@article{WalzWegmannLeutneretal.2015, author = {Walz, Yvonne and Wegmann, Martin and Leutner, Benjamin and Dech, Stefan and Vounatsou, Penelope and N'Goran, Eli{\´e}zer K. and Raso, Giovanna and Utzinger, J{\"u}rg}, title = {Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling}, series = {Geospatial Health}, volume = {10}, journal = {Geospatial Health}, number = {2}, doi = {10.4081/gh.2015.398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126148}, pages = {398}, year = {2015}, abstract = {Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in C{\^o}te d'Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70\% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.}, language = {en} } @article{WalzWegmannDechetal.2015, author = {Walz, Yvonne and Wegmann, Martin and Dech, Stefan and Vounastou, Penelope and Poda, Jean-Noel and N'Goran, Eli{\´e}zer K. and Raso, Giovanna and Utzinger, J{\"u}rg}, title = {Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {11}, doi = {10.1371/journal.pntd.0004217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125845}, pages = {e0004217}, year = {2015}, abstract = {Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in C{\^o}te d'Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of C{\^o}te d'Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.}, language = {en} } @article{ZoungranaConradAmekudzietal.2015, author = {Zoungrana, Benewinde Jean-Bosco and Conrad, Christopher and Amekudzi, Leonard K. and Thiel, Michael and Dapola Da, Evariste and Forkuor, Gerald and L{\"o}w, Fabian}, title = {Multi-Temporal Landsat Images and Ancillary Data for Land Use/Cover Change (LULCC) Detection in the Southwest of Burkina Faso, West Africa}, series = {Remote Sensing}, volume = {7}, journal = {Remote Sensing}, number = {9}, doi = {10.3390/rs70912076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125866}, pages = {12076-12102}, year = {2015}, abstract = {Accurate quantification of land use/cover change (LULCC) is important for efficient environmental management, especially in regions that are extremely affected by climate variability and continuous population growth such as West Africa. In this context, accurate LULC classification and statistically sound change area estimates are essential for a better understanding of LULCC processes. This study aimed at comparing mono-temporal and multi-temporal LULC classifications as well as their combination with ancillary data and to determine LULCC across the heterogeneous landscape of southwest Burkina Faso using accurate classification results. Landsat data (1999, 2006 and 2011) and ancillary data served as input features for the random forest classifier algorithm. Five LULC classes were identified: woodland, mixed vegetation, bare surface, water and agricultural area. A reference database was established using different sources including high-resolution images, aerial photo and field data. LULCC and LULC classification accuracies, area and area uncertainty were computed based on the method of adjusted error matrices. The results revealed that multi-temporal classification significantly outperformed those solely based on mono-temporal data in the study area. However, combining mono-temporal imagery and ancillary data for LULC classification had the same accuracy level as multi-temporal classification which is an indication that this combination is an efficient alternative to multi-temporal classification in the study region, where cloud free images are rare. The LULCC map obtained had an overall accuracy of 92\%. Natural vegetation loss was estimated to be 17.9\% ± 2.5\% between 1999 and 2011. The study area experienced an increase in agricultural area and bare surface at the expense of woodland and mixed vegetation, which attests to the ongoing deforestation. These results can serve as means of regional and global land cover products validation, as they provide a new validated data set with uncertainty estimates in heterogeneous ecosystems prone to classification errors.}, language = {en} } @article{ReinersAsamFreyetal.2021, author = {Reiners, Philipp and Asam, Sarah and Frey, Corinne and Holzwarth, Stefanie and Bachmann, Martin and Sobrino, Jose and G{\"o}ttsche, Frank-M. and Bendix, J{\"o}rg and Kuenzer, Claudia}, title = {Validation of AVHRR Land Surface Temperature with MODIS and in situ LST — a TIMELINE thematic processor}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {17}, issn = {2072-4292}, doi = {10.3390/rs13173473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246051}, year = {2021}, abstract = {Land Surface Temperature (LST) is an important parameter for tracing the impact of changing climatic conditions on our environment. Describing the interface between long- and shortwave radiation fluxes, as well as between turbulent heat fluxes and the ground heat flux, LST plays a crucial role in the global heat balance. Satellite-derived LST is an indispensable tool for monitoring these changes consistently over large areas and for long time periods. Data from the AVHRR (Advanced Very High-Resolution Radiometer) sensors have been available since the early 1980s. In the TIMELINE project, LST is derived for the entire operating period of AVHRR sensors over Europe at a 1 km spatial resolution. In this study, we present the validation results for the TIMELINE AVHRR daytime LST. The validation approach consists of an assessment of the temporal consistency of the AVHRR LST time series, an inter-comparison between AVHRR LST and in situ LST, and a comparison of the AVHRR LST product with concurrent MODIS (Moderate Resolution Imaging Spectroradiometer) LST. The results indicate the successful derivation of stable LST time series from multi-decadal AVHRR data. The validation results were investigated regarding different LST, TCWV and VA, as well as land cover classes. The comparisons between the TIMELINE LST product and the reference datasets show seasonal and land cover-related patterns. The LST level was found to be the most determinative factor of the error. On average, an absolute deviation of the AVHRR LST by 1.83 K from in situ LST, as well as a difference of 2.34 K from the MODIS product, was observed.}, language = {en} } @article{DechHolzwarthAsametal.2021, author = {Dech, Stefan and Holzwarth, Stefanie and Asam, Sarah and Andresen, Thorsten and Bachmann, Martin and Boettcher, Martin and Dietz, Andreas and Eisfelder, Christina and Frey, Corinne and Gesell, Gerhard and Gessner, Ursula and Hirner, Andreas and Hofmann, Matthias and Kirches, Grit and Klein, Doris and Klein, Igor and Kraus, Tanja and Krause, Detmar and Plank, Simon and Popp, Thomas and Reinermann, Sophie and Reiners, Philipp and Roessler, Sebastian and Ruppert, Thomas and Scherbachenko, Alexander and Vignesh, Ranjitha and Wolfmueller, Meinhard and Zwenzner, Hendrik and Kuenzer, Claudia}, title = {Potential and challenges of harmonizing 40 years of AVHRR data: the TIMELINE experience}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {18}, issn = {2072-4292}, doi = {10.3390/rs13183618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246134}, year = {2021}, abstract = {Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.}, language = {en} } @article{TimmermansvanderTolTimmermansetal.2015, author = {Timmermans, Wim J. and van der Tol, Christiaan and Timmermans, Joris and Ucer, Murat and Chen, Xuelong and Alonso, Luis and Moreno, Jose and Carrara, Arnaud and Lopez, Ramon and Fernando de la Cruz, Tercero and Corcoles, Horacio L. and de Miguel, Eduardo and Sanchez, Jose A. G. and Perez, Irene and Belen, Perez and Munoz, Juan-Carlos J. and Skokovic, Drazen and Sobrino, Jose and Soria, Guillem and MacArthur, Alasdair and Vescovo, Loris and Reusen, Ils and Andreu, Ana and Burkart, Andreas and Cilia, Chiara and Contreras, Sergio and Corbari, Chiara and Calleja, Javier F. and Guzinski, Radoslaw and Hellmann, Christine and Herrmann, Ittai and Kerr, Gregoire and Lazar, Adina-Laura and Leutner, Benjamin and Mendiguren, Gorka and Nasilowska, Sylwia and Nieto, Hector and Pachego-Labrador, Javier and Pulanekar, Survana and Raj, Rahul and Schikling, Anke and Siegmann, Bastian and von Bueren, Stefanie and Su, Zhongbo (Bob)}, title = {An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign}, series = {Acta Geophysica}, volume = {63}, journal = {Acta Geophysica}, number = {6}, doi = {10.2478/s11600-014-0254-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136491}, pages = {1465-1484}, year = {2015}, abstract = {The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.