@article{BergerDemolombeHemetal.2022, author = {Berger, Nathalie and Demolombe, Vincent and Hem, Sonia and Rofidal, Val{\´e}rie and Steinmann, Laura and Krouk, Gabriel and Crabos, Amandine and Nacry, Philippe and Verdoucq, Lionel and Santoni, V{\´e}ronique}, title = {Root membrane ubiquitinome under short-term osmotic stress}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms23041956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284003}, year = {2022}, abstract = {Osmotic stress can be detrimental to plants, whose survival relies heavily on proteomic plasticity. Protein ubiquitination is a central post-translational modification in osmotic-mediated stress. In this study, we used the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry to compile a list of 719 ubiquitinated lysine (K-Ub) residues from 450 Arabidopsis root membrane proteins (58\% of which are transmembrane proteins), thereby adding to the database of ubiquitinated substrates in plants. Although no ubiquitin (Ub) motifs could be identified, the presence of acidic residues close to K-Ub was revealed. Our ubiquitinome analysis pointed to a broad role of ubiquitination in the internalization and sorting of cargo proteins. Moreover, the simultaneous proteome and ubiquitinome quantification showed that ubiquitination is mostly not involved in membrane protein degradation in response to short osmotic treatment but that it is putatively involved in protein internalization, as described for the aquaporin PIP2;1. Our in silico analysis of ubiquitinated proteins shows that two E2 Ub-conjugating enzymes, UBC32 and UBC34, putatively target membrane proteins under osmotic stress. Finally, we revealed a positive role for UBC32 and UBC34 in primary root growth under osmotic stress.}, language = {en} } @unpublished{HeidenreichGassenmaierAnkenbrandetal.2021, author = {Heidenreich, Julius F. and Gassenmaier, Tobias and Ankenbrand, Markus J. and Bley, Thorsten A. and Wech, Tobias}, title = {Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction}, edition = {accepted version}, doi = {10.1016/j.ejrad.2021.109817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323418}, year = {2021}, abstract = {Purpose To fully automatically derive quantitative parameters from late gadolinium enhancement (LGE) cardiac MR (CMR) in patients with myocardial infarction and to investigate if phase sensitive or magnitude reconstructions or a combination of both results in best segmentation accuracy. Methods In this retrospective single center study, a convolutional neural network with a U-Net architecture with a self-configuring framework ("nnU-net") was trained for segmentation of left ventricular myocardium and infarct zone in LGE-CMR. A database of 170 examinations from 78 patients with history of myocardial infarction was assembled. Separate fitting of the model was performed, using phase sensitive inversion recovery, the magnitude reconstruction or both contrasts as input channels. Manual labelling served as ground truth. In a subset of 10 patients, the performance of the trained models was evaluated and quantitatively compared by determination of the S{\o}rensen-Dice similarity coefficient (DSC) and volumes of the infarct zone compared with the manual ground truth using Pearson's r correlation and Bland-Altman analysis. Results The model achieved high similarity coefficients for myocardium and scar tissue. No significant difference was observed between using PSIR, magnitude reconstruction or both contrasts as input (PSIR and MAG; mean DSC: 0.83 ± 0.03 for myocardium and 0.72 ± 0.08 for scars). A strong correlation for volumes of infarct zone was observed between manual and model-based approach (r = 0.96), with a significant underestimation of the volumes obtained from the neural network. Conclusion The self-configuring nnU-net achieves predictions with strong agreement compared to manual segmentation, proving the potential as a promising tool to provide fully automatic quantitative evaluation of LGE-CMR.}, language = {en} } @phdthesis{Lewerentz2022, author = {Lewerentz, Anne F.