@article{UereyenBachoferKuenzer2022, author = {Uereyen, Soner and Bachofer, Felix and Kuenzer, Claudia}, title = {A framework for multivariate analysis of land surface dynamics and driving variables — a case study for Indo-Gangetic river basins}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs14010197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255295}, year = {2022}, abstract = {The analysis of the Earth system and interactions among its spheres is increasingly important to improve the understanding of global environmental change. In this regard, Earth observation (EO) is a valuable tool for monitoring of long term changes over the land surface and its features. Although investigations commonly study environmental change by means of a single EO-based land surface variable, a joint exploitation of multivariate land surface variables covering several spheres is still rarely performed. In this regard, we present a novel methodological framework for both, the automated processing of multisource time series to generate a unified multivariate feature space, as well as the application of statistical time series analysis techniques to quantify land surface change and driving variables. In particular, we unify multivariate time series over the last two decades including vegetation greenness, surface water area, snow cover area, and climatic, as well as hydrological variables. Furthermore, the statistical time series analyses include quantification of trends, changes in seasonality, and evaluation of drivers using the recently proposed causal discovery algorithm Peter and Clark Momentary Conditional Independence (PCMCI). We demonstrate the functionality of our methodological framework using Indo-Gangetic river basins in South Asia as a case study. The time series analyses reveal increasing trends in vegetation greenness being largely dependent on water availability, decreasing trends in snow cover area being mostly negatively coupled to temperature, and trends of surface water area to be spatially heterogeneous and linked to various driving variables. Overall, the obtained results highlight the value and suitability of this methodological framework with respect to global climate change research, enabling multivariate time series preparation, derivation of detailed information on significant trends and seasonality, as well as detection of causal links with minimal user intervention. This study is the first to use multivariate time series including several EO-based variables to analyze land surface dynamics over the last two decades using the causal discovery algorithm PCMCI.}, language = {en} } @article{PhilippDietzUllmannetal.2022, author = {Philipp, Marius and Dietz, Andreas and Ullmann, Tobias and Kuenzer, Claudia}, title = {Automated extraction of annual erosion rates for Arctic permafrost coasts using Sentinel-1, Deep Learning, and Change Vector Analysis}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {15}, issn = {2072-4292}, doi = {10.3390/rs14153656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281956}, year = {2022}, abstract = {Arctic permafrost coasts become increasingly vulnerable due to environmental drivers such as the reduced sea-ice extent and duration as well as the thawing of permafrost itself. A continuous quantification of the erosion process on large to circum-Arctic scales is required to fully assess the extent and understand the consequences of eroding permafrost coastlines. This study presents a novel approach to quantify annual Arctic coastal erosion and build-up rates based on Sentinel-1 (S1) Synthetic Aperture RADAR (SAR) backscatter data, in combination with Deep Learning (DL) and Change Vector Analysis (CVA). The methodology includes the generation of a high-quality Arctic coastline product via DL, which acted as a reference for quantifying coastal erosion and build-up rates from annual median and standard deviation (sd) backscatter images via CVA. The analysis was applied on ten test sites distributed across the Arctic and covering about 1038 km of coastline. Results revealed maximum erosion rates of up to 160 m for some areas and an average erosion rate of 4.37 m across all test sites within a three-year temporal window from 2017 to 2020. The observed erosion rates within the framework of this study agree with findings published in the previous literature. The proposed methods and data can be applied on large scales and, prospectively, even for the entire Arctic. The generated products may be used for quantifying the loss of frozen ground, estimating the release of stored organic material, and can act as a basis for further related studies in Arctic coastal environments.