}, language = {en} } @article{NguyenKerstenSenmaoetal.2015, author = {Nguyen, Duy Ba and Kersten, Clauss and Senmao, Cao and Vahid, Naeimi and Kuenzer, Claudia and Wagner, Wolfgang}, title = {Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data}, series = {Remote Sensing}, volume = {7}, journal = {Remote Sensing}, number = {12}, doi = {10.3390/rs71215808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137554}, pages = {15868-15893}, year = {2015}, abstract = {Rice is the most important food crop in Asia, and the timely mapping and monitoring of paddy rice fields subsequently emerged as an important task in the context of food security and modelling of greenhouse gas emissions. Rice growth has a distinct influence on Synthetic Aperture Radar (SAR) backscatter images, and time-series analysis of C-band images has been successfully employed to map rice fields. The poor data availability on regional scales is a major drawback of this method. We devised an approach to classify paddy rice with the use of all available Envisat ASAR WSM (Advanced Synthetic Aperture Radar Wide Swath Mode) data for our study area, the Mekong Delta in Vietnam. We used regression-based incidence angle normalization and temporal averaging to combine acquisitions from multiple tracks and years. A crop phenology-based classifier has been applied to this time series to detect single-, double- and triple-cropped rice areas (one to three harvests per year), as well as dates and lengths of growing seasons. Our classification has an overall accuracy of 85.3\% and a kappa coefficient of 0.74 compared to a reference dataset and correlates highly with official rice area statistics at the provincial level (R-2 of 0.98). SAR-based time-series analysis allows accurate mapping and monitoring of rice areas even under adverse atmospheric conditions.}, language = {en} } @article{SchwindtKneisel2011, author = {Schwindt, Daniel and Kneisel, Christof}, title = {Optimisation of quasi-3D electrical resistivity imaging - application and inversion for investigating heterogeneous mountain permafrost}, series = {The Cryosphere Discuss}, volume = {5}, journal = {The Cryosphere Discuss}, doi = {10.5194/tcd-5-3383-2011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138017}, pages = {3383-3421}, year = {2011}, abstract = {This study aimed to optimise the application, efficiency and interpretability of quasi-3D resistivity imaging for investigating the heterogeneous permafrost distribution at mountain sites by a systematic forward modelling approach. A three dimensional geocryologic model, representative for most mountain permafrost settings, was developed. Based on this geocryologic model quasi-3D models were generated by collating synthetic orthogonal 2D arrays, demonstrating the effects of array types and electrode spacing on resolution and interpretability of the inversion results. The effects of minimising the number of 2D arrays per quasi-3D grid were tested by enlarging the spacing between adjacent lines and by reducing the number of perpendicular tie lines with regard to model resolution and loss of information value. Synthetic and measured quasi-3D models were investigated with regard to the lateral and vertical resolution, reliability of inverted resistivity values, the possibility of a quantitative interpretation of resistivities and the response of the inversion process on the validity of quasi-3D models. Results show that setups using orthogonal 2D arrays with electrode spacings of 2 m and 3 m are capable of delineating lateral heterogeneity with high accuracy and also deliver reliable data on active layer thickness. Detection of permafrost thickness, especially if the permafrost base is close to the penetration depth of the setups, and the reliability of absolute resistivity values emerged to be a weakness of the method. Quasi-3D imaging has proven to be a promising tool for investigating permafrost in mountain environments especially for delineating the often small-scale permafrost heterogeneity, and therefore provides an enhanced possibility for aligning permafrost distribution with site specific surface properties and morphological settings.}, language = {en} } @article{NaidooDuPreezStuartHilletal.2012, author = {Naidoo, Robin and Du Preez, Pierre and Stuart-Hill, Greg and Jago, Mark and Wegmann, Martin}, title = {Home on the Range: Factors Explaining Partial Migration of African Buffalo in a Tropical Environment}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0036527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134935}, pages = {e36527}, year = {2012}, abstract = {Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call "expanders". Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area.}, language = {en} } @article{KotteLoewHuberetal.2012, author = {Kotte, K. and L{\"o}w, F. and Huber, S. G. and Krause, T. and Mulder, I. and Sch{\"o}ler, H. F.}, title = {Organohalogen emissions from saline environments - spatial extrapolation using remote sensing as most promising tool}, series = {Biogeosciences}, volume = {9}, journal = {Biogeosciences}, number = {3}, doi = {10.5194/bg-9-1225-2012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134265}, pages = {1225-1235}, year = {2012}, abstract = {Due to their negative water budget most recent semi-/arid regions are characterized by vast evaporates (salt lakes and salty soils). We recently identified those hyper-saline environments as additional sources for a multitude of volatile halogenated organohalogens (VOX). These compounds can affect the ozone layer of the stratosphere and play a key role in the production of aerosols. A remote sensing based analysis was performed in the Southern Aral Sea basin, providing information of major soil types as well as their extent and spatial and temporal evolution. VOX production has been determined in dry and moist soil samples after 24 h. Several C1- and C2 organohalogens have been found in hyper-saline topsoil profiles, including CH3Cl, CH3Br, CHBr3 and CHCl3. The range of organohalogens also includes trans-1,2-dichloroethene (DCE), which is reported here to be produced naturally for the first time. Using MODIS time series and supervised image classification a daily production rate for DCE has been calculated for the 15 000 km\(^2\) ranging research area in the southern Aralkum. The applied laboratory setup simulates a short-term change in climatic conditions, starting from dried-out saline soil that is instantly humidified during rain events or flooding. It describes the general VOX production potential, but allows only for a rough estimation of resulting emission loads. VOX emissions are expected to increase in the future since the area of salt affected soils is expanding due to the regressing Aral Sea. Opportunities, limits and requirements of satellite based rapid change detection and salt classification are discussed.}, language = {en} } @article{ElsebergBorrmannNuechter2013, author = {Elseberg, Jan and Borrmann, Dorit and N{\"u}chter, Andreas}, title = {Algorithmic Solutions for Computing Precise Maximum Likelihood 3D Point Clouds from Mobile Laser Scanning Platforms}, series = {Remote Sensing}, volume = {5}, journal = {Remote Sensing}, number = {11}, doi = {10.3390/rs5115871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130478}, pages = {5871-5906}, year = {2013}, abstract = {Mobile laser scanning puts high requirements on the accuracy of the positioning systems and the calibration of the measurement system. We present a novel algorithmic approach for calibration with the goal of improving the measurement accuracy of mobile laser scanners. We describe a general framework for calibrating mobile sensor platforms that estimates all configuration parameters for any arrangement of positioning sensors, including odometry. In addition, we present a novel semi-rigid Simultaneous Localization and Mapping (SLAM) algorithm that corrects the vehicle position at every point in time along its trajectory, while simultaneously improving the quality and precision of the entire acquired point cloud. Using this algorithm, the temporary failure of accurate external positioning systems or the lack thereof can be compensated for. We demonstrate the capabilities of the two newly proposed algorithms on a wide variety of datasets.