}, title = {Spatiotemporal dynamics of freshwater macrophytes in Bavarian lakes under environmental change}, doi = {10.25972/OPUS-28770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287700}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Macrophytes are key components of freshwater ecosystems because they provide habitat, food, and improve the water quality. Macrophyte are vulnerable to environmental change as their physiological processes depend on changing environmental factors, which themselves vary within a geographical region and along lake depth. Their spatial distribution is not well understood and their importance is publicly little-known. In this thesis, I have investigated the spatiotemporal dynamics of freshwater macrophytes in Bavarian lakes to understand their diversity pattern along different scales and to predict and communicate potential consequences of global change on their richness. In the introduction (Chapter 1), I provide an overview of the current scientific knowledge of the species richness patterns of macrophytes in freshwater lakes, the influences of climate and land-use change on macrophyte growth, and different modelling approaches of macrophytes. The main part of the thesis starts with a study about submerged and emergent macrophyte species richness in natural and artificial lakes of Bavaria (Chapter 2). By analysing publicly available monitoring data, I have found a higher species richness of submerged macrophytes in natural lakes than in artificial lakes. Furthermore, I showed that the richness of submerged species is better explained by physio-chemical lake parameters than the richness of emergent species. In Chapter 3, I considered that submerged macrophytes grow along a depth gradient that provides a sharp environmental gradient on a short spatial scale. This study is the first comparative assessment of the depth diversity gradient (DDG) of macrophytes. I have found a hump-shaped pattern of different diversity components. Generalised additive mixed-effect models indicate that the shape of the DDG is influenced mainly by light quality, light quantity, layering depth, and lake area. I could not identify a general trend of the DDG within recent years, but single lakes show trends leading into different directions. In Chapter 4, I used a mechanistic eco-physiological model to explore changes in the distribution of macrophyte species richness under different scenarios of environmental conditions across lakes and with depths. I could replicate the hump-shaped pattern of potential species richness along depth. Rising temperature leads to increased species richness in all lake types, and depths. The effect of turbidity and nutrient change depends on depth and lake type. Traits that characterise "loser species" under increased turbidity and nutrients are a high light consumption and a high sensibility to disturbances. "Winner species" can be identified by a high biomass production. In Chapter 5, I discuss the image problem of macrophytes. Unawareness, ignorance, and the poor accessibility of macrophytes can lead to conflicts of use. I assumed that an increased engagement and education could counteract this. Because computer games can transfer knowledge interactively while creating an immersive experience, I present in the chapter an interactive single-player game for children. Finally, I discuss the findings of this thesis in the light of their implications for ecological theory, their implications for conservation, and future research ideas (Chapter 6). The findings help to understand the regional distribution and the drivers of macrophyte species richness. By applying eco-physiological models, multiple environmental shaping factors for species richness were tested and scenarios of climate and land-use change were explored.}, subject = {{\"O}kologie}, language = {en} } @article{BritzMarkertWitvlietetal.2021, author = {Britz, Sebastian and Markert, Sebastian Matthias and Witvliet, Daniel and Steyer, Anna Maria and Tr{\"o}ger, Sarah and Mulcahy, Ben and Kollmannsberger, Philip and Schwab, Yannick and Zhen, Mei and Stigloher, Christian}, title = {Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy}, series = {Frontiers in Neuroanatomy}, volume = {15}, journal = {Frontiers in Neuroanatomy}, issn = {1662-5129}, doi = {10.3389/fnana.2021.732520}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249622}, year = {2021}, abstract = {At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments.}, language = {en} } @article{MarquardtSolimandoKerscheretal.2021, author = {Marquardt, Andr{\´e} and Solimando, Antonio Giovanni and Kerscher, Alexander and Bittrich, Max and Kalogirou, Charis and K{\"u}bler, Hubert and Rosenwald, Andreas and Bargou, Ralf and Kollmannsberger, Philip and Schilling, Bastian and Meierjohann, Svenja and Krebs, Markus}, title = {Subgroup-Independent Mapping of Renal Cell Carcinoma — Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries}, series = {Frontiers in Oncology}, volume = {11}, journal = {Frontiers in Oncology}, issn = {2234-943X}, doi = {10.3389/fonc.2021.621278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232107}, year = {2021}, abstract = {Background: Renal cell carcinoma (RCC) is divided into three major histopathologic groups—clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three subgroups, for an exploratory transcriptome profiling of RCC subgroups. Materials and Methods: We used FPKM (fragments per kilobase per million) files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database, representing transcriptomic data of 891 patients. Using principal component analysis, we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized by machine learning, resulting gene signatures were validated by correlation analyses in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney, and GSE157256). Results: Many RCC samples co-clustered according to histopathology. However, a substantial number of samples clustered independently from histopathologic origin (mixed subgroup)—demonstrating divergence between histopathology and transcriptomic data. Further analyses of mixed subgroup via machine learning revealed a predominant mitochondrial gene signature—a trait previously known for chRCC—across all histopathologic subgroups. Additionally, ccRCC samples from mixed subgroup presented an inverse correlation of mitochondrial and angiogenesis-related genes in the TCGA and in three external validation cohorts. Moreover, mixed subgroup affiliation was associated with a highly significant shorter overall survival for patients with ccRCC—and a highly significant longer overall survival for chRCC patients. Conclusions: Pan-RCC clustering according to RNA-sequencing data revealed a distinct histology-independent subgroup characterized by strengthened mitochondrial and weakened angiogenesis-related gene signatures. Moreover, affiliation to mixed subgroup went along with a significantly shorter overall survival for ccRCC and a longer overall survival for chRCC patients. Further research could offer a therapy stratification by specifically addressing the mitochondrial metabolism of such tumors and its microenvironment.}, language = {en} } @article{VoulgariKokotaSteffanDewenterKeller2020, author = {Voulgari-Kokota, Anna and Steffan-Dewenter, Ingolf and Keller, Alexander}, title = {Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions}, series = {Insects}, volume = {11}, journal = {Insects}, number = {6}, issn = {2075-4450}, doi = {10.3390/insects11060373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207948}, year = {2020}, abstract = {Solitary bees are subject to a variety of pressures that cause severe population declines. Currently, habitat loss, temperature shifts, agrochemical exposure, and new parasites are identified as major threats. However, knowledge about detrimental bacteria is scarce, although they may disturb natural microbiomes, disturb nest environments, or harm the larvae directly. To address this gap, we investigated 12 Osmia bicornis nests with deceased larvae and 31 nests with healthy larvae from the same localities in a 16S ribosomal RNA (rRNA) gene metabarcoding study. We sampled larvae, pollen provisions, and nest material and then contrasted bacterial community composition and diversity in healthy and deceased nests. Microbiomes of pollen provisions and larvae showed similarities for healthy larvae, whilst this was not the case for deceased individuals. We identified three bacterial taxa assigned to Paenibacillus sp. (closely related to P. pabuli/amylolyticus/xylanexedens), Sporosarcina sp., and Bacillus sp. as indicative for bacterial communities of deceased larvae, as well as Lactobacillus for corresponding pollen provisions. Furthermore, we performed a provisioning experiment, where we fed larvae with untreated and sterilized pollens, as well as sterilized pollens inoculated with a Bacillus sp. isolate from a deceased larva. Untreated larval microbiomes were consistent with that of the pollen provided. Sterilized pollen alone did not lead to acute mortality, while no microbiome was recoverable from the larvae. In the inoculation treatment, we observed that larval microbiomes were dominated by the seeded bacterium, which resulted in enhanced mortality. These results support that larval microbiomes are strongly determined by the pollen provisions. Further, they underline the need for further investigation of the impact of detrimental bacterial acquired via pollens and potential buffering by a diverse pollen provision microbiome in solitary bees.