@phdthesis{Muehlbauer2015, author = {M{\"u}hlbauer, Mathias Josef}, title = {Nanolithography on Mercury Telluride}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 °C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e2/h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure's properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Dantscher2006, author = {Dantscher, Sandra}, title = {Photostromspektroskopie an Nanokontakten : Tunnel- und Einzelmolek{\"u}lkontakte unter Femtosekundenbeleuchtung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18094}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In dieser Arbeit wurde der lichtinduzierte Ladungstransfer in Nanokontakten untersucht. Dabei wurden sowohl Tunnel- als auch Molek{\"u}lkontakte eingesetzt. Zur Pr{\"a}paration der Tunnelkontakte standen zwei verschiedene Methoden zur Verf{\"u}gung: mechanisch kontrollierte Bruchkontakte und elektromigrierte Nanokontakte. Die Bruchkontakttechnik bietet die M{\"o}glichkeit, den Abstand der Elektroden mit Sub-AA-Genauigkeit zu ver{\"a}ndern, w{\"a}hrend die elektromigrierten Kontakte einen durch die Pr{\"a}parationsbedingungen fest vorgegebenen Abstand haben. Bei den hier untersuchten Molek{\"u}len handelt es sich um Dithiole, die {\"u}ber eine Schwefel-Gold-Bindung an die Elektroden gebunden sind. Die Beleuchtung erfolgte im Fall der Bruchkontakte mit ultrakurzen Laserpulsen bei 800 nm und durch Frequenzverdopplung bei 400 nm. Durch Fokussierung auf einen Radius von ca. 100 mum wurden Spitzenintensit{\"a}ten von 10^7 Wcm^-2 (800 nm) bzw. 10^6 Wcm^-2 (400 nm) erreicht. Die Bruchkontakte (Tunnel- und Molek{\"u}lkontakte) waren bis zu den auftretenden Maximalintensit{\"a}ten von 10^7 Wcm^-2 stabil. F{\"u}r alle untersuchten Tunnelkontakte konnte eine lichtinduzierte Stromkomponente von bis zu 1 nA nachgewiesen werden. Sie ist proportional zum jeweils fließenden mittleren DC-Strom und betr{\"a}gt typischerweise einige Prozent davon. Dieser Strom wurde auf die thermische Ausdehnung der Elektroden auf Grund der dort durch Absorption deponierten Lichtenergie zur{\"u}ckgef{\"u}hrt. Aus der relativen Gr{\"o}ße des lichtinduzierten Signals und einem Wert der Austrittsarbeit von Gold von ca. 4,7 eV ergibt sich eine Expansion jeder Elektrode um etwa 1 pm. Dies ist in guter {\"U}berinstimmung mit einem einfachen thermischen Modell der freitragenden Elektroden. Bei einigen Kontakten wurde noch eine weitere lichtinduzierte Stromkomponente in der Gr{\"o}ßenordnung einiger pA gefunden, die nicht von der angelegten Biasspannung abh{\"a}ngt, aber linear mit der Laserleistung zunimmt. Ein Modell, das diese Befunde erkl{\"a}rt, geht von einer asymmetrischen Anregung in den beiden Elektroden aus. Somit ergibt sich ein Nettostrom angeregter Elektronen in eine Richtung. Die dazugeh{\"o}rige gemessene Quanteneffizienz liegt nahe bei 1, was ein Indiz auf einen Beitrag von sekund{\"a}ren heißen Elektronen zum Strom ist. Auch bei den Molek{\"u}lkontakten konnte eine lichtinduzierte Stromkomponente identifiziert werden, die linear von der Laserintensit{\"a}t abh{\"a}ngt. Sie wird, {\"a}hnlich wie im Fall der Tunnelkontakte, der thermisch verursachten Expansion der Elektroden zugeschrieben, allerdings ließ sich der genaue Prozess bisher noch nicht erkl{\"a}ren. Es ist anzunehmen, dass die Zunahme der Elektrodenl{\"a}nge durch eine Umordnung auf atomarer L{\"a}ngenskala in der vordersten Spitze der Goldelektrode kompensiert wird, da dies der duktilste Bereich des gesamten Kontakts ist. Der genaue Prozess konnte jedoch noch nicht gekl{\"a}rt werden. Messungen, die den Elektrodenabstand um einige AA ver{\"a}nderten, lieferten weitere Indizien f{\"u}r die Komplexit{\"a}t der Molek{\"u}lkontakte. So trat in manchen F{\"a}llen eine starke Korrelation zwischen Ver{\"a}nderungen des mittleren DC-Stroms und des lichtinduzierten Signals auf, was auf einen einzelnen Transportpfad f{\"u}r beide Signale hindeutet. Andererseits ver{\"a}nderten sich die beiden Str{\"o}me teilweise aber auch unabh{\"a}ngig voneinander, was nur durch mehrere parallele Transportkan{\"a}le im Kontakt erkl{\"a}rt werden kann. Zus{\"a}tzlich zum thermisch verursachten lichtinduzierten Signal wurden, wie im Fall der Tunnelkontakte, biasspannungsunabh{\"a}ngige Str{\"o}me identifiziert. Sie sind in der gleichen Gr{\"o}ßenordnung wie in Tunnelkontakten und werden somit der gleichen Ursache zugeschrieben, n{\"a}mlich einer asymmetrischen Anregung in den Metallelektroden, die zu einem Nettostrom in einer Richtung f{\"u}hrt. Im zweiten Teil der Arbeit wurden elektromigrierte Tunnelkontakte untersucht. Da diese Kontakte einen sehr großen Elektrodenabstand in der Gr{\"o}ßenordnung von 30 nm aufwiesen, konnte nur bei Kombination von einer Biasspannung von mehreren Volt mit Femtosekundenbeleuchtung ein Strom im Bereich von 100 fA detektiert werden. Durch Verbesserung der Fokussierung im Vergleich zu den Experimenten an den Bruchkontakten wurden Spitzenintensit{\"a}ten von 10^11 Wcm^-2 erreicht. Die lichtinduzierten Tunnelstr{\"o}me zeigen eine quadratische Intensit{\"a}tsabh{\"a}ngigkeit, was einem Zwei-Photonen-Prozess entspricht, sowie eine ebenfalls nichtlineare Spannungsabh{\"a}ngigkeit. Zur Beschreibung der Daten wurde das Modell einer Multiphotonen-Photofeldemission verwendet, das auf der Fowler-Nordheim-Formel f{\"u}r Feldemission basiert. Durch geeignete Wahl der Modellparameter (Elektrodenabstand, Kr{\"u}mmungsradius der Elektrodenspitze und Barrierenh{\"o}he im Tunnelkontakt) war es m{\"o}glich, die Spannungsabh{\"a}ngigkeit des lichtinduzierten Signals zu reproduzieren.}, subject = {Tunnelkontakt}, language = {de} }