}, language = {en} } @article{NaeimiLeinenkugelSabeletal.2013, author = {Naeimi, Vahid and Leinenkugel, Patrick and Sabel, Daniel and Wagner, Wolfgang and Apel, Heiko and Kuenzer, Claudia}, title = {Evaluation of Soil Moisture Retrieval from the ERS and Metop Scatterometers in the Lower Mekong Basin}, series = {Remote Sensing}, volume = {5}, journal = {Remote Sensing}, number = {4}, doi = {10.3390/rs5041603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130480}, pages = {1603-1623}, year = {2013}, abstract = {The natural environment and livelihoods in the Lower Mekong Basin (LMB) are significantly affected by the annual hydrological cycle. Monitoring of soil moisture as a key variable in the hydrological cycle is of great interest in a number of Hydrological and agricultural applications. In this study we evaluated the quality and spatiotemporal variability of the soil moisture product retrieved from C-band scatterometers data across the LMB sub-catchments. The soil moisture retrieval algorithm showed reasonable performance in most areas of the LMB with the exception of a few sub-catchments in the eastern parts of Laos, where the land cover is characterized by dense vegetation. The best performance of the retrieval algorithm was obtained in agricultural regions. Comparison of the available in situ evaporation data in the LMB and the Basin Water Index (BWI), an indicator of the basin soil moisture condition, showed significant negative correlations up to R = -0.85. The inter-annual variation of the calculated BWI was also found corresponding to the reported extreme hydro-meteorological events in the Mekong region. The retrieved soil moisture data show high correlation (up to R = 0.92) with monthly anomalies of precipitation in non-irrigated regions. In general, the seasonal variability of soil moisture in the LMB was well captured by the retrieval method. The results of analysis also showed significant correlation between El Ni{\~n}o events and the monthly BWI anomaly measurements particularly for the month May with the maximum correlation of R = 0.88.}, language = {en} } @article{DubovykMenzConradetal.2012, author = {Dubovyk, Olena and Menz, Gunter and Conrad, Christopher and Kann, Elena and Machwitz, Miriam and Khamzina, Asia}, title = {Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling}, series = {Environmental Monitoring and Assessment}, volume = {185}, journal = {Environmental Monitoring and Assessment}, number = {6}, doi = {10.1007/s10661-012-2904-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129912}, pages = {4775-4790}, year = {2012}, abstract = {Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000-2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region's area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds = 330 \%), land-use intensity (odds = 103 \%), low soil quality (odds = 49 \%), slope (odds = 29 \%), and salinity of the groundwater (odds = 26 \%). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia.}, language = {en} } @phdthesis{Walz2014, author = {Walz, Yvonne}, title = {Remote sensing for disease risk profiling: a spatial analysis of schistosomiasis in West Africa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108845}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Global environmental change leads to the emergence of new human health risks. As a consequence, transmission opportunities of environment-related diseases are transformed and human infection with new emerging pathogens increase. The main motivation for this study is the considerable demand for disease surveillance and monitoring in relation to dynamic environmental drivers. Remote sensing (RS) data belong to the key data sources for environmental modelling due to their capabilities to deliver spatially continuous information repeatedly for large areas with an ecologically adequate spatial resolution. A major research gap as identified by this study is the disregard of the spatial mismatch inherent in current modelling approaches of profiling disease risk using remote sensing data. Typically, epidemiological data are aggregated at school or village level. However, these point data do neither represent the spatial distribution of habitats, where disease-related species find their suitable environmental conditions, nor the place, where infection has occurred. As a consequence, the prevalence data and remotely sensed environmental variables, which aim to characterise the habitat of disease-related species, are spatially disjunct. The main objective of this study is to improve RS-based disease risk models by incorporating the ecological and spatial context of disease transmission. Exemplified by the analysis of the human schistosomiasis disease in West Africa, this objective includes the quantification of the impact of scales and ecological regions on model performance. In this study, the conditions that modify the transmission of schistosomiasis are reviewed in detail. A conceptual underpinning of the linkages between geographical RS measures, disease transmission ecology, and epidemiological survey data is developed. During a field-based analysis, environmental suitability for schistosomiasis transmission was assessed on the ground, which is then quantified by a habitat suitability index (HSI) and applied to RS data. This conceptual model of environmental suitability is refined by the development of a hierarchical model approach that statistically links school-based disease prevalence with the ecologically relevant measurements of RS data. The statistical models of schistosomiasis risk are derived from two different algorithms; the Random Forest and the partial least squares regression (PLSR). Scale impact is analysed based on different spatial resolutions of RS data. Furthermore, varying buffer extents are analysed around school-based measurements. Three distinctive sites of Burkina Faso and C{\^o}te d'Ivoire are specifically modelled to represent a gradient of ecozones from dry savannah to tropical rainforest including flat and mountainous regions. The model results reveal the applicability of RS data to spatially delineate and quantitatively evaluate environmental suitability for the transmission of schistosomiasis. In specific, the multi-temporal derivation of water bodies and the assessment of their riparian vegetation coverage based on high-resolution RapidEye and Landsat data proofed relevant. In contrast, elevation data and water surface temperature are constraint in their ability to characterise habitat conditions for disease-related parasites and freshwater snail species. With increasing buffer extent observed around the school location, the performance of statistical models increases, improving the prediction of transmission risk. The most important RS variables identified to model schistosomiasis risk are the measure of distance to water bodies, topographic variables, and land surface temperature (LST). However, each ecological region requires a different set of RS variables to optimise the modelling of schistosomiasis risk. A key result of the hierarchical model approach is its superior performance to explain the spatial risk of schistosomiasis. Overall, this study stresses the key importance of considering the ecological and spatial context for disease risk profiling and demonstrates the potential of RS data. The methodological approach of this study contributes substantially to provide more accurate and relevant geoinformation, which supports an efficient planning and decision-making within the public health sector.}, subject = {Westafrika}, language = {en} } @article{KhareDeslauriersMorinetal.2021, author = {Khare, Siddhartha and Deslauriers, Annie and Morin, Hubert and Latifi, Hooman and Rossi, Sergio}, title = {Comparing time-lapse PhenoCams with satellite observations across the boreal forest of Quebec, Canada}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs14010100}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252213}, year = {2021}, abstract = {Intercomparison of satellite-derived vegetation phenology is scarce in remote locations because of the limited coverage area and low temporal resolution of field observations. By their reliable near-ground observations and high-frequency data collection, PhenoCams can be a robust tool for intercomparison of land surface phenology derived from satellites. This study aims to investigate the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology by comparing fortnightly the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) extracted using the Google Earth Engine (GEE) platform with the daily PhenoCam-based green chromatic coordinate (GCC) index. Data were collected from 2016 to 2019 by PhenoCams installed in six mature stands along a latitudinal gradient of the boreal forests of Quebec, Canada. All time series were fitted by double-logistic functions, and the estimated