua regia/CaCl2 pretreatment. The cell proliferation and activity of MG63 osteoblast-like cells as biocompatibility markers were not affected by fiber addition nor by fiber treatment. CPC reinforced with chemically activated C-fibers is a promising bone replacement material for load-bearing applications.}, language = {en} } @article{MeiningerBlumSchameletal.2017, author = {Meininger, Susanne and Blum, Carina and Schamel, Martha and Barralet, Jake E. and Ignatius, Anita and Gbureck, Uwe}, title = {Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {558}, doi = {10.1038/s41598-017-00731-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171047}, year = {2017}, abstract = {Dicalcium phosphate cement preparation requires the addition of setting retarders to meet clinical requirements regarding handling time and processability. Previous studies have focused on the influence of different setting modifiers on material properties such as mechanical performance or injectability, while ignoring their influence on biological cement properties as they are used in low concentrations in the cement pastes and the occurrence of most compounds in human tissues. Here, analyses of both material and biological behavior were carried out on samples with common setting retardants (citric acid, sodium pyrophosphate, sulfuric acid) and novel (phytic acid). Cytocompatibility was evaluated by in vitro tests with osteoblastic (hFOB 1.19) and osteoclastic (RAW 264.7) cells. We found cytocompatibility was better for sodium pyrophosphate and phytic acid with a three-fold cell metabolic activity by WST-1 test, whereas samples set with citric acid showed reduced cell number as well as cell activity. The compressive strength (CS) of cements formed with phytic acid (CS = 13 MPa) were nearly equal to those formed with citric acid (CS = 15 MPa) and approximately threefold higher than for other setting retardants. Due to a proven cytocompatibility and high mechanical strength, phytic acid seems to be a candidate replacement setting retardant for dicalcium phosphate cements.}, language = {en} } @article{LiebscherTessmarGroll2020, author = {Liebscher, Julia and Teßmar, Joerg Karl and Groll, J{\"u}rgen}, title = {In Situ Polymer Analogue Generation of Azlactone Functions at Poly(oxazoline)s for Peptide Conjugation}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {1}, doi = {10.1002/macp.201900500}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208147}, pages = {1900500}, year = {2020}, abstract = {The physical and chemical stability of peptides for biomedical applications can be greatly enhanced through the conjugation of polymers. A well-known but rather underemployed selective coupling functionality is the azlactone group, which readily reacts with a number of different nucleophiles without the need for activation and the formation of any by-products. For example, azlactone functional polymers are used to react with peptides and proteins, rich in amino and thiol groups, to form polymeric beads for affinity-based column chromatography. So far, side chain functional azlactone polymers have been mainly synthesized by radical polymerization using 2-vinyl-4,4-dimethyl azlactone together with different acrylate monomers. Here, a new azlactone precursor equipped with a functional thiol is presented, which can be attached to any vinyl functional polymer by thiol-ene chemistry. Subsequently, the formation of the reactive azlactone ring can be performed in situ at high conversion rate without the need for illumination. This approach is tested on an azlactone side functional poly(2-oxazoline) by coupling amine containing molecules including a model peptide and is proven via \(^1\)H NMR spectroscopy, IR spectroscopy, as well as HPLC measurements.}, language = {en} } @article{BoehmStahlhutWeichholdetal.2022, author = {B{\"o}hm, Christoph and Stahlhut, Philipp and Weichhold, Jan and Hrynevich, Andrei and Teßmar, J{\"o}rg and Dalton, Paul D.}, title = {The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting}, series = {Small}, volume = {18}, journal = {Small}, number = {3}, doi = {10.1002/smll.202104193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257741}, year = {2022}, abstract = {Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that places unique constraints on the processing of thermally degradable polymers. With a single nozzle, MEW operates at low throughput and in this study, medical-grade poly(ε-caprolactone) (PCL) is heated for 25 d at three different temperatures (75, 85, and 95 °C), collecting daily samples. There is an initial increase in the fiber diameter and decrease in the jet speed over the first 5 d, then the MEW process remains stable for the 75 and 85 °C groups. When the collector speed is fixed to a value at least 10\% above the jet speed, the diameter remains constant for 25 d at 75 °C and only increases with time for 85 and 95 °C. Fiber fusion at increased layer height is observed for 85 and 95 °C, while the surface morphology of single fibers remain similar for all temperatures. The properties of the prints are assessed with no observable changes in the degree of crystallinity or the Young's modulus, while the yield strength decreases in later phases only for 95 °C. After the initial 5-d period, the MEW processing of PCL at 75 °C is extraordinarily stable with overall fiber diameters averaging 13.5 ± 1.0 µm over the entire 25-d period.