@phdthesis{Witteler2024, author = {Witteler, Charlotte Marie}, title = {Untersuchung des zellbiologischen Verhaltens von Fibroblasten in modifizierten Gelatine-Methacrylat basierten Harzen f{\"u}r den volumetrischen Biodruck}, doi = {10.25972/OPUS-34946}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349460}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Was vor einigen Jahren undenkbar erschien, k{\"o}nnte zuk{\"u}nftig m{\"o}glich sein: Krankes Gewebe mit Gesundem ersetzen, das in vitro mit modernsten Biofabrikationstechniken hergestellt wird. Dabei werden bisherige Grenzen {\"u}berschritten: W{\"a}hrend lichtbasierte Biodruckverfahren wie die Zwei-Photonen-Polymerisation Aufl{\"o}sungen bis in den Nanometerbereich erzielen, erm{\"o}glicht der Volumetrische Biodruck (VB) den Druck zentimetergroßer Konstrukte in wenigen Sekunden. Diese Geschwindigkeiten erweisen sich unter Biodruckverfahren als konkurrenzlos und werden erreicht, da das Bioharz nicht konsekutiv, sondern zugleich vernetzt wird. Einschr{\"a}nkend gilt bislang nur der Mangel an geeigneten Bioharzen f{\"u}r den VB. Daher besch{\"a}ftigt sich vorliegende Arbeit mit der Charakterisierung und Modifikation eines daf{\"u}r geeigneten Bioharzes: Gelatine-Methacrylat (GelMA). Dank seiner Zusammensetzung {\"a}hnelt das etablierte Hydrogelsystem der Extratrazellularmatrix: Der Gelatine-Anteil erm{\"o}glicht Biokompatibilit{\"a}t und Bioaktivit{\"a}t durch zelladh{\"a}sive sowie degradierbare Aminos{\"a}ure-Sequenzen. Zugleich k{\"o}nnen durch photovernetzbare Methacryloyl-Substituenten Konstrukte mit einer Formstabilit{\"a}t bei 37 °C erzeugt werden. Zun{\"a}chst wurde das Bioharz zellbiologisch charakterisiert, indem mit der embryonalen Mausfibroblasten-Zelllinie NIH-3T3 beladene GelMA-Zylinder gegossen, photopolymerisiert und kultiviert wurden. Im Verlauf einer Woche wurde die Zytokompatibilit{\"a}t der Gele anhand der Proliferationsf{\"a}higkeit (PicoGreen-Assay), des Metabolismus (CCK-8-Assay) und der Vitalit{\"a}t (Live/Dead-Assay) der Zellen beurteilt. Dabei wurden Polymerkonzentrationen von 6 - 8 \% sowie GelMA-Harze zweier verschiedener Molekulargewichte verglichen. Alle hergestellten Gele erwiesen sich als zytokompatibel, 6 \% ige Gele ließen im Inneren jedoch zus{\"a}tzlich eine beginnende Zellspreizung zu und ein niedriges GelMA-Molekulargewicht verst{\"a}rkte die gemessene Proliferation. Die sich anschließende mechanische und physikalische Charakterisierung belegte, dass h{\"o}her konzentrierte Gele einen gr{\"o}ßeren E-Modul aufwiesen und damit steifer waren. Eine Modifikation der Gele mit Fibronektin beeinflusste die Zellvertr{\"a}glichkeit weder positiv noch negativ und die Zugabe von Kollagen war wegen Entmischungseffekten nicht bewertbar. Es liegt die Vermutung nah, dass eine weitere Reduktion der Polymerkonzentration und damit Verringerung der Gelsteifigkeit der Schl{\"u}ssel f{\"u}r mehr Zellspreizung und -wachstum ist. Da jedoch die Druckbarkeit des Bioharzes die weitere Senkung des GelMA-Gehalts limitiert, sollten zun{\"a}chst Methoden entwickelt werden, welche die Netzwerkdichte des GelMAs anderweitig herabsetzen.}, subject = {3D Bioprinting}, language = {de} } @phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @phdthesis{Bakirci2024, author = {Bakirci, Ezgi}, title = {Development of \(In\) \(vitro\) Models for Tissue Engineering Applications Using a High-Resolution 3D Printing Technology}, doi = {10.25972/OPUS-25164}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In vitro models mimic the tissue-specific anatomy and play essential roles in personalized medicine and disease treatments. As a sophisticated manufacturing technology, 3D printing overcomes the limitations of traditional technologies and provides an excellent potential for developing in vitro models to mimic native tissue. This thesis aims to investigate the potential of a high-resolution 3D printing technology, melt electrowriting (MEW), for fabricating in vitro models. MEW has a distinct capacity for depositing micron size fibers with a defined design. In this thesis, three approaches were used, including 1) extending the MEW polymer library for different biomedical applications, 2) developing in vitro models for evaluation of cell growth and migration toward the different matrices, and 3) studying the effect of scaffold designs and biochemical cues of microenvironments on cells. First, we introduce the MEW processability of (AB)n and (ABAC)n segmented copolymers, which