parameters were compared between NDVI, EVI, and GCC. The onset of GCC occurred in the second week of May, whereas the ending of GCC occurred in the last week of September. We demonstrated that GCC was more correlated with EVI (R\(^2\) from 0.66 to 0.85) than NDVI (R\(^2\) from 0.52 to 0.68). In addition, the onset and ending of phenology were shown to differ by 3.5 and 5.4 days between EVI and GCC, respectively. Larger differences were detected between NDVI and GCC, 17.05 and 26.89 days for the onset and ending, respectively. EVI showed better estimations of the phenological dates than NDVI. This better performance is explained by the higher spectral sensitivity of EVI for multiple canopy leaf layers due to the presence of an additional blue band and an optimized soil factor value. Our study demonstrates that the phenological observations derived from PhenoCam are comparable with the EVI index. We conclude that EVI is more suitable than NDVI to assess phenology in evergreen species of the northern boreal region, where PhenoCam data are not available. The EVI index could be used as a reliable proxy of GCC for monitoring evergreen species phenology in areas with reduced access, or where repeated data collection from remote areas are logistically difficult due to the extreme weather.}, language = {en} } @article{KoehlerKuenzer2020, author = {Koehler, Jonas and Kuenzer, Claudia}, title = {Forecasting spatio-temporal dynamics on the land surface using Earth Observation data — a review}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs12213513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216285}, year = {2020}, abstract = {Reliable forecasts on the impacts of global change on the land surface are vital to inform the actions of policy and decision makers to mitigate consequences and secure livelihoods. Geospatial Earth Observation (EO) data from remote sensing satellites has been collected continuously for 40 years and has the potential to facilitate the spatio-temporal forecasting of land surface dynamics. In this review we compiled 143 papers on EO-based forecasting of all aspects of the land surface published in 16 high-ranking remote sensing journals within the past decade. We analyzed the literature regarding research focus, the spatial scope of the study, the forecasting method applied, as well as the temporal and technical properties of the input data. We categorized the identified forecasting methods according to their temporal forecasting mechanism and the type of input data. Time-lagged regressions which are predominantly used for crop yield forecasting and approaches based on Markov Chains for future land use and land cover simulation are the most established methods. The use of external climate projections allows the forecasting of numerical land surface parameters up to one hundred years into the future, while auto-regressive time series modeling can account for intra-annual variances. Machine learning methods have been increasingly used in all categories and multivariate modeling that integrates multiple data sources appears to be more popular than univariate auto-regressive modeling despite the availability of continuously expanding time series data. Regardless of the method, reliable EO-based forecasting requires high-level remote sensing data products and the resulting computational demand appears to be the main reason that most forecasts are conducted only on a local scale. In the upcoming years, however, we expect this to change with further advances in the field of machine learning, the publication of new global datasets, and the further establishment of cloud computing for data processing.}, language = {en} } @phdthesis{Loew2013, author = {L{\"o}w, Fabian}, title = {Agricultural crop mapping from multi-scale remote sensing data - Concepts and applications in heterogeneous Middle Asian agricultural landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102093}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Agriculture is mankind's primary source of food production and plays the key role for cereal supply to humanity. One of the future challenges will be to feed a constantly growing population, which is expected to reach more than nine billion by 2050. The potential to expand cropland is limited, and enhancing agricultural production efficiency is one important means to meet the future food demand. Hence, there is an increasing demand for dependable, accurate and comprehensive agricultural intelligence on crop production. The value of satellite earth observation (EO) data for agricultural monitoring is well recognized. One fundamental requirement for agricultural monitoring is routinely updated information on crop acreage and the spatial distribution of crops. With the technical advancement of satellite sensor systems, imagery with higher temporal and finer spatial resolution became available. The classification of such multi-temporal data sets is an effective and accurate means to produce crop maps, but methods must be developed that can handle such large and complex data sets. Furthermore, to properly use satellite EO for agricultural production monitoring a high temporal revisit frequency over vast geographic areas is often necessary. However, this often limits the spatial resolution that can be used. The challenge of discriminating pixels that correspond to a particular crop type, a prerequisite for crop specific agricultural monitoring, remains daunting when the signal encoded in pixels stems from several land uses (mixed pixels), e.g. over heterogeneous landscapes where individual fields are often smaller than individual pixels. The main purposes of the presented study were (i) to assess the influence of input dimensionality and feature selection on classification accuracy and uncertainty in object-based crop classification, (ii) to evaluate if combining classifier algorithms can improve the quality of crop maps (e.g. classification accuracy), (iii) to assess the spatial resolution requirements for crop identification via image classification. Reporting on the map quality is traditionally done with measures that stem from the confusion matrix based on the hard classification result. Yet, these measures do not consider the spatial variation of errors in maps. Measures of classification uncertainty can be used for this purpose, but they have attained only little attention in remote sensing studies. Classifier algorithms like the support vector machine (SVM) can estimate class memberships (the so called soft output) for each classified pixel or object. Based on these estimations, measures of classification uncertainty can be calculated, but it has not been analysed in detail, yet, if these are reliable in predicting the spatial distribution of errors in maps. In this study, SVM was applied for the classification of agricultural crops in irrigated landscapes in Middle Asia at the object-level. Five different categories of features were calculated from RapidEye time series data as classification input. The reliability of classification uncertainty measures like entropy, derived from the soft output of SVM, with regard to predicting the spatial distribution of error was evaluated. Further, the impact of the type and dimensionality of the input data on classification uncertainty was analysed. The results revealed that SMVs applied to the five feature categories separately performed different in classifying different types of crops. Incorporating all five categories of features by concatenating them into one stacked vector did not lead to an increase in accuracy, and partly reduced the model performance most obviously because of the Hughes phenomena. Yet, applying the random forest (RF) algorithm to select a subset of features led to an increase of classification accuracy of the SVM. The feature group with red edge-based indices was the most important for general crop classification, and the red edge NDVI had an outstanding importance for classifying crops. Two measures of uncertainty were calculated based on the soft output from SVM: maximum a-posteriori probability and alpha quadratic entropy. Irrespective of the measure used, the results indicate a decline in classification uncertainty when a dimensionality reduction was performed. The two uncertainty measures were found to be reliable indicators to predict errors in maps. Correctly classified test cases were associated with low uncertainty, whilst incorrectly test cases tended to be associated with higher uncertainty. The issue of combining the results of different