}, language = {en} } @article{EidmannEwaldBoelchetal.2021, author = {Eidmann, Annette and Ewald, Andrea and Boelch, Sebastian P. and Rudert, Maximilian and Holzapfel, Boris M. and Stratos, Ioannis}, title = {In vitro evaluation of antibacterial efficacy of vancomycin-loaded suture tapes and cerclage wires}, series = {Journal of Materials Science: Materials in Medicine}, volume = {32}, journal = {Journal of Materials Science: Materials in Medicine}, number = {4}, doi = {10.1007/s10856-021-06513-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260089}, pages = {42}, year = {2021}, abstract = {Usage of implants containing antibiotic agents has been a common strategy to prevent implant related infections in orthopedic surgery. Unfortunately, most implants with microbial repellent properties are characterized by accessibility limitations during daily clinical practice. Aim of this in vitro study was to investigate whether suture tapes and cerclage wires, which were treated with vancomycin, show a sustainable antibacterial activity. For this purpose, we used 24 stainless steel wire cerclages and 24 ultra-high molecular weight polyethylene and polyester suture tape test bodies. The test bodies were incubated for 30 min. in 100 mg/ml vancomycin solution or equivalent volumes of 0.9\% NaCl. After measuring the initial solution uptake of the test bodies, antibacterial efficacy via agar diffusion test with Staphylococcus aureus and vancomycin elution tests were performed 1, 2, 3, and 6 days after incubation. Vancomycin-loaded tapes as well as vancomycin-loaded cerclage wires demonstrated increased bacterial growth inhibition when compared to NaCl-treated controls. Vancomycin-loaded tapes showed an additional twofold and eightfold increase of bacterial growth inhibition compared to vancomycin-loaded wires at day 1 and 2, respectively. Elution tests at day 1 revealed high levels of vancomycin concentration in vancomycin loaded tapes and wires. Additionally, the concentration in vancomycin loaded tapes was 14-fold higher when compared to vancomycin loaded wires. Incubating suture tapes and cerclage wires in vancomycin solution showed a good short-term antibacterial activity compared to controls. Considering the ease of vancomycin application on suture tapes or wires, our method could represent an attractive therapeutic strategy in biofilm prevention in orthopedic surgery.}, language = {en} } @article{NoHolzmeisterLuetal.2019, author = {No, Young Jung and Holzmeister, Ib and Lu, Zufu and Prajapati, Shubham and Shi, Jeffrey and Gbureck, Uwe and Zreiqat, Hala}, title = {Effect of Baghdadite Substitution on the Physicochemical Properties of Brushite Cements}, series = {Materials}, volume = {12}, journal = {Materials}, number = {10}, issn = {1996-1944}, doi = {10.3390/ma12101719}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196980}, year = {2019}, abstract = {Brushite cements have been clinically used for irregular bone defect filling applications, and various strategies have been previously reported to modify and improve their physicochemical properties such as strength and injectability. However, strategies to address other limitations of brushite cements such as low radiopacity or acidity without negatively impacting mechanical strength have not yet been reported. In this study, we report the effect of substituting the beta-tricalcium phosphate reactant in brushite cement with baghdadite (Ca\(_3\)ZrSi\(_2\)O\(_9\)), a bioactive zirconium-doped calcium silicate ceramic, at various concentrations (0, 5, 10, 20, 30, 50, and 100 wt\%) on the properties of the final brushite cement product. X-ray diffraction profiles indicate the dissolution of baghdadite during the cement reaction, without affecting the crystal structure of the precipitated brushite. EDX analysis shows that calcium is homogeneously distributed within the cement matrix, while zirconium and silicon form cluster-like aggregates with sizes ranging from few microns to more than 50 µm. X-ray images and µ-CT analysis indicate enhanced radiopacity with increased incorporation of baghdadite into brushite cement, with nearly a doubling of the aluminium equivalent thickness at 50 wt\% baghdadite substitution. At the same time, compressive strength of brushite cement increased from 12.9 ± 3.1 MPa to 21.1 ± 4.1 MPa with 10 wt\% baghdadite substitution. Culture medium conditioned with powdered brushite cement approached closer to physiological pH values when the cement is incorporated with increasing amounts of baghdadite (pH = 6.47 for pure brushite, pH = 7.02 for brushite with 20 wt\% baghdadite substitution). Baghdadite substitution also influenced the ionic content in the culture medium, and subsequently affected the proliferative activity of primary human osteoblasts in vitro. This study indicates that baghdadite is a beneficial additive to enhance the radiopacity, mechanical performance and cytocompatibility of brushite cement}, language = {en} } @article{BruecknerMeiningerGrolletal.2019, author = {Br{\"u}ckner, Theresa and Meininger, Markus and Groll, J{\"u}rgen and K{\"u}bler, Alexander C. and Gbureck, Uwe}, title = {Magnesium Phosphate Cement as Mineral Bone Adhesive}, series = {Materials}, volume = {12}, journal = {Materials}, number = {23}, issn = {1996-1944}, doi = {10.3390/ma12233819}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193052}, year = {2019}, abstract = {Mineral bone cements were actually not developed for their application as bone-bonding agents, but as bone void fillers. In particular, calcium phosphate cements (CPC) are considered to be unsuitable for that application, particularly under moist conditions. Here, we showed the ex vivo ability of different magnesium phosphate cements (MPC) to adhere on bovine cortical bone substrates. The cements were obtained from a mixture of farringtonite (Mg\(_3\)(PO\(_4\))\(_2\)) with different amounts of phytic acid (C\(_6\)H\(_{18}\)O\(_{24}\)P\(_6\), inositol hexaphosphate, IP6), whereas cement setting occurred by a chelation reaction between Mg\(^{2+}\) ions and IP6. We were able to show that cements with 25\% IP6 and a powder-to-liquid ratio (PLR) of 2.0 g/mL resulted in shear strengths of 0.81 ± 0.12 MPa on bone even after 7 d storage in aqueous conditions. The samples showed a mixed adhesive-cohesive failure with cement residues on the bone surface as indicated by scanning electron microscopy and energy-dispersive X-ray analysis. The presented material demonstrated appropriate bonding characteristics, which could enable a broadening of the mineral bone cements' application field to bone adhesives}, language = {en} } @article{WeisShanKuhlmannetal.2018, author = {Weis, Matthias and Shan, Junwen and Kuhlmann, Matthias and Jungst, Tomasz and Tessmar, J{\"o}rg and Groll, J{\"u}rgen}, title = {Evaluation of hydrogels based on oxidized hyaluronic acid for bioprinting}, series = {Gels}, volume = {4}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels4040082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197600}, pages = {82}, year = {2018}, abstract = {In this study, we evaluate hydrogels based on oxidized hyaluronic acid, cross-linked with adipic acid dihydrazide, for their suitability as bioinks for 3D bioprinting. Aldehyde containing hyaluronic acid (AHA) is synthesized and cross-linked via Schiff Base chemistry with bifunctional adipic acid dihydrazide (ADH) to form a mechanically stable hydrogel with good printability. Mechanical and rheological properties of the printed and casted hydrogels are tunable depending on the concentrations of AHA and ADH cross-linkers.}, language = {en} } @article{BakirciFrankGumbeletal.2021, author = {Bakirci, Ezgi and Frank, Andreas and Gumbel, Simon and Otto, Paul F. and F{\"u}rsattel, Eva and Tessmer, Ingrid and Schmidt, Hans-Werner and Dalton, Paul D.}, title = {Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {22}, doi = {10.1002/macp.202100259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257572}, year = {2021}, abstract = {Various (AB)\(_{n}\) and (ABAC)\(_{n}\) segmented copolymers with hydrophilic and hydrophobic segments are processed via melt electrowriting (MEW). Two different (AB)\(_{n}\) segmented copolymers composed of bisurea segments and hydrophobic poly(dimethyl siloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments, while the amphiphilic (ABAC)\(_{n}\) segmented copolymers consist of bisurea segments in the combination of hydrophobic PDMS segments and hydrophilic PPO-PEG-PPO segments with different ratios, are explored. All copolymer compositions are processed using the same conditions, including nozzle temperature, applied voltage, and collector distance, while changes in applied pressure and collector speed altered the fiber diameter in the range of 7 and 60 µm. All copolymers showed excellent processability with MEW, well-controlled fiber stacking, and inter-layer bonding. Notably, the surfaces of all four copolymer fibers are very smooth when visualized using scanning electron microscopy. However, the fibers show different roughness demonstrated with atomic force microscopy. The non-cytotoxic copolymers increased L929 fibroblast attachment with increasing PDMS content while the different copolymer compositions result in a spectrum of physical properties.}, language = {en} } @article{KadeOttoLuxenhoferetal.2021, author = {Kade, Juliane C. and Otto, Paul F. and Luxenhofer, Robert and Dalton, Paul D.}, title = {Melt electrowriting of poly(vinylidene difluoride) using a heated collector}, series = {Polymers for Advanced Technologies}, volume = {32}, journal = {Polymers for Advanced Technologies}, number = {12}, issn = {1042-7147}, doi = {10.1002/pat.5463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318493}, pages = {4951 -- 4955}, year = {2021}, abstract = {Previous research on the melt electrowriting (MEW) of poly(vinylidene difluoride) (PVDF) resulted in electroactive fibers, however, printing more than five layers is challenging. Here, we investigate the influence of a heated collector to adjust the solidification rate of the PVDF jet so that it adheres sufficiently to each layer. A collector temperature of 110°C is required to improve fiber processing, resulting in a total of 20 fiber layers. For higher temperatures and higher layers, an interesting phenomenon occurred, where the intersection points of the fibers coalesced into periodic spheres of diameter 206 ± 52 μm (26G, 150°C collector temperature, 2000 mm/min, 10 layers in x- and y-direction).The heated collector is an important component of a MEW printer that allows polymers with a high melting point to be processable with increased layers.