}, language = {en} } @article{PauliPaulProppertetal.2021, author = {Pauli, Martin and Paul, Mila M. and Proppert, Sven and Mrestani, Achmed and Sharifi, Marzieh and Repp, Felix and K{\"u}rzinger, Lydia and Kollmannsberger, Philip and Sauer, Markus and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, doi = {10.1038/s42003-021-01939-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259830}, pages = {407}, year = {2021}, abstract = {Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution.}, language = {en} } @article{TogninalliSerenMengetal.2018, author = {Togninalli, Matteo and Seren, {\"U}mit and Meng, Dazhe and Fitz, Joffrey and Nordborg, Magnus and Weigel, Detlef and Borgwardt, Karsten and Korte, Arthur and Grimm, Dominik G.}, title = {The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog}, series = {Nucleic Acids Research}, volume = {46}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkx954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158727}, pages = {D1150-D1156}, year = {2018}, abstract = {The abundance of high-quality genotype and phenotype data for the model organism Arabidopsis thaliana enables scientists to study the genetic architecture of many complex traits at an unprecedented level of detail using genome-wide association studies (GWAS). GWAS have been a great success in A. thaliana and many SNP-trait associations have been published. With the AraGWAS Catalog (https://aragwas.1001genomes.org) we provide a publicly available, manually curated and standardized GWAS catalog for all publicly available phenotypes from the central A. thaliana phenotype repository, AraPheno. All GWAS have been recomputed on the latest imputed genotype release of the 1001 Genomes Consortium using a standardized GWAS pipeline to ensure comparability between results. The catalog includes currently 167 phenotypes and more than 222 000 SNP-trait associations with P < 10\(^{-4}\), of which 3887 are significantly associated using permutation-based thresholds. The AraGWAS Catalog can be accessed via a modern web-interface and provides various features to easily access, download and visualize the results and summary statistics across GWAS.}, language = {en} } @article{FischerSchardtLilaoGarzonetal.2023, author = {Fischer, Sabine C. and Schardt, Simon and Lilao-Garz{\´o}n, Joaqu{\´i}n and Mu{\~n}oz-Descalzo, Silvia}, title = {The salt-and-pepper pattern in mouse blastocysts is compatible with signaling beyond the nearest neighbors}, series = {iScience}, volume = {26}, journal = {iScience}, number = {11}, doi = {10.1016/j.isci.2023.108106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350184}, year = {2023}, abstract = {Summary Embryos develop in a concerted sequence of spatiotemporal arrangements of cells. In the preimplantation mouse embryo, the distribution of the cells in the inner cell mass evolves from a salt-and-pepper pattern to spatial segregation of two distinct cell types. The exact properties of the salt-and-pepper pattern have not been analyzed so far. We investigate the spatiotemporal distribution of NANOG- and GATA6-expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single-cell-based neighborhood analyses. A combination of spatial statistics and agent-based modeling reveals that the cell fate distribution follows a local clustering pattern. Using ordinary differential equations modeling, we show that this pattern can be established by a distance-based signaling mechanism enabling cells to integrate information from the whole inner cell mass into their cell fate decision. Our work highlights the importance of longer-range signaling to ensure coordinated decisions in groups of cells to successfully build embryos. Highlights • The local cell neighborhood and global ICM population composition correlate • ICM cells show characteristics of local clustering in early and mid mouse blastocysts • ICM patterning requires integration of signals from cells beyond the first neighbors}, language = {en} } @phdthesis{Jaslan2020, author = {Jaslan, Dawid Artur}, title = {TPC1 mutants provide insight into SV channel function}, doi = {10.25972/OPUS-15731}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157312}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In the framework of the presented doctoral thesis, the plant ubiquitous, non-selective vacuolar cation channel TPC1/SV was electrophysiologically studied in Arabidopsis thaliana mesophyll vacuoles to further enlighten its physiological role in plant stress responses. For this, the hyperactive channel version fou2 (D454N), gaining a non-functional vacuolar calcium sensor, strong retarded growth phenotype and upregulated JA signalling pathway, and eight fou2 reverting WT-like ouf mutants were used. Except of ouf4, all other seven ouf mutants carried a 2nd mutation in