classifier algorithms in order to increase classification accuracy was addressed. First, the SVM was compared with two other non-parametric classifier algorithms: multilayer perceptron neural network (MLP) and RF. Despite their comparatively high classification performance, each of the tested classifier algorithms tended to make errors in different parts of the input space, e.g. performed different in classifying crops. Hence, a combination of the complementary outputs was envisaged. To this end, a classifier combination scheme was proposed, which is based on existing algebraic operators. It combines the outputs of different classifier algorithms at the per-case (e.g. pixel or object) basis. The per-case class membership estimations of each classifier algorithm were compared, and the reliability of each classifier algorithm with respect to classifying a specific crop class was assessed based on the confusion matrix. In doing so, less reliable classifier algorithms were excluded at the per-class basis before the final combination. Emphasis was put on evaluating the selected classification algorithms under limiting conditions by applying them to small input datasets and to reduced training sample sets, respectively. Further, the applicability to datasets from another year was demonstrated to assess temporal transferability. Although the single classifier algorithms performed well in all test sites, the classifier combination scheme provided consistently higher classification accuracies over all test sites and in different years, respectively. This makes this approach distinct from the single classifier algorithms, which performed different and showed a higher variability in class-wise accuracies. Further, the proposed classifier combination scheme performed better when using small training set sizes or when applied to small input datasets, respectively. A framework was proposed to quantitatively define pixel size requirements for crop identification via image classification. That framework is based on simulating how agricultural landscapes, and more specifically the fields covered by one crop of interest, are seen by instruments with increasingly coarser resolving power. The concept of crop specific pixel purity, defined as the degree of homogeneity of the signal encoded in a pixel with respect to the target crop type, is used to analyse how mixed the pixels can be (as they become coarser) without undermining their capacity to describe the desired surface properties (e.g. to distinguish crop classes via supervised or unsupervised image classification). This tool can be modulated using different parameterizations to explore trade-offs between pixel size and pixel purity when addressing the question of crop identification. Inputs to the experiments were eight multi-temporal images from the RapidEye sensor. Simulated pixel sizes ranged from 13 m to 747.5 m, in increments of 6.5 m. Constraining parameters for crop identification were defined by setting thresholds for classification accuracy and uncertainty. Results over irrigated agricultural landscapes in Middle Asia demonstrate that the task of finding the optimum pixel size did not have a "one-size-fits-all" solution. The resulting values for pixel size and purity that were suitable for crop identification proved to be specific to a given landscape, and for each crop they differed across different landscapes. Over the same time series, different crops were not identifiable simultaneously in the season and these requirements further changed over the years, reflecting the different agro-ecological conditions the investigated crops were growing in. Results further indicate that map quality (e.g. classification accuracy) was not homogeneously distributed in a landscape, but that it depended on the spatial structures and the pixel size, respectively. The proposed framework is generic and can be applied to any agricultural landscape, thereby potentially serving to guide recommendations for designing dedicated EO missions that can satisfy the requirements in terms of pixel size to identify and discriminate crop types. Regarding the operationalization of EO-based techniques for agricultural monitoring and its application to a broader range of agricultural landscapes, it can be noted that, despite the high performance of existing methods (e.g. classifier algorithms), transferability and stability of such methods remain one important research issue. This means that methods developed and tested in one place might not necessarily be portable to another place or over several years, respectively. Specifically in Middle Asia, which was selected as study region in this thesis, classifier combination makes sense due to its easy implementation and because it enhanced classification accuracy for classes with insufficient training samples. This observation makes it interesting for operational contexts and when field reference data availability is limited. Similar to the transferability of methods, the application of only one certain kind of EO data (e.g. with one specific pixel size) over different landscapes needs to be revisited and the synergistic use of multi-scale data, e.g. combining remote sensing imagery of both fine and coarse spatial resolution, should be fostered. The necessity to predict and control the effects of spatial and temporal scale on crop classification is recognized here as a major goal to achieve in EO-based agricultural monitoring.}, subject = {Fernerkundung}, language = {en} } @article{UereyenBachoferKuenzer2022, author = {Uereyen, Soner and Bachofer, Felix and Kuenzer, Claudia}, title = {A framework for multivariate analysis of land surface dynamics and driving variables — a case study for Indo-Gangetic river basins}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs14010197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255295}, year = {2022}, abstract = {The analysis of the Earth system and interactions among its spheres is increasingly important to improve the understanding of global environmental change. In this regard, Earth observation (EO) is a valuable tool for monitoring of long term changes over the land surface and its features. Although investigations commonly study environmental change by means of a single EO-based land surface variable, a joint exploitation of multivariate land surface variables covering several spheres is still rarely performed. In this regard, we present a novel methodological framework for both, the automated processing of multisource time series to generate a unified multivariate feature space, as well as the application of statistical time series analysis techniques to quantify land surface change and driving variables. In particular, we unify multivariate time series over the last two decades including vegetation greenness, surface water area, snow cover area, and climatic, as well as hydrological variables. Furthermore, the statistical time series analyses include quantification of trends, changes in seasonality, and evaluation of drivers using the recently proposed causal discovery algorithm Peter and Clark Momentary Conditional Independence (PCMCI). We demonstrate the functionality of our methodological framework using Indo-Gangetic river basins in South Asia as a case study. The time series analyses reveal increasing trends in vegetation greenness being largely dependent on water availability, decreasing trends in snow cover area being mostly negatively coupled to temperature, and trends of surface water area to be spatially heterogeneous and linked to various driving variables. Overall, the obtained results highlight the value and suitability of this methodological framework with respect to global climate change research, enabling multivariate time series preparation, derivation of detailed information on significant trends and seasonality, as well as detection of causal links with minimal user intervention. This study is the first to use multivariate time series including several EO-based variables to analyze land surface dynamics over the last two decades using the causal discovery algorithm PCMCI.