}, language = {en} } @article{DoryabTaskinStahlhutetal.2021, author = {Doryab, Ali and Taskin, Mehmet Berat and Stahlhut, Philipp and Schr{\"o}ppel, Andreas and Orak, Sezer and Voss, Carola and Ahluwalia, Arti and Rehberg, Markus and Hilgendorff, Anne and St{\"o}ger, Tobias and Groll, J{\"u}rgen and Schmid, Otmar}, title = {A Bioinspired in vitro Lung Model to Study Particokinetics of Nano-/Microparticles Under Cyclic Stretch and Air-Liquid Interface Conditions}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.616830}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223830}, year = {2021}, abstract = {Evolution has endowed the lung with exceptional design providing a large surface area for gas exchange area (ca. 100 m\(^{2}\)) in a relatively small tissue volume (ca. 6 L). This is possible due to a complex tissue architecture that has resulted in one of the most challenging organs to be recreated in the lab. The need for realistic and robust in vitro lung models becomes even more evident as causal therapies, especially for chronic respiratory diseases, are lacking. Here, we describe the Cyclic In VItro Cell-stretch (CIVIC) "breathing" lung bioreactor for pulmonary epithelial cells at the air-liquid interface (ALI) experiencing cyclic stretch while monitoring stretch-related parameters (amplitude, frequency, and membrane elastic modulus) under real-time conditions. The previously described biomimetic copolymeric BETA membrane (5 μm thick, bioactive, porous, and elastic) was attempted to be improved for even more biomimetic permeability, elasticity (elastic modulus and stretchability), and bioactivity by changing its chemical composition. This biphasic membrane supports both the initial formation of a tight monolayer of pulmonary epithelial cells (A549 and 16HBE14o\(^{-}\)) under submerged conditions and the subsequent cell-stretch experiments at the ALI without preconditioning of the membrane. The newly manufactured versions of the BETA membrane did not improve the characteristics of the previously determined optimum BETA membrane (9.35\% PCL and 6.34\% gelatin [w/v solvent]). Hence, the optimum BETA membrane was used to investigate quantitatively the role of physiologic cyclic mechanical stretch (10\% linear stretch; 0.33 Hz: light exercise conditions) on size-dependent cellular uptake and transepithelial transport of nanoparticles (100 nm) and microparticles (1,000 nm) for alveolar epithelial cells (A549) under ALI conditions. Our results show that physiologic stretch enhances cellular uptake of 100 nm nanoparticles across the epithelial cell barrier, but the barrier becomes permeable for both nano- and micron-sized particles (100 and 1,000 nm). This suggests that currently used static in vitro assays may underestimate cellular uptake and transbarrier transport of nanoparticles in the lung.}, language = {en} } @article{SeifertGrollWeichholdetal.2021, author = {Seifert, Annika and Groll, J{\"u}rgen and Weichhold, Jan and Boehm, Anne V. and M{\"u}ller, Frank A. and Gbureck, Uwe}, title = {Phase Conversion of Ice-Templated α-Tricalcium Phosphate Scaffolds into Low-Temperature Calcium Phosphates with Anisotropic Open Porosity}, series = {Advanced Engineering Materials}, volume = {23}, journal = {Advanced Engineering Materials}, number = {5}, doi = {10.1002/adem.202001417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256311}, year = {2021}, abstract = {The current study aims to extend the material platform for anisotropically structured calcium phosphates to low-temperature phases such as calcium-deficient hydroxyapatite (CDHA) or the secondary phosphates monetite and brushite. This is achieved by the phase conversion of highly porous α-tricalcium phosphate (α-TCP) scaffolds fabricated by ice-templating into the aforementioned phases by hydrothermal treatment or incubation in phosphoric acid. Prior to these steps, α-TCP scaffolds are either sintered for 8 h at 1400 °C or remain in their original state. Both nonsintered and sintered α-TCP specimens are converted into CDHA by hydrothermal treatment, while a transformation into monetite and brushite is achieved by incubation in phosphoric acid. Hydrothermal treatment for 72 h at 175 °C increases the porosity in nonsintered samples from 85\% to 88\% and from 75\% to 88\% in the sintered ones. An increase in the specific surface area from (1.102 ± 0.005) to (9.17 ± 0.01) m2 g-1 and from (0.190 ± 0.004) to (2.809 ± 0.002) m2 g-1 due to the phase conversion is visible for both the nonsintered and sintered samples. Compressive strength of the nonsintered samples increases significantly from (0.76 ± 0.11) to (5.29 ± 0.94) MPa due to incubation in phosphoric acid.}, language = {en} } @article{HettichSchierjottEppleetal.2019, author = {Hettich, Georg and Schierjott, Ronja A. and Epple, Matthias and Gbureck, Uwe and Heinemann, Sascha and Mozaffari-Jovein, Hadi and Grupp, Thomas M.