@phdthesis{Goetz2019, author = {G{\"o}tz, Sebastian Reinhold}, title = {Nonlinear spectroscopy at the diffraction limit: probing ultrafast dynamics with shaped few-cycle laser pulses}, doi = {10.25972/OPUS-19213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192138}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {An experimental setup for probing ultrafast dynamics at the diffraction limit was developed, characterized and demonstrated in the scope of the thesis, aiming for optical investigations while simultaneously approaching the physical limits on the length and timescale. An overview of this experimental setup was given in Chapter 2, as well as the considerations that led to the selection of the individual components. Broadband laser pulses with a length of 9.3 fs, close to the transform limit of 7.6 fs, were focused in a NA = 1.4 immersion oil objective, to the diffraction limit of below 300 nm (FWHM). The spatial focus shape was characterized with off-resonance gold nanorod scatterers scanned through the focal volume. For further insights into the functionality and limitations of the pulse shaper, its calibration procedure was reviewed. The deviations between designed and experimental pulse shapes were attributed to pulse-shaper artifacts, including voltage-dependent inter-layer as well as intra-layer LCD-pixel crosstalk, Fabry-P{\´e}rot-type reflections in the LCD layers, and space-time coupling. A pixel-dependent correction was experimentally carried out, which can be seen as an extension of the initial calibration to all possible voltage combinations of the two LCD layers. The capabilities of the experimental setup were demonstrated in two types of experiments, targeting the nonlinearity of gold (Chapter 3) as well as two-dimensional spectroscopy at micro-structured surfaces (Chapter 4). Investigating thin films, an upper bound for the absolute value for the imaginary part of the nonlinear refractive index of gold could be set to |n′′ 2 (Au)| < 0.6·10-16 m2/W, together with |n′ 2 (Au)| < 1.2·10-16 m2/W as an upper bound for the absolute value of the real part. Finite-difference time-domain simulations on y-shaped gold nanostructures indicated that a phase change of ∆Φ ≥ 0.07 rad between two plasmonic modes would induce a sufficient change in the spatial contrast of emission to the far-field to be visible in the experiment. As the latter could not be observed, this value of ∆Φ was determined as the upper bound for the experimentally induced phase change. An upper bound of 52 GW/cm2 was found for the damage threshold. In Chapter 4, a novel method for nonlinear spectroscopy on surfaces was presented. Termed coherent two-dimensional fluorescence micro-spectroscopy, it is capable of exploring ultrafast dynamics in nanostructures and molecular systems at the diffraction limit. Two-dimensional spectra of spatially isolated hotspots in structured thin films of fluorinated zinc phthalocyanine (F16ZnPc) dye were taken with a 27-step phase-cycling scheme. Observed artifacts in the 2D maps were identified as a consequence from deviations between the desired and the experimental pulse shapes. The optimization procedures described in Chapter 2 successfully suppressed the deviations to a level where the separation from the nonlinear sample response was feasible. The experimental setup and methods developed and presented in the scope of this thesis demonstrate its flexibility and capability to study microscopic systems on surfaces. The systems exemplarily shown are consisting of metal-organic dyes and metallic nanostructures, represent samples currently under research in the growing fields of organic semiconductors and plasmonics.