}, language = {en} } @article{LiGuanGaoetal.2020, author = {Li, Ningbo and Guan, Lianwu and Gao, Yanbin and Du, Shitong and Wu, Menghao and Guang, Xingxing and Cong, Xiaodan}, title = {Indoor and outdoor low-cost seamless integrated navigation system based on the integration of INS/GNSS/LIDAR system}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs12193271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216229}, year = {2020}, abstract = {Global Navigation Satellite System (GNSS) provides accurate positioning data for vehicular navigation in open outdoor environment. In an indoor environment, Light Detection and Ranging (LIDAR) Simultaneous Localization and Mapping (SLAM) establishes a two-dimensional map and provides positioning data. However, LIDAR can only provide relative positioning data and it cannot directly provide the latitude and longitude of the current position. As a consequence, GNSS/Inertial Navigation System (INS) integrated navigation could be employed in outdoors, while the indoors part makes use of INS/LIDAR integrated navigation and the corresponding switching navigation will make the indoor and outdoor positioning consistent. In addition, when the vehicle enters the garage, the GNSS signal will be blurred for a while and then disappeared. Ambiguous GNSS satellite signals will lead to the continuous distortion or overall drift of the positioning trajectory in the indoor condition. Therefore, an INS/LIDAR seamless integrated navigation algorithm and a switching algorithm based on vehicle navigation system are designed. According to the experimental data, the positioning accuracy of the INS/LIDAR navigation algorithm in the simulated environmental experiment is 50\% higher than that of the Dead Reckoning (DR) algorithm. Besides, the switching algorithm developed based on the INS/LIDAR integrated navigation algorithm can achieve 80\% success rate in navigation mode switching.}, language = {en} } @phdthesis{Knoefel2018, author = {Kn{\"o}fel, Patrick}, title = {Energiebilanzmodellierung zur Ableitung der Evapotranspiration - Beispielregion Khorezm}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-042-9 (Print)}, issn = {0510-9833}, doi = {10.25972/WUP-978-3-95826-043-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135669}, school = {W{\"u}rzburg University Press}, pages = {276}, year = {2018}, abstract = {Zum Verst{\"a}ndnis der komplexen Wechselwirkungen innerhalb des Klimasystems der Erde sind Kenntnisse {\"u}ber den hydrologischen Zyklus und den Energiekreislauf essentiell. Eine besondere Rolle obliegt hierbei der Evapotranspiration (ET), da sie eine wesentliche Teilkomponente beider oben erw{\"a}hnter Kreisl{\"a}ufe ist. Die exakte Quantifizierung der regionalen, tats{\"a}chlichen Evapotranspiration innerhalb der Wasser- und Energiekreisl{\"a}ufe der Erdoberfl{\"a}che auf unterschiedlichen zeitlichen und r{\"a}umlichen Skalen ist f{\"u}r hydrologische, klimatologische und agronomische Fragestellungen von großer Bedeutung. Dabei ist eine realistische Absch{\"a}tzung der regionalen tats{\"a}chlichen Evapotranspiration die wichtigste Herausforderung der hydrologischen Modellierung. Besonders die unterschiedlichen r{\"a}umlichen und zeitlichen Aufl{\"o}sungen von Satelliteninformationen machen die Fernerkundung sowohl f{\"u}r globale als auch regionale hydrologischen Fragestellungen interessant. Zus{\"a}tzlich zur Notwendigkeit des Prozessverst{\"a}ndnisses des Wasserkreislaufs auf globaler Ebene kommt dessen regionale Bedeutung f{\"u}r die Landwirtschaft, insbesondere in Bew{\"a}sserungssystemen arider Regionen. In ariden Klimazonen {\"u}bersteigt die Menge der Verdunstung oft bei weitem die Niederschlagsmengen. Aufgrund der geringen Niederschlagsmenge muss in ariden agrarischen Regionen das zum Pflanzenwachstum ben{\"o}tigte Wasser mit Hilfe k{\"u}nstlicher Bew{\"a}sserung aufgebracht werden. Der jeweilige lokale Bew{\"a}sserungsbedarf h{\"a}ngt von der Feldfrucht und deren Wachstumsphase, den Klimabedingungen, den Bodeneigenschaften und der Ausdehnung der Wurzelzone ab. Die Evapotranspiration ist als Komponente der regionalen Wasserbilanz eine wichtige Steuerungsgr{\"o}ße und Effizienzindikator f{\"u}r das lokale Bew{\"a}sserungsmanagement. Die Bew{\"a}sse-rungslandwirtschaft verbraucht weltweit etwa 70 \% der verf{\"u}gbaren S{\"u}ßwasservorkom-men. Dies wird als einer der Hauptgr{\"u}nde f{\"u}r die weltweit steigende Wasserknappheit identifiziert. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den OECD Staaten im Mittel bei etwa 44 \%, in den Staaten Mittelasiens bei {\"u}ber 90 \%. Bei der Erstellung der vorliegenden Arbeit kam die Methode der residualen Bestimmung der Energiebilanz zum Einsatz. Eines der weltweit am h{\"a}ufigsten eingesetzten und vali-dierten fernerkundlichen Residualmodelle zur ET Ableitung ist das SEBAL-Modell (Surface Energy Balance Algorithm for Land, mit {\"u}ber 40 ver{\"o}ffentlichten Studien. SEBAL eignet sich zur Quantifizierung der Verdunstung großfl{\"a}chiger Gebiete und wurde bisher {\"u}ber-wiegend in der Bew{\"a}sserungslandwirtschaft eingesetzt. Aus diesen Gr{\"u}nden wurde es f{\"u}r die Bearbeitung der Fragestellungen in dieser Arbeit ausgew{\"a}hlt. SEBAL verwendet physikalische und empirische Beziehungen zur Berechnung der Energiebilanzkomponenten basierend auf Fernerkundungsdaten, bei gleichzeitig minimalem Einsatz bodengest{\"u}tzter Daten. Als Eingangsdaten werden u.a. Informationen {\"u}ber Strahlung, Bodenoberfl{\"a}chentemperatur, NDVI, LAI und Albedo verwendet. Zus{\"a}tzlich zu SEBAL wurden einige Komponenten der SEBAL Weiterentwicklung METRIC (Mapping Evapotranspiration with Internalized Calibration) verwendet, um die Modellierung der ET vorzunehmen. METRIC {\"u}berwindet einige Limitierungen des SEBAL Verfahrens und kann beispielsweise auch in st{\"a}rker reliefierten Regionen angewendet werden. Außerdem erm{\"o}glicht die Integration einer gebietsspezifischen Referenz-ET sowie einer Landnutzungsklassifikation eine bessere regionale Anpassung des Residualverfahrens. Unter der Annahme der Bedingungen zum Zeitpunkt der Fernerkundungsaufnahme ergibt sich die Energiebilanz an der Erdoberfl{\"a}che RN = LvE + H + G. Demnach teilt sich die verf{\"u}gbare Strahlungsenergie RN in die Komponenten latenter W{\"a}rme (LVE), f{\"u}hlbarer W{\"a}rme (H) und Bodenw{\"a}rme (G) auf. Durch Umstellen der Gleichung kann auf die latente W{\"a}rme geschlossen werden. Das wesentliche Ziel der vorliegenden Arbeit ist die Optimierung, Erweiterung und Validierung des ausgew{\"a}hlten SEBAL Verfahrens zur regionalen Modellierung der Energiebilanzkomponenten und der daraus abgeleiteten tats{\"a}chlichen Evapotranspiration. Die validierten Modellergebnisse der Gebietsverdunstung der Jahre 2009-2011 sollen anschließend als Grundlage dienen, das Gesamtverst{\"a}ndnis der regionalen Prozesse des Wasserkreislaufs zu verbessern. Die Arbeit basiert auf der Datengrundlage von MODIS Daten mit 1 km r{\"a}umlicher Aufl{\"o}sung. W{\"a}hrend die Komponenten verf{\"u}gbare Strahlungsenergie und f{\"u}hlbarer W{\"a}rmestrom physikalisch basiert ermittelt werden, beruht die Berechnung des Bodenw{\"a}rmestroms ausschließlich auf empirischen Absch{\"a}tzungen. Ein großer Nachteil des empirischen Ansatzes ist die Vernachl{\"a}ssigung des zeitlichen Versatzes zwischen Strahlungsbilanz und Bodenw{\"a}rmestrom in Abh{\"a}ngigkeit der aktuellen Bodenfeuchtesituation. Ein besonderer Schwerpunkt der vorliegenden Arbeit liegt auf der Bewertung und Verbesserung der Modellg{\"u}te des Bodenw{\"a}rmestroms durch Verwendung eines neuen Ansatzes zur Integration von Bodenfeuchteinformationen. Daher wird in der Arbeit ein physikalischer Ansatz entwickelt der auf dem Ansatz der periodischen Temperaturver{\"a}nderung basiert. Hierbei wurde neben dem ENVISAT ASAR SSM Produkt der TU Wien das operationelle Oberfl{\"a}chenbodenfeuchteprodukt ASCAT SSM als Fernerkundungseingangsdaten ausgew{\"a}hlt. Die mit SEBAL modellierten Energiebilanzkomponenten werden durch eine intensive Validierung mit bodengest{\"u}tzten Messungen bewertet, die Messungen stammen von Bodensensoren und Daten einer Eddy-Kovarianz-Station aus den Jahren 2009 bis 2011. Die Region Khorezm gilt als charakteristisch f{\"u}r die wasserbezogene Problematik der Bew{\"a}sserungslandwirtschaft Mittelasiens und wurde als Untersuchungsgebiet f{\"u}r diese Arbeit ausgew{\"a}hlt. Die wesentlichen Probleme dieser Region entstehen durch die nach wie vor nicht nachhaltige Land- und Wassernutzung, das marode Bew{\"a}sserungsnetz mit einer Verlustrate von bis zu 40 \% und der Bodenversalzung aufgrund hoher Grundwasserspiegel. Im Untersuchungsgebiet wurden in den Jahren 2010 und 2011 umfangreiche Feldarbeiten zur Erhebung lokaler bodengest{\"u}tzter Informationen durchgef{\"u}hrt. Bei der Evaluierung der modellierten Einzelkomponenten ergab sich f{\"u}r die Strahlungsbi-lanz eine hohe Modellg{\"u}te (R² > 0,9; rRMSE < 0,2 und NSE > 0,5). Diese Komponente bildet die Grundlage bei der Bezifferung der f{\"u}r die Prozesse an der Erdoberfl{\"a}che zur Verf{\"u}gung stehenden Energie. F{\"u}r die f{\"u}hlbaren W{\"a}rmestr{\"o}me wurden ebenfalls gute Ergebnisse erzielt, mit NSE von 0,31 und rRMSE von ca. 0,21. F{\"u}r die residual bestimmte Gr{\"o}ße der latenten W{\"a}rmestr{\"o}mung konnte eine insgesamt gute Modellg{\"u}te festgestellt werden (R² > 0,6; rRMSE < 0,2 und NSE > 0,5). Dementsprechend gut wurde die t{\"a}gliche Evapotranspiration modelliert. Hier ergab sich, nach der Interpolation t{\"a}glicher Werte, eine insgesamt ausreichend gute Modellg{\"u}te (R² > 0,5; rRMSE < 0,2 und NSE > 0,4). Dies best{\"a}tigt die Ergebnisse vieler Energiebilanzstudien, die lediglich den f{\"u}r die Ableitung der Evapotranspiration maßgebenden W{\"a}rmestrom untersuchten. Die Modellergebnisse f{\"u}r den Bodenw{\"a}rmestrom konnten durch die Entwicklung und Verwendung des neu entwickelten physikalischen Ansatzes von NSE < 0 und rRMSE von ca. 0,57 auf NSE von 0,19 und rRMSE von 0,35 verbessert werden. Dies f{\"u}hrt zu einer insgesamt positiven Einsch{\"a}tzung des Verbesserungspotenzials des neu entwickelten Bodenw{\"a}rmestromansatzes bei der Berechnung der Energiebilanz mit Hilfe von Fernerkundung.