the TPC1 gene. Therefore, the TPC1 electrical features of all ouf mutants were electrophysiologically characterized with the patch clamp method and compared with fou2 and WT. Due to a missense mutation, ouf1 and ouf7 mutants harboured a truncated TPC1 channel protein, resulting in an impaired protein integrity and in turn loss of TPC1 channel activity. Accordingly, ouf1 and ouf7 mimicked the tpc1-2 null mutant with a WT- rather fou2-like phenotype. The ouf2 (G583D D454N) mutant exhibited inactive TPC1 channels, probably because the G583D mutation located in luminal part of the S11 helix caused (i) a shift of the activation threshold to much more positive voltages (i.e. to more than +110 mV) (ii) or channel blockage. As a result of the TPC1 channel inactivity, the ouf2 mutant also imitates the WT-like phenotype of the tpc1-2 null mutant. In the ouf6 mutant (A669V D454N) the 2nd reverting mutation selectively influenced fou2-like SV channel features. Both, the fast activation kinetics and reduced luminal calcium sensitivity were similar in ouf6 and fou2. However, deviations in both, the relative and absolute open channel probability, resulted in strongly reduced (80 \%) current density at 0 mM and channel inactivity in the voltage range between -30 mV to +40 mV compared to fou2 and WT. Furthermore, the TPC1 channels in ouf6 exhibited a higher susceptibility to inhibitory luminal Ca2+ than fou2. As a result of these different effects, the TPC1 channel activity almost vanished at high luminal Ca2+ loads, what is very likely the reason that ouf6 lost the fou2-like phenotype. The ouf4 mutation did not change the fou2 TPC1-channel features like fast channel activation, single channel conductance and voltage-dependent gating behaviour. Nevertheless, the TPC1 current density was 80\% less in ouf4 than in fou2. Since the TPC1 gene was not the target of the 2nd mutation, it can be assumed that it is modulated via external, yet unknown factor. In the ouf8 mutant the TPC1 channels additionally possess M629I mutation within the selectivity filter II resulting in a 50\% decrease in the TPC1 unitary conductance. However, the slightly increased relative open channel probability of the TPC1 channels in ouf8 compared to fou2 appeared to be sufficient to compensate the reduced transport capacity of individual TPC1 channels. As a result, a similar macroscopic outward current density of ouf8 and fou2 was detected in the absence of vacuolar Ca2+. Furthermore, ouf8 mutation did not drastically change the typical fou2 TPC1 channel features such as fast activation, vacuolar calcium insensitivity and voltage dependency. However, a reversible block of the cytosol-directed potassium efflux at increased vacuolar calcium concentration in ouf8 mutant was found. Further inspection of transiently expressed TPC1 channel variants (M629I, M629T) on the single channel level suggest that Met629 of AtTPC1 in the channel pore region is crucial for the unitary channel conductance. Taken together, current membrane recordings from ouf mutants revealed one common feature: All of them lacked or showed a strongly impaired ability for TPC1-mediated potassium release from the vacuole into the cytosol. Additionally, considering the detected dependence of the vacuolar membrane voltage on TPC1 activity, it thus seems that the TPC1-triggered vacuolar membrane depolarization caused by vacuolar K+ release plays a key role in generation of the fou2-like phenotype. Accordingly, one can conclude that TPC1-dependent vacuolar membrane depolarization and initiation of jasmonate production are likely linked. This statement is supported also by the complete restoration of WT-like plant phenotype and JA signalling in the ouf mutants. Finally, as a control element of the vacuolar membrane voltage TPC1 is probably upstream located in JA signalling pathway and therefore a perfect junction for linking multiple physiological stimuli and response to them. Im Rahmen der vorgelegten Doktorarbeit wurde der in Pflanzen ubiquit{\"a}r exprimierte, nicht-selektive vakuol{\"a}re Kationenkanal TPC1/SV elektrophysiologisch in Arabidopsis thaliana Mesophyllvakuolen untersucht, um seine physiologische Rolle in der pflanzlichen Stressantwort weiter aufzukl{\"a}ren. Hierf{\"u}r wurde die hyperaktive Kanalvariante fou2 (D454N), die einen nicht-funktionalen vakuol{\"a}ren Calciumsensor, ein stark verz{\"o}gertes Pflanzenwachstum und einen hochregulierten Jasmons{\"a}ure-Signalweg aufweist, sowie acht ouf Mutanten mit fou2-umkehrenden Ph{\"a}notyp benutzt. Mit Ausnahme von ouf4 enthalten alle anderen ouf Mutanten eine weitere Mutation