}, title = {Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity}, series = {Materials}, volume = {12}, journal = {Materials}, number = {21}, issn = {1996-1944}, doi = {10.3390/ma12213471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193233}, pages = {3471}, year = {2019}, abstract = {Bone graft substitutes in orthopedic applications have to fulfill various demanding requirements. Most calcium phosphate (CaP) bone graft substitutes are highly porous to achieve bone regeneration, but typically lack mechanical stability. This study presents a novel approach, in which a scaffold structure with appropriate properties for bone regeneration emerges from the space between specifically shaped granules. The granule types were tetrapods (TEPO) and pyramids (PYRA), which were compared to porous CaP granules (CALC) and morselized bone chips (BC). Bulk materials of the granules were mechanically loaded with a peak pressure of 4 MP; i.e., comparable to the load occurring behind an acetabular cup. Mechanical loading reduced the volume of CALC and BC considerably (89\% and 85\%, respectively), indicating a collapse of the macroporous structure. Volumes of TEPO and PYRA remained almost constant (94\% and 98\%, respectively). After loading, the porosity was highest for BC (46\%), lowest for CALC (25\%) and comparable for TEPO and PYRA (37\%). The pore spaces of TEPO and PYRA were highly interconnected in a way that a virtual object with a diameter of 150 µm could access 34\% of the TEPO volume and 36\% of the PYRA volume. This study shows that a bulk of dense CaP granules in form of tetrapods and pyramids can create a scaffold structure with load capacities suitable for the regeneration of an acetabular bone defect}, language = {en} } @article{JanzenBakirciWielandetal.2020, author = {Janzen, Dieter and Bakirci, Ezgi and Wieland, Annalena and Martin, Corinna and Dalton, Paul D. and Villmann, Carmen}, title = {Cortical Neurons form a Functional Neuronal Network in a 3D Printed Reinforced Matrix}, series = {Advanced Healthcare Materials}, volume = {9}, journal = {Advanced Healthcare Materials}, number = {9}, doi = {10.1002/adhm.201901630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215400}, year = {2020}, abstract = {Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber-reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage-gated sodium currents display a current-voltage relationship with a maximum peak current at -25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions.}, language = {en} } @phdthesis{Gefel2023, author = {Gefel, Eugen}, title = {Zellul{\"a}re Resorption 3D-gedruckter Knochenimplantate auf Basis von Calciummagnesiumphosphaten}, doi = {10.25972/OPUS-32224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {F{\"u}r die Behandlung von Knochendefekten kritischer Gr{\"o}ße gibt es heute eine Reihe von Therapiem{\"o}glichkeiten. Neuartige Ans{\"a}tze mit Magnesiumphosphat- (MPC) und Calciummagnesiumphosphatzementen (CMPC) haben sich als echte Alternativen zu den etablierten Calciumphosphaten erwiesen. Ziel war es, die Osteoklastogenese in vitro auf 3D-pulvergedrucktem CMPC und MPC zu induzieren und die zellul{\"a}re Resorption (zR) zu analysieren. Polystyrol (PS), Glas, β-TCP und Brushit-bildender Zement dienten als Referenzen. Als Proben wurden Zemente der allgemeinen st{\"o}chiometrischen Summenformel CaxMg(3-x)(PO4)2 (x = 0; 0,25; 0,75; 3) verwendet, die Struvit oder Newberyit enthielten. F{\"u}r die Osteoklastogenese wurden monozytenangereicherte PBMCs aus Buffy-Coat mittels dreifacher Dichtegradientenzentrifugation isoliert, auf die Pr{\"u}foberfl{\"a}chen ausges{\"a}t und {\"u}ber einen Zeitraum von 22 Tagen mit Zytokinen (M-CSF und RANKL) stimuliert. Die Interaktion der Zellen mit den Zementen bzw. PS/Glas wurde mittels TRAP-F{\"a}rbung und -Aktivit{\"a}t, DNA- und Ionenkonzentrationen (Ca2+, Mg2+, PO43-, pH-Wert), Rasterelektronen-, Durchlicht-, Auflicht- und Fluoreszenzmikroskopie analysiert. Auf den Struvit- und Newberyit-bildenden Zementen konnten keine f{\"u}r Osteoklasten typischen Riesenzellen nachgewiesen werden. Auf den Struvit-bildenden Zementen wurde deutlich mehr mononukle{\"a}re Zellen nachgewiesen wurden als auf den Newberyit-bildenden Zementen. W{\"a}hrend die Freisetzung von Mg2+ und PO43- ausschließlich durch die chemische Degradation erfolgte, wurde Ca2+ zun{\"a}chst adsorbiert und anschließend durch zR freigesetzt. Die erh{\"o}hte Ca2+-Adsorption im Vergleich zur Ca2+-Resorption f{\"u}hrte insgesamt zu einer Calcium-Pr{\"a}zipitation. Da lediglich auf β-TCP Resorptionslakunen beobachtet wurden, wird angenommen, dass auf den CMPC, MPC und Brushite-bildenden Zementen die zellvermittelte Ca2+-Freisetzung von den Pr{\"a}zipitaten ausging, die von Makrophagen auf den Zementen und/oder Riesenzellen auf den Wellplatten resorbiert wurden.}, subject = {Knochenzement}, language = {de} } @phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @article{ElgheznawyOefteringEnglertetal.2023, author = {Elgheznawy, Amro and {\"O}ftering, Patricia and Englert, Maximilian and Mott, Kristina and Kaiser, Friederike and Kusch, Charly and Gbureck, Uwe and B{\"o}sl, Michael R. and Schulze, Harald and Nieswandt, Bernhard and V{\"o}gtle, Timo and Hermanns, Heike M.}, title = {Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1197894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320154}, year = {2023}, abstract = {Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.