}, subject = {Evapotranspiration}, language = {de} } @article{MeisterLangeAthinodorouUllmann2021, author = {Meister, Julia and Lange-Athinodorou, Eva and Ullmann, Tobias}, title = {Preface: Special Issue "Geoarchaeology of the Nile Delta"}, series = {E\&G Quarternary Science Journal}, volume = {70}, journal = {E\&G Quarternary Science Journal}, doi = {10.5194/egqsj-70-187-2021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261195}, pages = {187-190}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{RiyasSyedKumaretal.2021, author = {Riyas, Moidu Jameela and Syed, Tajdarul Hassan and Kumar, Hrishikesh and Kuenzer, Claudia}, title = {Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield, India using Sentinel-1 SAR data}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {8}, issn = {2072-4292}, doi = {10.3390/rs13081521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236703}, year = {2021}, abstract = {Public safety and socio-economic development of the Jharia coalfield (JCF) in India is critically dependent on precise monitoring and comprehensive understanding of coal fires, which have been burning underneath for more than a century. This study utilizes New-Small BAseline Subset (N-SBAS) technique to compute surface deformation time series for 2017-2020 to characterize the spatiotemporal dynamics of coal fires in JCF. The line-of-sight (LOS) surface deformation estimated from ascending and descending Sentinel-1 SAR data are subsequently decomposed to derive precise vertical subsidence estimates. The most prominent subsidence (~22 cm) is observed in Kusunda colliery. The subsidence regions also correspond well with the Landsat-8 based thermal anomaly map and field evidence. Subsequently, the vertical surface deformation time-series is analyzed to characterize temporal variations within the 9.5 km\(^2\) area of coal fires. Results reveal that nearly 10\% of the coal fire area is newly formed, while 73\% persisted throughout the study period. Vulnerability analyses performed in terms of the susceptibility of the population to land surface collapse demonstrate that Tisra, Chhatatanr, and Sijua are the most vulnerable towns. Our results provide critical information for developing early warning systems and remediation strategies.}, language = {en} } @article{LauschBorgBumbergeretal.2018, author = {Lausch, Angela and Borg, Erik and Bumberger, Jan and Dietrich, Peter and Heurich, Marco and Huth, Andreas and Jung, Andr{\´a}s and Klenke, Reinhard and Knapp, Sonja and Mollenhauer, Hannes and Paasche, Hendrik and Paulheim, Heiko and Pause, Marion and Schweitzer, Christian and Schmulius, Christiane and Settele, Josef and Skidmore, Andrew K. and Wegmann, Martin and Zacharias, Steffen and Kirsten, Toralf and Schaepman, Michael E.}, title = {Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs10071120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197691}, pages = {1120}, year = {2018}, abstract = {Forest ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our forest ecosystems as well as their ecosystem functions. The relationships between drivers, stress, and ecosystem functions in forest ecosystems are complex, multi-faceted, and often non-linear, and yet forest managers, decision makers, and politicians need to be able to make rapid decisions that are data-driven and based on short and long-term monitoring information, complex modeling, and analysis approaches. A huge number of long-standing and standardized forest health inventory approaches already exist, and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis, and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. Therefore, this paper discusses and presents in detail five sets of requirements, including their relevance, necessity, and the possible solutions that would be necessary for establishing a feasible multi-source forest health monitoring network for the 21st century. Namely, these requirements are: (1) understanding the effects of multiple stressors on forest health; (2) using remote sensing (RS) approaches to monitor forest health; (3) coupling different monitoring approaches; (4) using data science as a bridge between complex and multidimensional big forest health (FH) data; and (5) a future multi-source forest health monitoring network. It became apparent that no existing monitoring approach, technique, model, or platform is sufficient on its own to monitor, model, forecast, or assess forest health and its resilience. In order to advance the development of a multi-source forest health monitoring network, we argue that in order to gain a better understanding of forest health in our complex world, it would be conducive to implement the concepts of data science with the components: (i) digitalization; (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles; (iii) Semantic Web; (iv) proof, trust, and uncertainties; (v) tools for data science analysis; and (vi) easy tools for scientists, data managers, and stakeholders for decision-making support.}, language = {en} } @article{FaOliveroRealetal.2015, author = {Fa, John E. and Olivero, Jes{\´u}s and Real, Raimundo and Farf{\´a}n, Miguel A. and M{\´a}rquez, Ana L. and Vargas, J. Mario and Ziegler, Stefan and Wegmann, Martin and Brown, David and Margetts, Barrie and Nasi, Robert}, title = {Disentangling the relative effects of bushmeat availability on human nutrition in central Africa}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {8168}, doi = {10.1038/srep08168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144110}, year = {2015}, abstract = {We studied links between human malnutrition and wild meat availability within the Rainforest Biotic Zone in central Africa. We distinguished two distinct hunted mammalian diversity distributions, one in the rainforest areas (Deep Rainforest Diversity, DRD) containing taxa of lower hunting sustainability, the other in the northern rainforest-savanna mosaic, with species of greater hunting potential (Marginal Rainforest Diversity, MRD). Wild meat availability, assessed by standing crop mammalian biomass, was greater in MRD than in DRD areas. Predicted bushmeat extraction was also higher in MRD areas. Despite this, stunting of children, a measure of human malnutrition, was greater in MRD areas. Structural equation modeling identified that, in MRD areas, mammal diversity fell away from urban areas, but proximity to these positively influenced higher stunting incidence. In DRD areas, remoteness and distance from dense human settlements and infrastructures explained lower stunting levels. Moreover, stunting was higher away from protected areas. Our results suggest that in MRD areas, forest wildlife rational use for better human nutrition is possible. By contrast, the relatively low human populations in DRD areas currently offer abundant opportunities for the continued protection of more vulnerable mammals and allow dietary needs of local populations to be met.}, language = {en} } @article{NyamekyeThielSchoenbrodtStittetal.2018, author = {Nyamekye, Clement and Thiel, Michael and Sch{\"o}nbrodt-Stitt, Sarah and Zoungrana, Benewinde J.-B. and Amekudzi, Leonard K.