have thermally reversible network formulation based on physical crosslinks. Bisurea segments are combined with hydrophobic poly(dimethylsiloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments to form the (AB)n segmented copolymers. (ABAC)n segmented copolymers contain all three segments: in addition to bisurea, both hydrophobic and hydrophilic segments are available in the same polymer chain, resulting in tunable mechanical and biological behaviors. MEW copolymers either support cells attachment or dissolve without cytotoxic side effects when in contact with the polymers at lower concentrations, indicating that this copolymer class has potential in biological applications. The unique biological and surface properties, transparency, adjustable hydrophilicity of these copolymers could be beneficial in several in vitro models. The second manuscript addresses the design and development of a melt electrowritten competitive 3D radial migration device. The approach differs from most of the previous literature, as MEW is not used here to produce cell invasive scaffolds but to fabricate an in vitro device. The device is utilized to systematically determine the matrix which promotes cell migration and growth of glioblastoma cells. The glioblastoma cell migration is tested on four different Matrigel concentrations using a melt electrowritten radial device. The glioblastoma U87 cell growth and migration increase at Matrigel concentrations 6 and 8 mg mL-1 In the development of this radial device, the accuracy, and precision of melt electrowritten circular shapes were investigated. The results show that the printing speed and design diameter are essential parameters for the accuracy of printed constructs. It is the first instance where MEW is used for the production of in vitro devices. The influence of biochemical cues and scaffold designs on astrocytes and glioblastoma is investigated in the last manuscript. A fiber comprising the box and triangle-shaped pores within MEW scaffolds are modified with biochemical cues, including RGD and IKVAV peptides using a reactive NCO-sP(EO-stat-PO) macromer. The results show that astrocytes and glioblastoma cells exhibit different phenotypes on scaffold designs and peptide-coated scaffolds.}, subject = {3D-Druck}, language = {en} } @phdthesis{Kade2023, author = {Kade, Juliane Carolin}, title = {Expanding the Processability of Polymers for a High-Resolution 3D Printing Technology}, doi = {10.25972/OPUS-27005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270057}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis identifies how the printing conditions for a high-resolution additive manufacturing technique, melt electrowriting (MEW), needs to be adjusted to process electroactive polymers (EAPs) into microfibers. Using EAPs based on poly(vinylidene difluoride) (PVDF), their ability to be MEW-processed is studied and expands the list of processable materials for this technology.}, subject = {Polymere}, language = {en} } @phdthesis{Boehm2023, author = {B{\"o}hm, Christoph}, title = {Thermal Stability of the Polyesters PCL and PLGA during Melt Electrowriting}, doi = {10.25972/OPUS-30613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The focus of this thesis was to investigate how PCL and PLGA react to the heat exposure that comes with the MEW process over a defined timespan. To assess the thermal stability of PCL during MEW over 25 d, an automated collection of fibers has been used to determine the CTS on each day of heating for three different temperatures. PCL is exceptionally stable over 25 d at 75 °C, whereas for 85 °C and 95 °C a slight upward trend during the last 10 d could be observed, which is an indication for thermal degradation. Same trend could be observed for diameter of fibers produced at a fixed collector speed. For all temperatures, CTS during the first 5 d decreased due to inhomogeneities of the melt. Physical analysis of the fibers by XRD and mechanical testing showed no significant changes. To investigate the chemical details of the thermal durability, PCL was artificially aged over 25 d at 75 °C, 85 °C and 95 °C. Data from GPC analysis and rheology revealed that PCL is degrading steadily at all three temperatures. Combined with GC-MS analysis, two different mechanisms for degradation could be observed: random chain scission and unzipping. Additional GPC experiment using a mixture of PCL and a fluorescence labelled PCL showed that PCL was undergoing ester interchange reactions, which could explain its thermal stability. PLGA was established successfully as material for MEW. GPC results revealed that PLGA degraded heavily in the one-hour preheating period. To reduce the processing temperature, ATEC was blended with PLGA in three mixtures. This slowed down degradation and a processing window of 6 h could be established. Mechanical testing with fibers produced with PLGA and all three blends was performed. PLGA was very brittle, whereas the blends showed an elastic behavior. This could be explained by ester interchange reactions that formed a loosely crosslinked network with ATEC.