@article{ClaussYanKuenzer2016, author = {Clauss, Kersten and Yan, Huimin and Kuenzer, Claudia}, title = {Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series}, series = {Remote Sensing}, volume = {8}, journal = {Remote Sensing}, number = {5}, doi = {10.3390/rs8050434}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180557}, year = {2016}, abstract = {Rice is an important food crop and a large producer of green-house relevant methane. Accurate and timely maps of paddy fields are most important in the context of food security and greenhouse gas emission modelling. During their life-cycle, rice plants undergo a phenological development that influences their interaction with waves in the visible light and infrared spectrum. Rice growth has a distinctive signature in time series of remotely-sensed data. We used time series of MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD13Q1 and MYD13Q1 and a one-class support vector machine to detect these signatures and classify paddy rice areas in continental China. Based on these classifications, we present a novel product for continental China that shows rice areas for the years 2002, 2005, 2010 and 2014 at 250-m resolution. Our classification has an overall accuracy of 0.90 and a kappa coefficient of 0.77 compared to our own reference dataset for 2014 and correlates highly with rice area statistics from China's Statistical Yearbooks (R2 of 0.92 for 2010, 0.92 for 2005 and 0.90 for 2002). Moderate resolution time series analysis allows accurate and timely mapping of rice paddies over large areas with diverse cropping schemes.}, language = {en} } @article{MahmoudDukerConradetal.2016, author = {Mahmoud, Mahmoud Ibrahim and Duker, Alfred and Conrad, Christopher and Thiel, Michael and Ahmad, Halilu Shaba}, title = {Analysis of Settlement Expansion and Urban Growth Modelling Using Geoinformation for Assessing Potential Impacts of Urbanization on Climate in Abuja City, Nigeria}, series = {Remote Sensing}, volume = {8}, journal = {Remote Sensing}, number = {3}, doi = {10.3390/rs8030220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146644}, pages = {220}, year = {2016}, abstract = {This study analyzed the spatiotemporal pattern of settlement expansion in Abuja, Nigeria, one of West Africa's fastest developing cities, using geoinformation and ancillary datasets. Three epochs of Land-use Land-cover (LULC) maps for 1986, 2001 and 2014 were derived from Landsat images using support vector machines (SVM). Accuracy assessment (AA) of the LULC maps based on the pixel count resulted in overall accuracy of 82\%, 92\% and 92\%, while the AA derived from the error adjusted area (EAA) method stood at 69\%, 91\% and 91\% for 1986, 2001 and 2014, respectively. Two major techniques for detecting changes in the LULC epochs involved the use of binary maps as well as a post-classification comparison approach. Quantitative spatiotemporal analysis was conducted to detect LULC changes with specific focus on the settlement development pattern of Abuja, the federal capital city (FCC) of Nigeria. Logical transitions to the urban category were modelled for predicting future scenarios for the year 2050 using the embedded land change modeler (LCM) in the IDRISI package. Based on the EAA, the result showed that urban areas increased by more than 11\% between 1986 and 2001. In contrast, this value rose to 17\% between 2001 and 2014. The LCM model projected LULC changes that showed a growing trend in settlement expansion, which might take over allotted spaces for green areas and agricultural land if stringent development policies and enforcement measures are not implemented. In conclusion, integrating geospatial technologies with ancillary datasets offered improved understanding of how urbanization processes such as increased imperviousness of such a magnitude could influence the urban microclimate through the alteration of natural land surface temperature. Urban expansion could also lead to increased surface runoff as well as changes in drainage geography leading to urban floods.}, language = {en} } @article{ConradSchoenbrodtStittLoewetal.2016, author = {Conrad, Christopher and Sch{\"o}nbrodt-Stitt, Sarah and L{\"o}w, Fabian and Sorokin, Denis and Paeth, Heiko}, title = {Cropping Intensity in the Aral Sea Basin and Its Dependency from the Runoff Formation 2000-2012}, series = {Remote Sensing}, volume = {8}, journal = {Remote Sensing}, number = {630}, doi = {10.3390/rs8080630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147701}, year = {2016}, abstract = {This study is aimed at a better understanding of how upstream runoff formation affected the cropping intensity (CI: number of harvests) in the Aral Sea Basin (ASB) between 2000 and 2012. MODIS 250 m NDVI time series and knowledge-based pixel masking that included settlement layers and topography features enabled to map the irrigated cropland extent (iCE). Random forest models supported the classification of cropland vegetation phenology (CVP: winter/summer crops, double cropping, etc.). CI and the percentage of fallow cropland (PF) were derived from CVP. Spearman's rho was selected for assessing the statistical relation of CI and PF to runoff formation in the Amu Darya and Syr Darya catchments per hydrological year. Validation in 12 reference sites using multi-annual Landsat-7 ETM+ images revealed an average overall accuracy of 0.85 for the iCE maps. MODIS maps overestimated that based on Landsat by an average factor of ~1.15 (MODIS iCE/Landsat iCE). Exceptional overestimations occurred in case of inaccurate settlement layers. The CVP and CI maps achieved overall accuracies of 0.91 and 0.96, respectively. The Amu Darya catchment disclosed significant positive (negative) relations between upstream runoff with CI (PF) and a high pressure on the river water resources in 2000-2012. Along the Syr Darya, reduced dependencies could be observed, which is potentially linked to the high number of water constructions in that catchment. Intensified double cropping after drought years occurred in Uzbekistan. However, a 10 km × 10 km grid of Spearman's rho (CI and PF vs. upstream runoff) emphasized locations at different CI levels that are directly affected by runoff fluctuations in both river systems. The resulting maps may thus be supportive on the way to achieve long-term sustainability of crop production and to simultaneously protect the severely threatened environment in the ASB. The gained knowledge can be further used for investigating climatic impacts of irrigation in the region.