@article{KhareLatifiKhare2021, author = {Khare, Suyash and Latifi, Hooman and Khare, Siddhartha}, title = {Vegetation growth analysis of UNESCO World Heritage Hyrcanian forests using multi-sensor optical remote sensing data}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs13193965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248398}, year = {2021}, abstract = {Freely available satellite data at Google Earth Engine (GEE) cloud platform enables vegetation phenology analysis across different scales very efficiently. We evaluated seasonal and annual phenology of the old-growth Hyrcanian forests (HF) of northern Iran covering an area of ca. 1.9 million ha, and also focused on 15 UNESCO World Heritage Sites. We extracted bi-weekly MODIS-NDVI between 2017 and 2020 in GEE, which was used to identify the range of NDVI between two temporal stages. Then, changes in phenology and growth were analyzed by Sentinel 2-derived Temporal Normalized Phenology Index. We modelled between seasonal phenology and growth by additionally considering elevation, surface temperature, and monthly precipitation. Results indicated considerable difference in onset of forests along the longitudinal gradient of the HF. Faster growth was observed in low- and uplands of the western zone, whereas it was lower in both the mid-elevations and the western outskirts. Longitudinal range was a major driver of vegetation growth, to which environmental factors also differently but significantly contributed (p < 0.0001) along the west-east gradient. Our study developed at GEE provides a benchmark to examine the effects of environmental parameters on the vegetation growth of HF, which cover mountainous areas with partly no or limited accessibility.}, language = {en} } @article{UphusLuepkeYuanetal.2021, author = {Uphus, Lars and L{\"u}pke, Marvin and Yuan, Ye and Benjamin, Caryl and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Schwindl, Michael and Uhler, Johannes and Menzel, Annette}, title = {Climate effects on vertical forest phenology of Fagus sylvatica L., sensed by Sentinel-2, time lapse camera, and visual ground observations}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs13193982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248419}, year = {2021}, abstract = {Contemporary climate change leads to earlier spring phenological events in Europe. In forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical phenological (mis)match — the phenological difference between overstory and understory — affects the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS) of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 °C in Bavaria, southeast Germany, in the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We explained SOS dates and vertical phenological (mis)match by canopy temperature and compared these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS advanced with higher mean April canopy temperature (visual ground observations: -2.86 days per °C; cameras: -2.57 days per °C). However, understory SOS was not significantly affected by canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy temperature (visual ground observations: +3.90 days per °C; cameras: +2.52 days per °C). These results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more by increased canopy temperature than pixels of lower canopy height. The results may indicate that, with further climate change, spring phenology of F. sylvatica overstory will advance more than F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous forests. This may have major ecological effects, but also methodological consequences for the field of remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the vertical (mis)match.}, language = {en} } @article{MayrKleinRutzingeretal.2021, author = {Mayr, Stefan and Klein, Igor and Rutzinger, Martin and Kuenzer, Claudia}, title = {Systematic water fraction estimation for a global and daily surface water time-series}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {14}, issn = {2072-4292}, doi = {10.3390/rs13142675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242586}, year = {2021}, abstract = {Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product's performance regarding mixed water/non-water pixels by an average of 11.6\% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.}, language = {en} } @article{RokhafrouzLatifiAbkaretal.2021, author = {Rokhafrouz, Mohammad and Latifi, Hooman and Abkar, Ali A. and Wojciechowski, Tomasz and Czechlowski, Mirosław and Naieni, Ali Sadeghi and Maghsoudi, Yasser and Niedbała, Gniewko}, title = {Simplified and hybrid remote sensing-based delineation of management zones for nitrogen variable rate application in wheat}, series = {Agriculture}, volume = {11}, journal = {Agriculture}, number = {11}, issn = {2077-0472}, doi = {10.3390/agriculture11111104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250033}, year = {2021}, abstract = {Enhancing digital and precision agriculture is currently inevitable to overcome the economic and environmental challenges of the agriculture in the 21st century. The purpose of this study was to generate and compare management zones (MZ) based on the Sentinel-2 satellite data for variable rate application of mineral nitrogen in wheat production, calculated using different remote sensing (RS)-based models under varied soil, yield and crop data availability. Three models were applied, including (1) a modified "RS- and threshold-based clustering", (2) a "hybrid-based, unsupervised clustering", in which data from different sources were combined for MZ delineation, and (3) a "RS-based, unsupervised clustering". Various data processing methods including machine learning were used in the model development. Statistical tests such as the Paired Sample T-test, Kruskal-Wallis H-test and Wilcoxon signed-rank test were applied to evaluate the final delineated MZ maps. Additionally, a procedure for improving models based on information about phenological phases and the occurrence of agricultural drought was implemented. The results showed that information on agronomy and climate enables improving and optimizing MZ delineation. The integration of prior knowledge on new climate conditions (drought) in image selection was tested for effective use of the models. Lack of this information led to the infeasibility of obtaining optimal results. Models that solely rely on remote sensing information are comparatively less expensive than hybrid models. Additionally, remote sensing-based models enable delineating MZ for fertilizer recommendations that are temporally closer to fertilization times.