}, subject = {Degradation}, language = {en} } @phdthesis{Weigl2023, author = {Weigl, Franziska}, title = {Correlation of FluidFM® Technology and Fluorescence Microscopy for the Visualization of Cellular Detachment Steps}, doi = {10.25972/OPUS-29876}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298763}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis aimed the development of a correlated device which combines FluidFM® with Fluorescence Microscopy (FL) (FL-FluidFM®) and enables the simultaneous quantification of adhesion forces and fluorescent visualization of mature cells. The implementation of a PIFOC was crucial to achieve a high-resolution as well as a stable but dynamic focus level. The functionality of SCFS after hardware modification was verified by comparing two force-curves, both showing the typical force progression and measured with the optimized and conventional hardware, respectively. Then, the integration of FL was examined by detaching fluorescently labeled REF52 cells. The fluorescence illumination of the cytoskeleton showed the expected characteristic force profile and no evidence of interference effects. Afterwards a corresponding correlative data analysis was addressed including manual force step fitting, the identification of visualized cellular unbinding, and a time-dependent correlation. This procedure revealed a link between the area of cytoskeletal unbinding and force-jumps. This was followed by a comparison of the detachment characteristics of intercellular connected HUVECs and individual REF52 cells. HUVECs showed maximum detachment forces in the same order of magnitude as the ones of single REF52 cells. This contrasted with the expected strong cohesiveness of endothelial cells and indicated a lack of cell-cell contact formation. The latter was confirmed by a comparison of HUVECs, primary HBMVECs, and immortalized EA.hy926 cells fluorescently labeled for two marker proteins of intercellular junctions. This unveiled that both the previous cultivation duration and the cell type have a major impact on the development of intercellular junctions. In summary, the correlative FL FluidFM® represents a powerful novel approach, which enables a truly contemporaneous performance and, thus, has the potential to reveal new insights into the mechanobiological properties of cell adhesion.}, language = {en} } @phdthesis{Schaufler2023, author = {Schaufler, Christian Thomas Siegfried}, title = {Osteogenes Potential additiv gefertigter Calciummagnesiumphosphat-Keramiken}, doi = {10.25972/OPUS-31179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311798}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Der steigende Bedarf an Knochenersatzmaterialien (KEM) in Medizin und Zahnmedizin verdeutlicht die Notwendigkeit der Etablierung weiterer alloplastischer, also synthetisch hergestellter, KEMs. Additive Fertigung erm{\"o}glicht die Herstellung patientenspezifischer Implantate. Hierf{\"u}r wird auf Basis von 3D Bildgebung eines Knochendefekts, ein Implantat mittels CAD geplant und anschließend mittels additiver Fertigung, zum Beispiel durch 3D Pulverdruck hergestellt. Ziel dieser Arbeit war die Untersuchung des osteogenen Potentials in vitro von Calciummagnesiumphosphatkeramiken mit der allgemeinen Strukturformel CaxMg(3-x)(PO4)2 mit x = 0; 0,25; 0,75; 1,5; 3 aus additiver Fertigung. Hierf{\"u}r wurden Pr{\"u}fk{\"o}rper mittels 3D Pulverdruck gedruckt, anschließend durch Hochtemperatursinterung verfestigt und durch Behandlung mit reaktiven L{\"o}sungen nachgeh{\"a}rtet. Abh{\"a}ngig von der reaktiven L{\"o}sung wandelte sich die Keramik teilweise in Struvit, Bruschit und Newberyit um. Die biologische Testung in vitro erfolgte mit hFOB 1.19 Zellen und ergab eine gute Biokompatibilit{\"a}t sowie die Ausdifferenzierung osteogener Progenitorzellen f{\"u}r fast alle Keramikphasen, wobei die newberyithaltigen Keramiken tendenziell bessere Ergebnisse erzielten.