}, language = {en} } @article{AsamGessnerAlmengorGonzalezetal.2022, author = {Asam, Sarah and Gessner, Ursula and Almengor Gonz{\´a}lez, Roger and Wenzl, Martina and Kriese, Jennifer and Kuenzer, Claudia}, title = {Mapping crop types of Germany by combining temporal statistical metrics of Sentinel-1 and Sentinel-2 time series with LPIS data}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {13}, issn = {2072-4292}, doi = {10.3390/rs14132981}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278969}, year = {2022}, abstract = {Nationwide and consistent information on agricultural land use forms an important basis for sustainable land management maintaining food security, (agro)biodiversity, and soil fertility, especially as German agriculture has shown high vulnerability to climate change. Sentinel-1 and Sentinel-2 satellite data of the Copernicus program offer time series with temporal, spatial, radiometric, and spectral characteristics that have great potential for mapping and monitoring agricultural crops. This paper presents an approach which synergistically uses these multispectral and Synthetic Aperture Radar (SAR) time series for the classification of 17 crop classes at 10 m spatial resolution for Germany in the year 2018. Input data for the Random Forest (RF) classification are monthly statistics of Sentinel-1 and Sentinel-2 time series. This approach reduces the amount of input data and pre-processing steps while retaining phenological information, which is crucial for crop type discrimination. For training and validation, Land Parcel Identification System (LPIS) data were available covering 15 of the 16 German Federal States. An overall map accuracy of 75.5\% was achieved, with class-specific F1-scores above 80\% for winter wheat, maize, sugar beet, and rapeseed. By combining optical and SAR data, overall accuracies could be increased by 6\% and 9\%, respectively, compared to single sensor approaches. While no increase in overall accuracy could be achieved by stratifying the classification in natural landscape regions, the class-wise accuracies for all but the cereal classes could be improved, on average, by 7\%. In comparison to census data, the crop areas could be approximated well with, on average, only 1\% of deviation in class-specific acreages. Using this streamlined approach, similar accuracies for the most widespread crop types as well as for smaller permanent crop classes were reached as in other Germany-wide crop type studies, indicating its potential for repeated nationwide crop type mapping.}, language = {en} } @article{WehnerHuchlerFritz2022, author = {Wehner, Helena and Huchler, Katharina and Fritz, Johannes}, title = {Quantification of foraging areas for the Northern Bald Ibis (Geronticus eremita) in the northern Alpine foothills: a random forest model fitted with optical and actively sensed earth observation data}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {4}, issn = {2072-4292}, doi = {10.3390/rs14041015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262245}, year = {2022}, abstract = {The Northern Bald Ibis (Geronticus eremita, NBI) is an endangered migratory species, which went extinct in Europe in the 17th century. Currently, a translocation project in the frame of the European LIFE program is carried out, to reintroduce a migratory population with breeding colonies in the northern and southern Alpine foothills and a common wintering area in southern Tuscany. The population meanwhile consists of about 200 individuals, with about 90\% of them carrying a GPS device on their back. We used biologging data from 2021 to model the habitat suitability for the species in the northern Alpine foothills. To set up a species distribution model, indices describing environmental conditions were calculated from satellite images of Landsat-8, and in addition to the well-proven use of optical remote sensing data, we also included Sentinel-1 actively sensed observation data, as well as climate and urbanization data. A random forest model was fitted on NBI GPS positions, which we used to identify regions with high predicted foraging suitability within the northern Alpine foothills. The model resulted in 84.5\% overall accuracy. Elevation and slope had the highest predictive power, followed by grass cover and VV intensity of Sentinel-1 radar data. The map resulting from the model predicts the highest foraging suitability for valley floors, especially of Inn, Rhine, and Salzach-Valley as well as flatlands, like the Swiss Plateau and the agricultural areas surrounding Lake Constance. Areas with a high suitability index largely overlap with known historic breeding sites. This is particularly noteworthy because the model only refers to foraging habitats without considering the availability of suitable breeding cliffs. Detailed analyses identify the transition zone from extensive grassland management to intensive arable farming as the northern range limit. The modeling outcome allows for defining suitable areas for further translocation and management measures in the frame of the European NBI reintroduction program. Although required in the international IUCN translocation guidelines, the use of models in the context of translocation projects is still not common and in the case of the Northern Bald Ibis not considered in the present Single Species Action Plan of the African-Eurasian Migratory Water bird Agreement. Our species distribution model represents a contemporary snapshot, but sustainability is essential for conservation planning, especially in times of climate change. In this regard, a further model could be optimized by investigating sustainable land use, temporal dynamics, and climate change scenarios.