@phdthesis{Niklaus2004, author = {Niklaus, Patrick}, title = {Adaptive Femtosekunden Quantenkontrolle chemischer Reaktionen in der fl{\"u}ssigen Phase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Ziel der vorliegenden Arbeit war es, die Methode der adaptiven Pulsformung von Femtosekunden Laserpulsen in der fl{\"u}ssigen Phase experimentell zu realisieren. Eine Erweiterung dieser Technik auf die kondensierte Phase stellt einen wichtigen Schritt in Richtung einer breiten Anwendbarkeit zur Steuerung von chemischen Reaktionen dar. Die gr{\"o}ßere Teilchendichte im Vergleich zur Gasphase erm{\"o}glicht zum einen eine Erh{\"o}hung der erzielbaren absoluten Produktausbeuten. Andererseits ergibt sich erst dadurch die M{\"o}glichkeit, reale chemische Reaktionen, wie bimolekulare Reaktionen, gezielt zu steuern, da St{\"o}ße zwischen verschiedenen Molek{\"u}len wahrscheinlicher werden. Die Methode der adaptiven Quantenkontrolle ist f{\"u}r die Anwendung in der fl{\"u}ssigen Phase bestens geeignet, da sie eine koh{\"a}rente Kontrolle von photoinduzierten molekularen Prozessen selbst in komplexen Quantensystemen erlaubt. In dieser experimentellen Umsetzung einer ,,geschlossenen Kontrollschleife'' wird die spektrale Phasenstruktur von fs-Laserpulsen in einem computergesteuerten Pulsformer moduliert. Der resultierende geformte Laserpuls wechselwirkt anschließend mit dem zu untersuchenden molekularen System und steuert aktiv die Entwicklung des erzeugten Wellenpakets auf der Potentialenergiefl{\"a}che. Eine quantitative Messung der erzeugten Photoprodukte dieser Licht-Materie Wechselwirkung dient als R{\"u}ckkopplungssignal eines selbstlernenden Computeralgorithmus. Der auf dem Prinzip der Evolutionstheorie arbeitende Algorithmus verbessert nun iterativ die Pulsform bis ein Optimum des gew{\"u}nschten Reaktionskanals erreicht wird. Das modulierte elektrische Feld des Laserpulses passt sich somit entsprechend der gestellten Kontrollaufgabe automatisch den molekularen Eigenschaften an. Um jedoch die Anwendung dieser Technik auch in der kondensierten Phase zu demonstrieren, mussten Methoden zur Gewinnung eines R{\"u}ckkopplungssignals gefunden werden. Im Rahmen dieser Arbeit wurden daher M{\"o}glichkeiten eines quantitativen R{\"u}ckkopplungssignals f{\"u}r die adaptive Kontrolle in der fl{\"u}ssigen Phase untersucht, wie die Emissionsspektroskopie und die transiente Absorption im UV/VIS oder infraroten Spektralbereich. In einem ersten Experiment wurde die Emissionsspektroskopie verwendet, um einen Ladungstransferprozess (MLCT) in einem Ru(II)-Komplex ([Ru(dpb)3]2+) mit geformten fs-Laserpulsen zu steuern. Um die dominierende Intensit{\"a}tsabh{\"a}ngigkeit der Anregung zu eliminieren, wurde die Emissionsausbeute mit dem SHG-Signal eines nichtlinearen Kristalls „normiert". Diese Ausl{\"o}schung des intensit{\"a}tsabh{\"a}ngigen Faktors in beiden Prozessen erm{\"o}glichte es, Pulsformen zu finden, die dieses Verh{\"a}ltnis sowohl maximieren als auch minimieren. Ein Ansatz zur Erkl{\"a}rung der experimentellen Ergebnisse konnte mit Hilfe eines st{\"o}rungstheoretischen Modells beschrieben werden. In einem zweiten Experiment wurde erstmals eine photochemische Selektivit{\"a}t zwischen zwei verschiedenen Substanzen in der kondensierten Phase demonstriert. Dabei sollte die jeweilige Zwei-Photonen Anregung des Komplexes [Ru(dpb)3]2+ gegen{\"u}ber dem Molek{\"u}l DCM selektiv kontrolliert werden. Wiederum diente die spontane Emission beider Substanzen als R{\"u}ckkopplungssignal f{\"u}r die Effektivit{\"a}t des Anregungsschritts. Verschiedene Ein-Parameter Kontrollmethoden, wie der Variation der Anregungswellenl{\"a}nge, der Intensit{\"a}t sowie des linearen Chirps, konnten diese Kontrollaufgabe nicht erf{\"u}llen. Jedoch konnte eine Optimierung des Verh{\"a}ltnisses der beiden Emissionsausbeuten mit Hilfe der adaptiven Pulsformung erzielt werden. Das Ergebnis dieses Experiments zeigt, dass photoinduzierte Prozesse in zwei unterschiedlichen molekularen Substanzen trotz der Wechselwirkungen der gel{\"o}sten Molek{\"u}le mit ihrer L{\"o}sungsmittelumgebung selektiv und simultan kontrolliert werden k{\"o}nnen. Das Ziel des dritten Experiments war eine gezielte Steuerung einer komplexeren chemischen Reaktion. Mit Hilfe der adaptiven Pulsformung konnte eine optimale Kontrolle der Photoisomerisierungsreaktion des Molek{\"u}ls NK88 demonstriert werden. Das dazu ben{\"o}tigte R{\"u}ckkopplungssignal f{\"u}r den evolution{\"a}ren Algorithmus wird durch transiente Absorptionsspektroskopie im UV/VIS Spektralbereich bereitgestellt. Eine Untersuchung der Dynamik der Isomerisierungsreaktion mit Hilfe der Pump-Probe Technik erlaubte eine Zuordnung zweier verschiedener Absorptionsbereiche zu den jeweiligen Isomeren. Die Ergebnisse der Optimierung des Verh{\"a}ltnisses der Quantenausbeuten der beiden Isomere zeigten, dass die geformten Laserpulse eine Kontrolle der Effizienz der Photoisomerisierung in der fl{\"u}ssigen Phase erm{\"o}glichen. Zusammenfassend kann man sagen, dass im Rahmen dieser Arbeit mit Hilfe der fs-Lasertechnologie und der Technik der adaptiven fs-Quantenkontrolle Experimente durchgef{\"u}hrt wurden, die einen wichtigen Beitrag zu dem neuen Forschungsbereich der Femtochemie darstellen. Die Erweiterung dieser Technik auf die fl{\"u}ssige Phase beschreibt einen ersten Erfolg in Richtung einer neuartigen Chemie.}, subject = {Ultrakurzer Lichtimpuls}, language = {de} } @phdthesis{Heinrich2022, author = {Heinrich, Robert}, title = {Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region}, doi = {10.25972/OPUS-26864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.\% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed.}, subject = {Quantenkaskadenlaser}, language = {en} }