}, language = {en} } @article{UllmannBuedelBaumhaueretal.2016, author = {Ullmann, Tobias and B{\"u}del, Christian and Baumhauer, Roland and Padashi, Majid}, title = {Sentinel-1 SAR Data Revealing Fluvial Morphodynamics in Damghan (Iran): Amplitude and Coherence Change Detection}, series = {International Journal of Earth Science and Geophysics}, volume = {2}, journal = {International Journal of Earth Science and Geophysics}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147863}, pages = {007}, year = {2016}, abstract = {The Sentinel-1 Satellite (S-1) of ESA's Copernicus Mission delivers freely available C-Band Synthetic Aperture Radar (SAR) data that are suited for interferometric applications (InSAR). The high geometric resolution of less than fifteen meter and the large coverage offered by the Interferometric Wide Swath mode (IW) point to new perspectives on the comprehension and understanding of surface changes, the quantification and monitoring of dynamic processes, especially in arid regions. The contribution shows the application of S-1 intensities and InSAR coherences in time series analysis for the delineation of changes related to fluvial morphodynamics in Damghan, Iran. The investigations were carried out for the period from April to October 2015 and exhibit the potential of the S-1 data for the identification of surface disturbances, mass movements and fluvial channel activity in the surroundings of the Damghan Playa. The Amplitude Change Detection highlighted extensive material movement and accumulation - up to sizes of more than 4,000 m in width - in the east of the Playa via changes in intensity. Further, the Coherence Change Detection technique was capable to indicate small-scale channel activity of the drainage system that was neither recognizable in the S-1 intensity nor the multispectral Landsat-8 data. The run off caused a decorrelation of the SAR signals and a drop in coherence. Seen from a morphodynamic point of view, the results indicated a highly dynamic system and complex tempo-spatial patterns were observed that will be subject of future analysis. Additionally, the study revealed the necessity to collect independent reference data on fluvial activity in order to train and adjust the change detector.}, language = {en} } @article{UllmannSchmittJagdhuber2016, author = {Ullmann, Tobias and Schmitt, Andreas and Jagdhuber, Thomas}, title = {Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for the Tundra Environment of the Mackenzie Delta Region, Canada}, series = {Remote Sensing}, volume = {8}, journal = {Remote Sensing}, number = {12}, doi = {10.3390/rs8121027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147879}, pages = {1027}, year = {2016}, abstract = {This study investigates a two component decomposition technique for HH/VV-polarized PolSAR (Polarimetric Synthetic Aperture Radar) data. The approach is a straight forward adaption of the Yamaguchi decomposition and decomposes the data into two scattering contributions: surface and double bounce under the assumption of a negligible vegetation scattering component in Tundra environments. The dependencies between the features of this two and the classical three component Yamaguchi decomposition were investigated for Radarsat-2 (quad) and TerraSAR-X (HH/VV) data for the Mackenzie Delta Region, Canada. In situ data on land cover were used to derive the scattering characteristics and to analyze the correlation among the PolSAR features. The double bounce and surface scattering features of the two and three component scattering model (derived from pseudo-HH/VV- and quad-polarized data) showed similar scattering characteristics and positively correlated-R2 values of 0.60 (double bounce) and 0.88 (surface scattering) were observed. The presence of volume scattering led to differences between the features and these were minimized for land cover classes of low vegetation height that showed little volume scattering contribution. In terms of separability, the quad-polarized Radarsat-2 data offered the best separation of the examined tundra land cover types and will be best suited for the classification. This is anticipated as it represents the largest feature space of all tested ones. However; the classes "wetland" and "bare ground" showed clear positions in the feature spaces of the C- and X-Band HH/VV-polarized data and an accurate classification of these land cover types is promising. Among the possible dual-polarization modes of Radarsat-2 the HH/VV was found to be the favorable mode for the characterization of the aforementioned tundra land cover classes due to the coherent acquisition and the preserved co-pol. phase. Contrary, HH/HV-polarized and VV/VH-polarized data were found to be best suited for the characterization of mixed and shrub dominated tundra.}, language = {en} } @article{KnauerGessnerFensholtetal.2016, author = {Knauer, Kim and Gessner, Ursula and Fensholt, Rasmus and Kuenzer, Claudia}, title = {An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes}, series = {Remote Sensing}, volume = {8}, journal = {Remote Sensing}, number = {5}, doi = {10.3390/rs8050425}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180712}, pages = {425}, year = {2016}, abstract = {Monitoring the spatio-temporal development of vegetation is a challenging task in heterogeneous and cloud-prone landscapes. No single satellite sensor has thus far been able to provide consistent time series of high temporal and spatial resolution for such areas. In order to overcome this problem, data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) have been established and frequently used in recent years to generate high-resolution time series. In order to make it applicable to larger scales and to increase the input data availability especially in cloud-prone areas, an ESTARFM framework was developed in this study introducing several enhancements. An automatic filling of cloud gaps was included in the framework to make best use of available, even partly cloud-covered Landsat images. Furthermore, the ESTARFM algorithm was enhanced to automatically account for regional differences in the heterogeneity of the study area. The generation of time series was automated and the processing speed was accelerated significantly by parallelization. To test the performance of the developed ESTARFM framework, MODIS and Landsat-8 data were fused for generating an 8-day NDVI time series for a study area of approximately 98,000 km\(^{2}\) in West Africa. The results show that the ESTARFM framework can accurately produce high temporal resolution time series (average MAE (mean absolute error) of 0.02 for the dry season and 0.05 for the vegetative season) while keeping the spatial detail in such a heterogeneous, cloud-prone region. The developments introduced within the ESTARFM framework establish the basis for large-scale research on various geoscientific questions related to land degradation, changes in land surface phenology or agriculture}, language = {en} }