@article{MrestaniPauliKollmannsbergeretal.2021, author = {Mrestani, Achmed and Pauli, Martin and Kollmannsberger, Philip and Repp, Felix and Kittel, Robert J. and Eilers, Jens and Doose, S{\"o}ren and Sauer, Markus and Sir{\´e}n, Anna-Leena and Heckmann, Manfred and Paul, Mila M.}, title = {Active zone compaction correlates with presynaptic homeostatic potentiation}, series = {Cell Reports}, volume = {37}, journal = {Cell Reports}, number = {1}, doi = {10.1016/j.celrep.2021.109770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265497}, pages = {109770}, year = {2021}, abstract = {Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.}, language = {en} } @article{DannhaeuserMrestaniGundelachetal.2022, author = {Dannh{\"a}user, Sven and Mrestani, Achmed and Gundelach, Florian and Pauli, Martin and Komma, Fabian and Kollmannsberger, Philip and Sauer, Markus and Heckmann, Manfred and Paul, Mila M.}, title = {Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation}, series = {Frontiers in Cellular Neuroscience}, volume = {16}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2022.1074304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299440}, year = {2022}, abstract = {Introduction Neurotransmitter release at presynaptic active zones (AZs) requires concerted protein interactions within a dense 3D nano-hemisphere. Among the complex protein meshwork the (M)unc-13 family member Unc-13 of Drosophila melanogaster is essential for docking of synaptic vesicles and transmitter release. Methods We employ minos-mediated integration cassette (MiMIC)-based gene editing using GFSTF (EGFP-FlAsH-StrepII-TEV-3xFlag) to endogenously tag all annotated Drosophila Unc-13 isoforms enabling visualization of endogenous Unc-13 expression within the central and peripheral nervous system. Results and discussion Electrophysiological characterization using two-electrode voltage clamp (TEVC) reveals that evoked and spontaneous synaptic transmission remain unaffected in unc-13\(^{GFSTF}\) 3rd instar larvae and acute presynaptic homeostatic potentiation (PHP) can be induced at control levels. Furthermore, multi-color structured-illumination shows precise co-localization of Unc-13\(^{GFSTF}\), Bruchpilot, and GluRIIA-receptor subunits within the synaptic mesoscale. Localization microscopy in combination with HDBSCAN algorithms detect Unc-13\(^{GFSTF}\) subclusters that move toward the AZ center during PHP with unaltered Unc-13\(^{GFSTF}\) protein levels.}, language = {en} } @article{LichterPaulPaulietal.2022, author = {Lichter, Katharina and Paul, Mila Marie and Pauli, Martin and Schoch, Susanne and Kollmannsberger, Philip and Stigloher, Christian and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse}, series = {Cell Reports}, volume = {40}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2022.111382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300913}, year = {2022}, abstract = {Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{-/-}\) and wild-type mice. In RIM1α\(^{-/-}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0-2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{-/-}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs.}, language = {en} }