}, subject = {Ultrakurzzeitspektroskopie}, language = {en} } @phdthesis{Hain2015, author = {Hain, Tilman Christian}, title = {Entwicklung eines experimentellen Aufbaus zur Charakterisierung nanoskaliger Systeme mittels Fluoreszenzspektroskopie und -mikroskopie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die vorliegende Dissertation leistet einen Beitrag zur spektroskopischen Messmethodik nanoskaliger Strukturen. Im Mittelpunkt der Arbeit steht die Entwicklung und Erprobung eines spektrofluorimetrischen Aufbaus, mit dessen Hilfe ein aus Kohlenstoffnanor{\"o}hren und DNA-Oligomeren bestehendes supramolekulares Modellsystem einer optischen Untersuchung zug{\"a}nglich gemacht wird. Die Vielseitigkeit der Messeinheit aus Mikroskop und Spektrometer wird an einer weiteren Substanzklasse untermauert. So wird das Emissionsverhalten von in Siliziumcarbidkristallen induzierten Defektzentren einer r{\"a}umlich, spektral und zeitlich aufgel{\"o}sten Charakterisierung unterzogen. Die zentrale Komponente des Spektrofluorimetrieaufbaus stellt eine Superkontinuumlichtquelle dar. In Verbindung mit einem elektronisch geregelten Filtermodul zur Wellenl{\"a}ngenselektion erlaubt sie die Durchf{\"u}hrung von Photolumineszenz-Anregungsexperimenten. Im Gegensatz zu kommerziell erh{\"a}ltlichen Systemen, die {\"u}berwiegend auf eine spektroskopische Charakterisierung gel{\"o}ster oder kolloidal stabilisierter Substanzen abzielen, erlaubt der hier realisierte Aufbau auch die PL- mikroskopische Untersuchung kondensierter Proben, was durch die Epi-Bauweise auch opake Substrate einschließt. Der Einsatz von InGaAs-Sensoren weitet das Detektionsfenster auf den Nahinfrarotbereich aus, sowohl hinsichtlich des Kamera- als auch des Spektroskopiekanals. Anhand verschiedenartiger Kohlenstoffnanorohrproben, die entweder in fl{\"u}ssiger Phase dispergiert oder in festem Zustand als Film abgeschieden vorliegen, wird die Leistungsf{\"a}higkeit des PLE-Experiments unter Beweis gestellt. Neben der Zuordnung der Chiralit{\"a}ten in polydispersen SWNT-Suspensionen wird dies auch durch die Untersuchung von Energietransferprozessen und die Studie von Umgebungseinfl{\"u}ssen demonstriert. Die Charakterisierung des DNA-SWNT-Modellsystems in mikrofluidischer Umgebung macht von der fluoreszenzmikroskopischen Detektionseinheit Gebrauch. W{\"a}hrend die intrinsische Photolumineszenz der Nanor{\"o}hren sicherstellen soll, dass Letztere in ausreichender Anzahl auf den mikrostrukturierten Substraten vorhanden sind, wird die extrinsische Photolumineszenz der funktionalisierten Oligonukleotide als spektroskopisches Maß f{\"u}r die DNA-Konzentration herangezogen. Das hierbei beobachtete Agglomerationsverhalten der farbstoffmarkierten Oligomere geht mit einer lokal erh{\"o}hten Fluoreszenzintensit{\"a}t einher und erlaubt damit die quantitative Auswertung der auf PL-Einzelbildern basierenden Zeitserien. Zugleich wird damit eine Absch{\"a}tzung der DNA-Belegung auf den Nanor{\"o}hren m{\"o}glich. Im Falle der aus 16 alternierenden Guanin-Thymin-Einheiten bestehenden Basensequenz l{\"o}sen sich nach Initiieren des Desorptionsvorgangs ein Großteil der Oligomere von der Nanorohroberfl{\"a}che ab. Lediglich ein F{\"u}nftel bleibt in adsorbierter Form zur{\"u}ck, was sich jedoch f{\"u}r die Hybridstabilit{\"a}t als ausreichend erweist. Die Freisetzung weiterer Oligomere bleibt bei der Versuchstemperatur von 20 °C trotz der hohen Verd{\"u}nnung aus, da aufgrund des gr{\"o}ßeren Interadsorbatabstands und der damit verbundenen Abnahme repulsiver Wechselwirkungen die Aktivierungsbarriere f{\"u}r ihre Desorption steigt. Die Stabilit{\"a}t der DNA-SWNT-Konjugate liegt demnach in ihrer kinetischen Inertheit begr{\"u}ndet, die sie vor einer Reaggregation bewahrt. Die Studie der in Siliziumcarbid induzierten Fehlstellendefekte kann als Beleg f{\"u}r die breite Anwendbarkeit des spektrofluorimetrischen Aufbaus gelten. PL-Mikroskopaufnahmen zeigen hierbei, dass die Anzahl der Defektzentren mit der Bestrahlungsintensit{\"a}t kontrolliert werden kann - von einer kontinuierlichen Verteilung bei hohen Strahlungsintensit{\"a}ten {\"u}ber heterogene Defektansammlungen bis hin zu Einzeldefektstellen bei niedrigen Strahlungsdosen. Letztere resultieren in beugungsbegrenzten Signaturen und erlauben damit eine Charakterisierung des abbildenden Systems sowie des Anregungsfokus. Anhand der PLE-Analyse l{\"a}sst sich das Absorptionsmaximum absch{\"a}tzen. Aussagen zur zeitlichen Entwicklung des Emissionsverhaltens werden durch TCSPC-Messungen erhalten. Die abschließende Untersuchung des Photonenflusses mit Hilfe von Korrelationsexperimenten nach Hanbury Brown-Twiss zeigt bei Raumtemperatur kein Auftreten von Photonantibunching.