}, language = {en} } @article{RoeschSonnenscheinBucheltetal.2022, author = {R{\"o}sch, Moritz and Sonnenschein, Ruth and Buchelt, Sebastian and Ullmann, Tobias}, title = {Comparing PlanetScope and Sentinel-2 imagery for mapping mountain pines in the Sarntal Alps, Italy}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {13}, issn = {2072-4292}, doi = {10.3390/rs14133190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281945}, year = {2022}, abstract = {The mountain pine (Pinus mugo ssp. Mugo Turra) is an important component of the alpine treeline ecotone and fulfills numerous ecosystem functions. To understand and quantify the impacts of increasing logging activities and climatic changes in the European Alps, accurate information on the occurrence and distribution of mountain pine stands is needed. While Earth observation provides up-to-date information on land cover, space-borne mapping of mountain pines is challenging as different coniferous species are spectrally similar, and small-structured patches may remain undetected due to the sensor's spatial resolution. This study uses multi-temporal optical imagery from PlanetScope (3 m) and Sentinel-2 (10 m) and combines them with additional features (e.g., textural statistics (homogeneity, contrast, entropy, spatial mean and spatial variance) from gray level co-occurrence matrix (GLCM), topographic features (elevation, slope and aspect) and canopy height information) to overcome the present challenges in mapping mountain pine stands. Specifically, we assessed the influence of spatial resolution and feature space composition including the GLCM window size for textural features. The study site is covering the Sarntal Alps, Italy, a region known for large stands of mountain pine. Our results show that mountain pines can be accurately mapped (PlanetScope (90.96\%) and Sentinel-2 (90.65\%)) by combining all features. In general, Sentinel-2 can achieve comparable results to PlanetScope independent of the feature set composition, despite the lower spatial resolution. In particular, the inclusion of textural features improved the accuracy by +8\% (PlanetScope) and +3\% (Sentinel-2), whereas accuracy improvements of topographic features and canopy height were low. The derived map of mountain pines in the Sarntal Alps supports local forest management to monitor and assess recent and ongoing anthropogenic and climatic changes at the treeline. Furthermore, our study highlights the importance of freely available Sentinel-2 data and image-derived textural features to accurately map mountain pines in Alpine environments.}, language = {en} } @article{ThonfeldGessnerHolzwarthetal.2022, author = {Thonfeld, Frank and Gessner, Ursula and Holzwarth, Stefanie and Kriese, Jennifer and da Ponte, Emmanuel and Huth, Juliane and Kuenzer, Claudia}, title = {A first assessment of canopy cover loss in Germany's forests after the 2018-2020 drought years}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030562}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255306}, year = {2022}, abstract = {Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018-April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.}, language = {en} } @article{RoeschPlank2022, author = {R{\"o}sch, Moritz and Plank, Simon}, title = {Detailed mapping of lava and ash deposits at Indonesian volcanoes by means of VHR PlanetScope change detection}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {5}, issn = {2072-4292}, doi = {10.3390/rs14051168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262232}, year = {2022}, abstract = {Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis).}, language = {en} } @article{FisserKhorsandiWegmannetal.2022, author = {Fisser, Henrik and Khorsandi, Ehsan and Wegmann, Martin and Baier, Frank}, title = {Detecting moving trucks on roads using Sentinel-2 data}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs14071595}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267174}, year = {2022}, abstract = {In most countries, freight is predominantly transported by road cargo trucks. We present a new satellite remote sensing method for detecting moving trucks on roads using Sentinel-2 data. The method exploits a temporal sensing offset of the Sentinel-2 multispectral instrument, causing spatially and spectrally distorted signatures of moving objects. A random forest classifier was trained (overall accuracy: 84\%) on visual-near-infrared-spectra of 2500 globally labelled targets. Based on the classification, the target objects were extracted using a developed recursive neighbourhood search. The speed and the heading of