}, language = {en} } @phdthesis{Holzmeister2023, author = {Holzmeister, Ib}, title = {Branched silica precursors as additives for mineral bone cements}, doi = {10.25972/OPUS-27504}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275044}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Mineral biocements are brittle materials, which usually results in catastrophic failure during mechanical loading. Here, previous works demonstrated the feasibility of reducing brittleness by a dual-setting approach, in which a silica sol was simultaneously gelled during the setting of a brushite forming cement. The current thesis aimed at further improving this concept by both using a novel silicate based cement matrix for an enhanced bonding between cement and silica matrix as well as multifunctional silica precursors to increase the network density of the gel. Due to its well-known biocompatibility and osteogenic regeneration capacity, baghdadite was chosen as mineral component of such composites. This required in a first approach the conversion of baghdadite ceramics into self-setting cement formulations. This was investigated initially by using baghdadite as reactive filler in a brushite forming cement (Chapter 4). Here, the ß-TCP component in a equimolar mixture of ß-TCP and acidic monocalcium phosphate anhydrous was subsequently replaced by baghdadite at various concentrations (0, 5, 10, 20, 30, 50, and 100 wt\%) to study the influence on physicochemical cement properties such as mechanical performance, radiopacity, phase composition and microstructure. X-ray diffraction profiles demonstrated the dissolution of baghdadite during the cement reaction without affecting the crystal structure of the precipitated brushite phase. In addition, EDX analysis showed that calcium is homogeneously distributed in the cement matrix, while zirconium and silicon form cluster-like aggregates ranging in size from a few micrometers to more than 50 µm. X-ray images and µ-CT analyses indicate improved X-ray visibility with increased incorporation of baghdadite in brushite cement, with an aluminum equivalent thickness nearly doubling at a baghdadite content of 50 wt\%. At the same time, the compressive strength of brushite cement increased from 12.9 ± 3.1 MPa to 21.1 ± 4.1 MPa at a baghdadite content of 10 wt\%. Cell culture medium conditioned with powdered brushite cement approached physiological pH values when increasing amounts of baghdadite were added to the cement (pH = 6.47 for pure brushite, pH = 7.02 for brushite with 20 wt\% baghdadite substitution). Baghdadite substitution also affected the ion content in the culture medium and thus the proliferation activity of primary human osteoblasts in vitro. The results demonstrated for the first time the suitability of baghdadite as a reactive cement additive for improving the radiopacity, mechanical performance, and cytocompatibility of brushite cements. A second approach (Chapter 5) aimed to produce single component baghdadite cements by an increase of baghdadite solubility to initiate a self-setting cement reaction. For this, the material was mechanically activated by longer grinding times of up to 24h leading to both a decrease in particle and crystallite size as well as a partial amorphization of baghdadite. Baghdadite cements were formed by adding water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were determined to be ~2 MPa after 3 days of setting for a 24-hour ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of the set cements, with preferential dissolution of calcium and only minor release of zirconium ions. Cement formation occurs under alkaline conditions, with the unground raw powder resulting in a pH of 11.9 during setting, while prolonged grinding increases the pH to about 12.3. Finally, mechanically activated baghdadite cements were combined with inorganic silica networks (Chapter 6) to create dual-setting cements with a further improvement of mechanical performance. While a modification of the cement pastes with a TEOS derived sol was already thought to improve strength, it was hypothesized that using multi-arm silica precursors can further enhance their mechanical performance due to a higher network density. In addition, this should also reduce pore size of both gels and cement and hence will be able to adjust the release kinetics of incorporated drugs. For this, multi-armed silica precursors were synthesized by the reaction of various multivalent alcohols (ethylene glycol, glycerine, pentaerythrit) with an isocyanate modified silica precursor. After hydrolysis under acidic conditions, the sols were mixed with baghdadite cement powders in order to allow a simultaneous gel formation and cement setting. Since the silica monomers have a high degree of linkage sites, this resulted in a branched network that interpenetrated with the growing cement crystals. In addition to minor changes in the crystalline phase composition as determined by X-ray diffraction, the novel composites exhibited improved mechanical properties with up to 20 times higher compressive strength and further benefit from an about 50\% lower overall porosity than the reference pure baghdadite cement. In addition, the initial burst release of the model drug vancomycin was completely inhibited by the added silica matrix. This observation was verified by testing for the antimicrobial activity with Staphylococcus aureus by measuring the inhibition zones of selected samples after 24 h and 48 h, whereas the antimicrobial effectiveness of a constant vancomycin release could be demonstrated. The current thesis clearly demonstrated the high potential of baghdadite as a cement