}, subject = {Knochenzement}, language = {de} } @phdthesis{Forster2023, author = {Forster, Leonard}, title = {Hyaluronic acid based Bioinks for Biofabrication of Mesenchymal Stem Cells}, doi = {10.25972/OPUS-29860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298603}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As a major component of the articular cartilage extracellular matrix, hyaluronic acid is a widely used biomaterial in regenerative medicine and tissue engineering. According to its well-known interaction with multiple chondrocyte surface receptors which positively affects many cellular pathways, some approaches by combining mesenchymal stem cells and hyaluronic acid-based hydrogels are already driven in the field of cartilage regeneration and fat tissue. Nevertheless, a still remaining major problem is the development of the ideal matrix for this purpose. To generate a hydrogel for the use as a matrix, hyaluronic acid must be chemically modified, either derivatized or crosslinked and the resulting hydrogel is mostly shaped by the mold it is casted in whereas the stem cells are embedded during or after the gelation procedure which does not allow for the generation of zonal hierarchies, cell density or material gradients. This thesis focuses on the synthesis of different hyaluronic acid derivatives and poly(ethylene glycol) crosslinkers and the development of different hydrogel and bioink compositions that allow for adjustment of the printability, integration of growth factors, but also for the material and biological hydrogel, respectively bioink properties.}, language = {en} } @phdthesis{Dahinten2023, author = {Dahinten, Anna}, title = {Baghdadit - Biozemente in der Anwendung als endodontischer Funktionswerkstoff}, doi = {10.25972/OPUS-31989}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319892}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In k{\"u}rzlich erschienenen Studien hat sich die Zementformulierung Baghdadit (Ca3ZrSi2O9) durch Eigenschaften wie eine hydraulische Aktivit{\"a}t, R{\"o}ntgenopazit{\"a}t und bioaktive Wirkung als potenzielles Material f{\"u}r die endodontische Anwendung qualifiziert. Ziel dieser Studie war es, Baghdadit als einphasigen Biozement und in Form verschiedener Materialzusammensetzungen auf vorteilhafte Eigenschaften im Hinblick auf die Anwendung als endodontischen Funktionswerkstoff zu untersuchen. Nach eigenst{\"a}ndiger Herstellung des mechanisch aktivierten Zementpulvers Ca3ZrSi2O9, erfolgte die Charakterisierung der verschiedenen Zementformulierungen maBag, Bag100Bru und Bag50Bru hinsichtlich der Injizierbarkeit, des pH-Verlaufs w{\"a}hrend der Abbindung, der Druckfestigkeit und Phasenzusammensetzung mittels XRD. Daneben wurde Baghdadit zu je drei verschiedenen Gewichtsanteilen als F{\"u}llstoff in eine Methacrylat-basierte Matrix integriert und hinsichtlich der Fließf{\"a}higkeit entsprechend der Norm DIN EN ISO 6876:2012, des qualitativen Polymerisationsgrads und der Druckfestigkeit gepr{\"u}ft. Mit einer Auswahl der oben genannten Materialien erfolgte die Untersuchung der antibakteriellen Wirksamkeit, der R{\"o}ntgensichtbarkeit orientierend an der Norm DIN EN ISO 13116:2014 und der Dichtigkeit im Wurzelkanal.}, subject = {Endodontie}, language = {de} } @article{LambergerZainuddinScheibeletal.2023, author = {Lamberger, Zan and Zainuddin, Shakir and Scheibel, Thomas and Lang, Gregor}, title = {Polymeric Janus Fibers}, series = {ChemPlusChem}, volume = {88}, journal = {ChemPlusChem}, number = {2}, doi = {10.1002/cplu.202200371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318516}, year = {2023}, abstract = {Janus fibers are a class of composite materials comprising mechanical and chemical to biological functionality. Combining different materials and functionalities in one micro- or even nanoscale fiber enables otherwise unreachable synergistic physicochemical effects with unprecedented opportunities for technical or biomedical applications. Here, recent developments of processing technologies and applications of polymeric Janus fibers will be reviewed. Various examples in the fields of textiles, catalysis, sensors as well as medical applications, like drug delivery systems, tissue engineering and antimicrobial materials, are presented to illuminate the outstanding potential of such high-end functional materials for novel applications in the upcoming future.}, language = {en} }