the objects were approximated. Detections were validated by employing 350 globally labelled target boxes (mean F\(_1\) score: 0.74). The lowest F\(_1\) score was achieved in Kenya (0.36), the highest in Poland (0.88). Furthermore, validated at 26 traffic count stations in Germany on in sum 390 dates, the truck detections correlate spatio-temporally with station figures (Pearson r-value: 0.82, RMSE: 43.7). Absolute counts were underestimated on 81\% of the dates. The detection performance may differ by season and road condition. Hence, the method is only suitable for approximating the relative truck traffic abundance rather than providing accurate absolute counts. However, existing road cargo monitoring methods that rely on traffic count stations or very high resolution remote sensing data have limited global availability. The proposed moving truck detection method could fill this gap, particularly where other information on road cargo traffic are sparse by employing globally and freely available Sentinel-2 data. It is inferior to the accuracy and the temporal detail of station counts, but superior in terms of spatial coverage.}, language = {en} } @article{ZieglerMeyerOtteetal.2022, author = {Ziegler, Alice and Meyer, Hanna and Otte, Insa and Peters, Marcell K. and Appelhans, Tim and Behler, Christina and B{\"o}hning-Gaese, Katrin and Classen, Alice and Detsch, Florian and Deckert, J{\"u}rgen and Eardley, Connal D. and Ferger, Stefan W. and Fischer, Markus and Gebert, Friederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Andreas and Hemp, Claudia and Kakengi, Victor and Mayr, Antonia V. and Ngereza, Christine and Reudenbach, Christoph and R{\"o}der, Juliane and Rutten, Gemma and Schellenberger Costa, David and Schleuning, Matthias and Ssymank, Axel and Steffan-Dewenter, Ingolf and Tardanico, Joseph and Tschapka, Marco and Vollst{\"a}dt, Maximilian G. R. and W{\"o}llauer, Stephan and Zhang, Jie and Brandl, Roland and Nauss, Thomas}, title = {Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262251}, year = {2022}, abstract = {The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.}, language = {en} } @article{ReinermannGessnerAsametal.2022, author = {Reinermann, Sophie and Gessner, Ursula and Asam, Sarah and Ullmann, Tobias and Schucknecht, Anne and Kuenzer, Claudia}, title = {Detection of grassland mowing events for Germany by combining Sentinel-1 and Sentinel-2 time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs14071647}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267164}, year = {2022}, abstract = {Grasslands cover one-third of the agricultural area in Germany and play an important economic role by providing fodder for livestock. In addition, they fulfill important ecosystem services, such as carbon storage, water purification, and the provision of habitats. These ecosystem services usually depend on the grassland management. In central Europe, grasslands are grazed and/or mown, whereby the management type and intensity vary in space and time. Spatial information on the mowing timing and frequency on larger scales are usually not available but would be required in order to assess the ecosystem services, species composition, and grassland yields. Time series of high-resolution satellite remote sensing data can be used to analyze the temporal and spatial dynamics of grasslands. Within this study, we aim to overcome the drawbacks identified by previous studies, such as optical data availability and the lack of comprehensive reference data, by testing the time series of various Sentinel-2 (S2) and Sentinal-1 (S1) parameters and combinations of them in order to detect mowing events in Germany in 2019. We developed a threshold-based algorithm by using information from a comprehensive reference dataset of heterogeneously managed grassland parcels in Germany, obtained by RGB cameras. The developed approach using the enhanced vegetation index (EVI) derived from S2 led to a successful mowing event detection in Germany (60.3\% of mowing events detected, F1-Score = 0.64). However, events shortly before, during, or shortly after cloud gaps were missed and in regions with lower S2 orbit coverage fewer mowing events were detected. Therefore, S1-based backscatter, InSAR, and PolSAR features were investigated during S2 data gaps. From these, the PolSAR entropy detected mowing events most reliably. For a focus region, we tested an integrated approach by combining S2 and S1 parameters. This approach detected additional mowing events, but also led to many false positive events, resulting in a reduction in the F1-Score (from 0.65 of S2 to 0.61 of S2 + S1 for the focus region). According to our analysis, a majority of grasslands in Germany are only mown zero to two times (around 84\%) and are probably additionally used for grazing. A small proportion is mown more often than four times (3\%). Regions with a generally higher grassland mowing frequency are located in southern, south-eastern, and northern Germany.}, language = {en} }