formulation for medical application. The initially poor mechanical properties of such cements can be overcome by special processing techniques or by combination with silica networks. The achieved mechanical performance is > 10 MPa and hence suitable for bone replacement under non-load bearing conditions. The high intrinsic radiopacity as well as the alkaline pH during setting may open the way ahead to further dental applications, e.g. as root canal sealers or filler in dental composites. Here, the high pH is thought to lead to antimicrobial properties of such materials similar to commonly applied calcium hydroxide or calcium silicates, however combined with an intrinsic radiopacity for X-ray imaging. This would simplify such formulations to single component materials which are less susceptible to demixing processes during transport, storage or processing.}, subject = {Zement}, language = {en} } @phdthesis{Witteler2024, author = {Witteler, Charlotte Marie}, title = {Untersuchung des zellbiologischen Verhaltens von Fibroblasten in modifizierten Gelatine-Methacrylat basierten Harzen f{\"u}r den volumetrischen Biodruck}, doi = {10.25972/OPUS-34946}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349460}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Was vor einigen Jahren undenkbar erschien, k{\"o}nnte zuk{\"u}nftig m{\"o}glich sein: Krankes Gewebe mit Gesundem ersetzen, das in vitro mit modernsten Biofabrikationstechniken hergestellt wird. Dabei werden bisherige Grenzen {\"u}berschritten: W{\"a}hrend lichtbasierte Biodruckverfahren wie die Zwei-Photonen-Polymerisation Aufl{\"o}sungen bis in den Nanometerbereich erzielen, erm{\"o}glicht der Volumetrische Biodruck (VB) den Druck zentimetergroßer Konstrukte in wenigen Sekunden. Diese Geschwindigkeiten erweisen sich unter Biodruckverfahren als konkurrenzlos und werden erreicht, da das Bioharz nicht konsekutiv, sondern zugleich vernetzt wird. Einschr{\"a}nkend gilt bislang nur der Mangel an geeigneten Bioharzen f{\"u}r den VB. Daher besch{\"a}ftigt sich vorliegende Arbeit mit der Charakterisierung und Modifikation eines daf{\"u}r geeigneten Bioharzes: Gelatine-Methacrylat (GelMA). Dank seiner Zusammensetzung {\"a}hnelt das etablierte Hydrogelsystem der Extratrazellularmatrix: Der Gelatine-Anteil erm{\"o}glicht Biokompatibilit{\"a}t und Bioaktivit{\"a}t durch zelladh{\"a}sive sowie degradierbare Aminos{\"a}ure-Sequenzen. Zugleich k{\"o}nnen durch photovernetzbare Methacryloyl-Substituenten Konstrukte mit einer Formstabilit{\"a}t bei 37 °C erzeugt werden. Zun{\"a}chst wurde das Bioharz zellbiologisch charakterisiert, indem mit der embryonalen Mausfibroblasten-Zelllinie NIH-3T3 beladene GelMA-Zylinder gegossen, photopolymerisiert und kultiviert wurden. Im Verlauf einer Woche wurde die Zytokompatibilit{\"a}t der Gele anhand der Proliferationsf{\"a}higkeit (PicoGreen-Assay), des Metabolismus (CCK-8-Assay) und der Vitalit{\"a}t (Live/Dead-Assay) der Zellen beurteilt. Dabei wurden Polymerkonzentrationen von 6 - 8 \% sowie GelMA-Harze zweier verschiedener Molekulargewichte verglichen. Alle hergestellten Gele erwiesen sich als zytokompatibel, 6 \% ige Gele ließen im Inneren jedoch zus{\"a}tzlich eine beginnende Zellspreizung zu und ein niedriges GelMA-Molekulargewicht verst{\"a}rkte die gemessene Proliferation. Die sich anschließende mechanische und physikalische Charakterisierung belegte, dass h{\"o}her konzentrierte Gele einen gr{\"o}ßeren E-Modul aufwiesen und damit steifer waren. Eine Modifikation der Gele mit Fibronektin beeinflusste die Zellvertr{\"a}glichkeit weder positiv noch negativ und die Zugabe von Kollagen war wegen Entmischungseffekten nicht bewertbar. Es liegt die Vermutung nah, dass eine weitere Reduktion der Polymerkonzentration und damit Verringerung der Gelsteifigkeit der Schl{\"u}ssel f{\"u}r mehr Zellspreizung und -wachstum ist. Da jedoch die Druckbarkeit des Bioharzes die weitere Senkung des GelMA-Gehalts limitiert, sollten zun{\"a}chst Methoden entwickelt werden, welche die Netzwerkdichte des GelMAs anderweitig herabsetzen.}, subject = {3D Bioprinting}, language = {de} } @article{RennerOttoKuebleretal.2023, author = {Renner, Tobias and Otto, Paul and K{\"u}bler, Alexander C. and H{\"o}lscher-Doht, Stefanie and Gbureck, Uwe}, title = {Novel adhesive mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides}, series = {Journal of Materials Science: Materials in Medicine}, volume = {34}, journal = {Journal of Materials Science: Materials in Medicine}, doi = {10.1007/s10856-023-06714-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357342}, year = {2023}, abstract = {Present surgical situations require a bone adhesive which has not yet been developed for use in clinical applications. Recently, phosphoserine modified cements (PMC) based on mixtures of o-phosphoserine (OPLS) and calcium phosphates, such as tetracalcium phosphate (TTCP) or α-tricalcium phosphate (α-TCP) as well as chelate setting magnesium phosphate cements have gained increasing popularity for their use as mineral bone adhesives. Here, we investigated new mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides, which possess excellent adhesive properties. These were analyzed by X-ray diffraction, Fourier infrared spectroscopy and electron microscopy and subjected to mechanical tests to determine the bond strength to bone after ageing at physiological conditions. The novel biomineral adhesives demonstrate excellent bond strength to bone with approximately 6.6-7.3 MPa under shear load. The adhesives are also promising due to their cohesive failure pattern and ductile character. In this context, the new adhesive cements are superior to currently prevailing bone adhesives. Future efforts on bone adhesives made from phosphoserine and Mg2+ appear to be very worthwhile.