im TPC1-Gen. Daher wurden die elektrischen Eigenschaften von TPC1 in allen ouf Mutanten elektrophysiologisch mittels der Patch clamp Technik charakterisiert und mit fou2 und dem Wildtyp verglichen. Aufgrund einer Missense-Mutation beinhalten die Mutanten ouf1 und ouf7 ein verk{\"u}rztes TPC1 Protein, woraus eine gest{\"o}rte Proteinintegrit{\"a}t resultiert und daraus wiederum ein Fehlen der TCP1-Kanalaktivit{\"a}t. Dementsprechend {\"a}hneln ouf1 und ouf7 der tpc1-2 Nullmutante mit einem WT- oder eher fou2-artigen Ph{\"a}notyp. Wahrscheinlich weist die ouf2 (G583D D454N) Mutante einen inaktiven TPC1-Kanal auf, weil die G583D Mutation, die in einem luminalen Teil der S11 Helix sitzt, eine Verschiebung der Aktivierungsschwelle hin zu einer h{\"o}heren Spannung (z. B. mehr als +110 mV) oder einen Kanalblock verursacht. Als Folge der TPC1 Kanal Inaktivit{\"a}t, ahmt die ouf2 Mutante auch den WT-{\"a}hnlichen Ph{\"a}notyp der tpc1-2 Nullmutante nach. In der ouf6 Mutante (A669V D454N) beeinflusst die zweite Mutation selektiv die fou2-{\"a}hnlichen SV-Kanaleigenschaften. Sowohl die schnelle Aktivierungskinetik als auch die verringerte luminale Calciumsensitivit{\"a}t waren denen von ouf6 und fou2 {\"a}hnlich. Die Abweichungen in der relativen sowie der absoluten Offenwahrscheinlichkeit resultierten jedoch in einer stark reduzierten (80 \%) Stromdichte bei 0 mM luminalem Calcium verglichen mit fou2 und dem WT, sowie einer Kanalinaktivit{\"a}t bei Spannungen zwischen -30 mV und +40 mV. Dar{\"u}ber hinaus zeigten die TPC1 Kan{\"a}le in ouf6 eine h{\"o}here Anf{\"a}lligkeit f{\"u}r inhibitorisches, luminales Calcium als die in fou2. Das Ergebnis der beiden unterschiedlichen Effekte ist, dass die TPC1 Kanalaktivit{\"a}t bei einer hohen luminalen Calciumkonzentration fast verschwindet, woraus zu schließen ist, dass ouf6 den fou2-{\"a}hnlichen Ph{\"a}notyp verlor. Die ouf4 Mutation ver{\"a}nderte nicht die fou2 TPC1 Kanaleigenschaften, wie die schnelle Kanalaktivierung, die Einzelkanalleitf{\"a}higkeit und das spannungsabh{\"a}ngige Verhalten. Nichtsdestotrotz war die TCP1 Stromdichte in ouf4 um 80 \% geringer als in fou2. Da das TPC1 Gen nicht das Ziel der zweiten Mutation war, kann angenommen werden, dass es durch {\"a}ußere, bisher noch unbekannte Faktoren, reguliert wird. In der ouf8 Mutante haben die TPC1 Kan{\"a}le zus{\"a}tzlich eine M629I Mutation innerhalb des zweiten Selektivit{\"a}tsfilters, welche in einem 50 \% R{\"u}ckgang der TCP1 Einzelkanalleitf{\"a}higkeit resultiert. Jedoch scheint die leicht erh{\"o}hte Offenwahrscheinlichkeit der TCP1 Kan{\"a}le in ouf8, verglichen mit fou2, ausreichend zu sein, um die reduzierte Transportkapazit{\"a}t der individuellen TPC1 Kan{\"a}le zu kompensieren. Schlussfolgernd wurde eine {\"a}hnliche makroskopische ausw{\"a}rts gerichtete Stromdichte des ouf8 und des fou2 in Abwesenheit vakuol{\"a}ren Calciums entdeckt. Des Weiteren {\"a}nderte eine ouf8 Mutation die fou2 TPC1 Kanaleigenschaften wie eine schnelle Aktivierung, vakuol{\"a}re Calciuminsensitivit{\"a}t und die Spannungsabh{\"a}ngigkeit nicht drastisch. Jedoch wurde ein reversibler Block des Zytosol-gerichteten Kalium Ausstroms bei erh{\"o}hten vakuol{\"a}ren Calcium Konzentrationen in ouf8 gefunden. Eine weitere Betrachtung transient exprimierter TPC1 Kanalvarianten (M629I, M629T) auf Einzelkanalebene weist darauf hin, dass das Met629 des AtTPC1 in der Kanalporenregion entscheidend ist f{\"u}r die Einzelkanalleitf{\"a}higkeit. Zusammengefasst zeigt der {\"u}ber die Membran von ouf Mutanten gemessene Strom eine Gemeinsamkeit: Alle zeigten keinen oder einen stark beeintr{\"a}chtigten TPC1-vermittelten Kaliumausstrom aus der Vakuole ins Zytosol. Unter Ber{\"u}cksichtigung der beobachteten Abh{\"a}ngigkeit der vakuol{\"a}ren Membranspannung von der TPC1 Aktivit{\"a}t, scheint es, als ob die durch TPC1 angeregte Depolarisation der Vakuolenmembran, welche durch die vakuol{\"a}re Kaliumfreisetzung bedingt wird, in der Ausbildung des fou2 Ph{\"a}notyps eine Rolle spielt. Daraus l{\"a}sst sich ableiten, dass die TPC1-abh{\"a}ngige Depolarisation der Vakuolenmembran und die Jasmonat Bildung vermutlich verbunden sind. Diese Behauptung wird auch gest{\"u}tzt durch die komplette Wiederherstellung des WT-{\"a}hnlichen Pflanzenph{\"a}notyps und des Jasmons{\"a}ure Signalwegs in den ouf Mutanten. Letztendlich ist TPC1 als kontrollierendes Element der vakuol{\"a}ren Membranspannung wahrscheinlich dem Jasmons{\"a}ure Signalweg vorgeschaltet und deswegen ein perfekter Knotenpunkt, der verschiedene physiologische Stimuli und ihre Antworten verbindet.}, language = {en} }