}, language = {en} } @article{RoeschSonnenscheinBucheltetal.2022, author = {R{\"o}sch, Moritz and Sonnenschein, Ruth and Buchelt, Sebastian and Ullmann, Tobias}, title = {Comparing PlanetScope and Sentinel-2 imagery for mapping mountain pines in the Sarntal Alps, Italy}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {13}, issn = {2072-4292}, doi = {10.3390/rs14133190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281945}, year = {2022}, abstract = {The mountain pine (Pinus mugo ssp. Mugo Turra) is an important component of the alpine treeline ecotone and fulfills numerous ecosystem functions. To understand and quantify the impacts of increasing logging activities and climatic changes in the European Alps, accurate information on the occurrence and distribution of mountain pine stands is needed. While Earth observation provides up-to-date information on land cover, space-borne mapping of mountain pines is challenging as different coniferous species are spectrally similar, and small-structured patches may remain undetected due to the sensor's spatial resolution. This study uses multi-temporal optical imagery from PlanetScope (3 m) and Sentinel-2 (10 m) and combines them with additional features (e.g., textural statistics (homogeneity, contrast, entropy, spatial mean and spatial variance) from gray level co-occurrence matrix (GLCM), topographic features (elevation, slope and aspect) and canopy height information) to overcome the present challenges in mapping mountain pine stands. Specifically, we assessed the influence of spatial resolution and feature space composition including the GLCM window size for textural features. The study site is covering the Sarntal Alps, Italy, a region known for large stands of mountain pine. Our results show that mountain pines can be accurately mapped (PlanetScope (90.96\%) and Sentinel-2 (90.65\%)) by combining all features. In general, Sentinel-2 can achieve comparable results to PlanetScope independent of the feature set composition, despite the lower spatial resolution. In particular, the inclusion of textural features improved the accuracy by +8\% (PlanetScope) and +3\% (Sentinel-2), whereas accuracy improvements of topographic features and canopy height were low. The derived map of mountain pines in the Sarntal Alps supports local forest management to monitor and assess recent and ongoing anthropogenic and climatic changes at the treeline. Furthermore, our study highlights the importance of freely available Sentinel-2 data and image-derived textural features to accurately map mountain pines in Alpine environments.}, language = {en} } @article{ThonfeldGessnerHolzwarthetal.2022, author = {Thonfeld, Frank and Gessner, Ursula and Holzwarth, Stefanie and Kriese, Jennifer and da Ponte, Emmanuel and Huth, Juliane and Kuenzer, Claudia}, title = {A first assessment of canopy cover loss in Germany's forests after the 2018-2020 drought years}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030562}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255306}, year = {2022}, abstract = {Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018-April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.}, language = {en} } @article{FisserKhorsandiWegmannetal.2022, author = {Fisser, Henrik and Khorsandi, Ehsan and Wegmann, Martin and Baier, Frank}, title = {Detecting moving trucks on roads using Sentinel-2 data}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs14071595}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267174}, year = {2022}, abstract = {In most countries, freight is predominantly transported by road cargo trucks. We present a new satellite remote sensing method for detecting moving trucks on roads using Sentinel-2 data. The method exploits a temporal sensing offset of the Sentinel-2 multispectral instrument, causing spatially and spectrally distorted signatures of moving objects. A random forest classifier was trained (overall accuracy: 84\%) on visual-near-infrared-spectra of 2500 globally labelled targets. Based on the classification, the target objects were extracted using a developed recursive neighbourhood search. The speed and the heading of the objects were approximated. Detections were validated by employing 350 globally labelled target boxes (mean F\(_1\) score: 0.74). The lowest F\(_1\) score was achieved in Kenya (0.36), the highest in Poland (0.88). Furthermore, validated at 26 traffic count stations in Germany on in sum 390 dates, the truck detections correlate spatio-temporally with station figures (Pearson r-value: 0.82, RMSE: 43.7). Absolute counts were underestimated on 81\% of the dates. The detection performance may differ by season and road condition. Hence, the method is only suitable for approximating the relative truck traffic abundance rather than providing accurate absolute counts. However, existing road cargo monitoring methods that rely on traffic count stations or very high resolution remote sensing data have limited global availability. The proposed moving truck detection method could fill this gap, particularly where other information on road cargo traffic are sparse by employing globally and freely available Sentinel-2 data. It is inferior to the accuracy and the temporal detail of station counts, but superior in terms of spatial coverage.}, language = {en} } @article{PhilippLevick2019, author = {Philipp, Marius B. and Levick, Shaun R.