}, language = {en} } @article{AnStrisselAlAbboodietal.2022, author = {An, Ran and Strissel, Pamela L. and Al-Abboodi, Majida and Robering, Jan W. and Supachai, Reakasame and Eckstein, Markus and Peddi, Ajay and Hauck, Theresa and B{\"a}uerle, Tobias and Boccaccini, Aldo R. and Youssef, Almoatazbellah and Sun, Jiaming and Strick, Reiner and Horch, Raymund E. and Boos, Anja M. and Kengelbach-Weigand, Annika}, title = {An innovative arteriovenous (AV) loop breast cancer model tailored for cancer research}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {7}, issn = {2306-5354}, doi = {10.3390/bioengineering9070280}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278919}, year = {2022}, abstract = {Animal models are important tools to investigate the pathogenesis and develop treatment strategies for breast cancer in humans. In this study, we developed a new three-dimensional in vivo arteriovenous loop model of human breast cancer with the aid of biodegradable materials, including fibrin, alginate, and polycaprolactone. We examined the in vivo effects of various matrices on the growth of breast cancer cells by imaging and immunohistochemistry evaluation. Our findings clearly demonstrate that vascularized breast cancer microtissues could be engineered and recapitulate the in vivo situation and tumor-stromal interaction within an isolated environment in an in vivo organism. Alginate-fibrin hybrid matrices were considered as a highly powerful material for breast tumor engineering based on its stability and biocompatibility. We propose that the novel tumor model may not only serve as an invaluable platform for analyzing and understanding the molecular mechanisms and pattern of oncologic diseases, but also be tailored for individual therapy via transplantation of breast cancer patient-derived tumors.}, language = {en} } @article{HolzmeisterWeichholdGrolletal.2021, author = {Holzmeister, Ib and Weichhold, Jan and Groll, J{\"u}rgen and Zreiqat,, Hala and Gbureck, Uwe}, title = {Hydraulic reactivity and cement formation of baghdadite}, series = {Journal of the American Ceramic Society}, volume = {104}, journal = {Journal of the American Ceramic Society}, number = {7}, doi = {10.1111/jace.17727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259457}, pages = {3554-3561}, year = {2021}, abstract = {In this study, the hydraulic reactivity and cement formation of baghdadite (Ca\(_{3}\)ZrSi\(_{2}\)O\(_{9}\)) was investigated. The material was synthesized by sintering a mixture of CaCO\(_{3}\), SiO\(_{2}\), and ZrO\(_{2}\) and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3.}, language = {en} } @article{HrynevichAchenbachJungstetal.2021, author = {Hrynevich, Andrei and Achenbach, Pascal and Jungst, Tomasz and Brook, Gary A. and Dalton, Paul D.}, title = {Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth}, series = {Macromolecular Bioscience}, volume = {21}, journal = {Macromolecular Bioscience}, number = {7}, doi = {10.1002/mabi.202000439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257535}, year = {2021}, abstract = {In this study, well-defined, 3D arrays of air-suspended melt electrowritten fibers are made from medical grade poly(ɛ-caprolactone) (PCL). Low processing temperatures, lower voltages, lower ambient temperature, increased collector distance, and high collector speeds all aid to direct-write suspended fibers that can span gaps of several millimeters between support structures. Such processing parameters are quantitatively determined using a "wedge-design" melt electrowritten test frame to identify the conditions that increase the suspension probability of long-distance fibers. All the measured parameters impact the probability that a fiber is suspended over multimillimeter distances. The height of the suspended fibers can be controlled by a concurrently fabricated fiber wall and the 3D suspended PCL fiber arrays investigated with early post-natal mouse dorsal root ganglion explants. The resulting Schwann cell and neurite outgrowth extends substantial distances by 21 d, following the orientation of the suspended fibers and the supporting walls, often generating circular whorls of high density Schwann cells between the suspended fibers. This research provides a design perspective and the fundamental parametric basis for suspending individual melt electrowritten fibers into a form that facilitates cell culture.}, language = {en} } @article{AbdElAzizElMaghrabyEwaldetal.2021, author = {Abd El-Aziz, Asmaa M. and El-Maghraby, Azza and Ewald, Andrea and Kandil, Sherif H.}, title = {In-vitro cytotoxicity study: cell viability and cell morphology of carbon nanofibrous scaffold/hydroxyapatite nanocomposites}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules26061552}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234037}, year = {2021}, abstract = {Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.}, language = {en} }