}, subject = {Fluoreszenzspektroskopie}, language = {de} } @phdthesis{Rewitz2014, author = {Rewitz, Christian}, title = {Far-Field Characterization and Control of Propagating Ultrashort Optical Near Fields}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, femtosecond laser pulses are used to launch optical excitations on different nanostructures. The excitations are confined below the diffraction limit and propagate along the nanostructures. Fundamental properties of these ultrashort optical near fields are determined by characterizing the far-field emission after propagation with a setup developed for this task. Furthermore, control of the nanooptical excitations' spatial and temporal evolution is demonstrated for a designed nanostructure.}, subject = {Nahfeldoptik}, language = {en} } @phdthesis{Grimm2023, author = {Grimm, Philipp Martin}, title = {Locally driven complex plasmonic nanoantenna systems}, doi = {10.25972/OPUS-30315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Metallic nanostructures possess the ability to support resonances in the visible wavelength regime which are related to localized surface plasmons. These create highly enhanced electric fields in the immediate vicinity of metal surfaces. Nanoparticles with dipolar resonance also radiate efficiently into the far-field and hence serve as antennas for light. Such optical antennas have been explored during the last two decades, however, mainly as standalone units illuminated by external laser beams and more recently as electrically driven point sources, yet merely with basic antenna properties. This work advances the state of the art of locally driven optical antenna systems. As a first instance, the electric driving scheme including inelastic electron tunneling over a nanometer gap is merged with Yagi-Uda theory. The resulting antenna system consists of a suitably wired feed antenna, incorporating a tunnel junction, as well as several nearby parasitic elements whose geometry is optimized using analytical and numerical methods. Experimental evidence of unprecedented directionality of light emission from a nanoantenna is provided. Parallels in the performance between radiofrequency and optical Yagi-Uda arrays are drawn. Secondly, a pair of electrically connected antennas with dissimilar resonances is harnessed as electrodes in an organic light emitting nanodiode prototype. The organic material zinc phthalocyanine, exhibiting asymmetric injection barriers for electrons and holes, in conjunction with the electrode resonances, allows switching and controlling the emitted peak wavelength and directionality as the polarity of the applied voltage is inverted. In a final study, the near-field based transmission-line driving of rod antenna systems is thoroughly explored. Perfect impedance matching, corresponding to zero back-reflection, is achieved when the antenna acts as a generalized coherent perfect absorber at a specific frequency. It thus collects all guided, surface-plasmon mediated input power and transduces it to other nonradiative and radiative dissipation channels. The coherent interplay of losses and interference effects turns out to be of paramount importance for this delicate scenario, which is systematically obtained for various antenna resonances. By means of the here developed semi-analytical toolbox, even more complex nanorod chains, supporting topologically nontrivial localized edge states, are studied. The results presented in this work facilitate the design of complex locally driven antenna systems for optical wireless on-chip communication, subwavelength pixels, and loss-compensated integrated plasmonic nanocircuitry which extends to the realm of topological plasmonics.}, subject = {Plasmonik}, language = {en} }