}, title = {Exploring the potential of C-Band SAR in contributing to burn severity mapping in tropical savanna}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs12010049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193789}, pages = {49}, year = {2019}, abstract = {The ability to map burn severity and to understand how it varies as a function of time of year and return frequency is an important tool for landscape management and carbon accounting in tropical savannas. Different indices based on optical satellite imagery are typically used for mapping fire scars and for estimating burn severity. However, cloud cover is a major limitation for analyses using optical data over tropical landscapes. To address this pitfall, we explored the suitability of C-band Synthetic Aperture Radar (SAR) data for detecting vegetation response to fire, using experimental fires in northern Australia. Pre- and post-fire results from Sentinel-1 C-band backscatter intensity data were compared to those of optical satellite imagery and were corroborated against structural changes on the ground that we documented through terrestrial laser scanning (TLS). Sentinel-1 C-band backscatter (VH) proved sensitive to the structural changes imparted by fire and was correlated with the Normalised Burn Ratio (NBR) derived from Sentinel-2 optical data. Our results suggest that C-band SAR holds potential to inform the mapping of burn severity in savannas, but further research is required over larger spatial scales and across a broader spectrum of fire regime conditions before automated products can be developed. Combining both Sentinel-1 SAR and Sentinel-2 multi-spectral data will likely yield the best results for mapping burn severity under a range of weather conditions.}, language = {en} } @article{DhillonDahmsKuebertFlocketal.2022, author = {Dhillon, Maninder Singh and Dahms, Thorsten and K{\"u}bert-Flock, Carina and Steffan-Dewenter, Ingolf and Zhang, Jie and Ullmann, Tobias}, title = {Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323471}, year = {2022}, abstract = {The increasing availability and variety of global satellite products provide a new level of data with different spatial, temporal, and spectral resolutions; however, identifying the most suited resolution for a specific application consumes increasingly more time and computation effort. The region's cloud coverage additionally influences the choice of the best trade-off between spatial and temporal resolution, and different pixel sizes of remote sensing (RS) data may hinder the accurate monitoring of different land cover (LC) classes such as agriculture, forest, grassland, water, urban, and natural-seminatural. To investigate the importance of RS data for these LC classes, the present study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16 days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16 days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, eight day)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. These eight synthetic NDVI STARFM products (2: high pair multiply 4: low pair) offer a spatial resolution of 10 or 30 m and temporal resolution of 1, 8, or 16 days for the entire state of Bavaria (Germany) in 2019. Due to their higher revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2 (overall R\(^2\) = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate results than Landsat (overall R\(^2\) = 0.61, and RMSE = 0.13). Likewise, for the agriculture class, synthetic products obtained using Sentinel-2 resulted in higher accuracy than Landsat except for L-MOD13Q1 (R\(^2\) = 0.62, RMSE = 0.11), resulting in similar accuracy preciseness as S-MOD13Q1 (R\(^2\) = 0.68, RMSE = 0.13). Similarly, comparing L-MOD13Q1 (R\(^2\) = 0.60, RMSE = 0.05) and S-MOD13Q1 (R\(^2\) = 0.52, RMSE = 0.09) for the forest class, the former resulted in higher accuracy and precision than the latter. Conclusively, both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest monitoring; however, the spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent and faster than that of S-MOD13Q1 with the 10-m spatial resolution.}, language = {en} } @article{KleinCoccoUereyenetal.2022, author = {Klein, Igor and Cocco, Arturo and Uereyen, Soner and Mannu, Roberto and Floris, Ignazio and Oppelt, Natascha and Kuenzer, Claudia}, title = {Outbreak of Moroccan locust in Sardinia (Italy): a remote sensing perspective}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14236050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297232}, year = {2022}, abstract = {The Moroccan locust has been considered one of the most dangerous agricultural pests in the Mediterranean region. The economic importance of its outbreaks diminished during the second half of the 20th century due to a high degree of agricultural industrialization and other human-caused transformations of its habitat. Nevertheless, in Sardinia (Italy) from 2019 on, a growing invasion of this locust species is ongoing, being the worst in over three decades. Locust swarms destroyed crops and pasture lands of approximately 60,000 ha in 2022. Drought, in combination with increasing uncultivated land, contributed to forming the perfect conditions for a Moroccan locust population upsurge. The specific aim of this paper is the quantification of land cover land use (LCLU) influence with regard to the recent locust outbreak in Sardinia using remote sensing data. In particular, the role of untilled, fallow, or abandoned land in the locust population upsurge is the focus of this case study. To address this objective, LCLU was derived from Sentinel-2A/B Multispectral Instrument (MSI) data between 2017 and 2021 using time-series composites and a random forest (RF) classification model. Coordinates of infested locations, altitude, and locust development stages were collected during field observation campaigns between March and July 2022 and used in this study to assess actual and previous land cover situation of these locations. Findings show that 43\% of detected locust locations were found on untilled, fallow, or uncultivated land and another 23\% within a radius of 100 m to such areas. Furthermore, oviposition and breeding sites are mostly found in sparse vegetation (97\%). This study demonstrates that up-to-date remote sensing data and target-oriented analyses can provide valuable information to contribute to early warning systems and decision support and thus to minimize the risk concerning this agricultural pest. This is of particular interest for all agricultural pests that are strictly related to changing human activities within transformed habitats.}, language = {en} }