}, title = {Soil and water conservation in Burkina Faso, West Africa}, series = {Sustainability}, volume = {10}, journal = {Sustainability}, number = {9}, issn = {2071-1050}, doi = {10.3390/su10093182}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197653}, pages = {3182}, year = {2018}, abstract = {Inadequate land management and agricultural activities have largely resulted in land degradation in Burkina Faso. The nationwide governmental and institutional driven implementation and adoption of soil and water conservation measures (SWCM) since the early 1960s, however, is expected to successively slow down the degradation process and to increase the agricultural output. Even though relevant measures have been taken, only a few studies have been conducted to quantify their effect, for instance, on soil erosion and environmental restoration. In addition, a comprehensive summary of initiatives, implementation strategies, and eventually region-specific requirements for adopting different SWCM is missing. The present study therefore aims to review the different SWCM in Burkina Faso and implementation programs, as well as to provide information on their effects on environmental restoration and agricultural productivity. This was achieved by considering over 143 studies focusing on Burkina Faso's experience and research progress in areas of SWCM and soil erosion. SWCM in Burkina Faso have largely resulted in an increase in agricultural productivity and improvement in food security. Finally, this study aims at supporting the country's informed decision-making for extending already existing SWCM and for deriving further implementation strategies.}, language = {en} } @article{KhareLatifiKhare2021, author = {Khare, Suyash and Latifi, Hooman and Khare, Siddhartha}, title = {Vegetation growth analysis of UNESCO World Heritage Hyrcanian forests using multi-sensor optical remote sensing data}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs13193965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248398}, year = {2021}, abstract = {Freely available satellite data at Google Earth Engine (GEE) cloud platform enables vegetation phenology analysis across different scales very efficiently. We evaluated seasonal and annual phenology of the old-growth Hyrcanian forests (HF) of northern Iran covering an area of ca. 1.9 million ha, and also focused on 15 UNESCO World Heritage Sites. We extracted bi-weekly MODIS-NDVI between 2017 and 2020 in GEE, which was used to identify the range of NDVI between two temporal stages. Then, changes in phenology and growth were analyzed by Sentinel 2-derived Temporal Normalized Phenology Index. We modelled between seasonal phenology and growth by additionally considering elevation, surface temperature, and monthly precipitation. Results indicated considerable difference in onset of forests along the longitudinal gradient of the HF. Faster growth was observed in low- and uplands of the western zone, whereas it was lower in both the mid-elevations and the western outskirts. Longitudinal range was a major driver of vegetation growth, to which environmental factors also differently but significantly contributed (p < 0.0001) along the west-east gradient. Our study developed at GEE provides a benchmark to examine the effects of environmental parameters on the vegetation growth of HF, which cover mountainous areas with partly no or limited accessibility.}, language = {en} } @article{ThonfeldSteinbachMuroetal.2020, author = {Thonfeld, Frank and Steinbach, Stefanie and Muro, Javier and Kirimi, Fridah}, title = {Long-term land use/land cover change assessment of the Kilombero catchment in Tanzania using random forest classification and robust change vector analysis}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203513}, year = {2020}, abstract = {Information about land use/land cover (LULC) and their changes is useful for different stakeholders to assess future pathways of sustainable land use for food production as well as for nature conservation. In this study, we assess LULC changes in the Kilombero catchment in Tanzania, an important area of recent development in East Africa. LULC change is assessed in two ways: first, post-classification comparison (PCC) which allows us to directly assess changes from one LULC class to another, and second, spectral change detection. We perform LULC classification by applying random forests (RF) on sets of multitemporal metrics that account for seasonal within-class dynamics. For the spectral change detection, we make use of the robust change vector analysis (RCVA) and determine those changes that do not necessarily lead to another class. The combination of the two approaches enables us to distinguish areas that show (a) only PCC changes, (b) only spectral changes that do not affect the classification of a pixel, (c) both types of change, or (d) no changes at all. Our results reveal that only one-quarter of the catchment has not experienced any change. One-third shows both, spectral changes and LULC conversion. Changes detected with both methods predominantly occur in two major regions, one in the West of the catchment, one in the Kilombero floodplain. Both regions are important areas of food production and economic development in Tanzania. The Kilombero floodplain is a Ramsar protected area, half of which was converted to agricultural land in the past decades. Therefore, LULC monitoring is required to support sustainable land management. Relatively poor classification performances revealed several challenges during the classification process. The combined approach of PCC and RCVA allows us to detect spatial patterns of LULC change at distinct dimensions and intensities. With the assessment of additional classifier output, namely class-specific per-pixel classification probabilities and derived parameters, we account for classification uncertainty across space. We overlay the LULC change results and the spatial assessment of classification reliability to provide a thorough picture of the LULC changes taking place in the Kilombero catchment.}, language = {en} } @article{UlloaTorrealbaStahlmannWegmannetal.2020, author = {Ulloa-Torrealba, Yrneh and Stahlmann, Reinhold and Wegmann, Martin and Koellner, Thomas}, title = {Over 150 years of change: object-oriented analysis of historical land cover in the Main river catchment, Bavaria/Germany}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {24}, issn = {2072-4292}, doi = {10.3390/rs12244048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220029}, year = {2020}, abstract = {The monitoring of land cover and land use change is critical for assessing the provision of ecosystem services. One of the sources for long-term land cover change quantification is through the classification of historical and/or current maps. Little research has been done on historical maps using Object-Based Image Analysis (OBIA). This study applied an object-based classification using eCognition tool for analyzing the land cover based on historical maps in the Main river catchment, Upper Franconia, Germany. This allowed land use change analysis between the 1850s and 2015, a time span which covers the phase of industrialization of landscapes in central Europe. The results show a strong increase in urban area by 2600\%, a severe loss of cropland (-24\%), a moderate reduction in meadows (-4\%), and a small gain in forests (+4\%). The method proved useful for the application on historical maps due to the ability of the software to create semantic objects. The confusion matrix shows an overall accuracy of 82\% for the automatic classification compared to manual reclassification considering all 17 sample tiles. The minimum overall accuracy was 65\% for historical maps of poor quality and the maximum was 91\% for very high-quality ones. Although accuracy is between high and moderate, coarse land cover patterns in the past and trends in land cover change can be analyzed. We conclude that such long-term analysis of land cover is a prerequisite for quantifying long-term changes in ecosystem services.}, language = {en} } @article{WalzWegmannDechetal.2015, author = {Walz, Yvonne and Wegmann, Martin and Dech, Stefan and Raso, Giovanna and Utzinger, J{\"u}rg}, title = {Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook}, series = {Parasites \& Vectors}, volume = {8}, journal = {Parasites \& Vectors}, number = {163}, doi = {10.1186/s13071-015-0732-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148778}, year = {2015}, abstract = {Background: Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. Methods: We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. Results: We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Conclusions: Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.}, language = {en} } @article{KnauerGessnerFensholtetal.2017, author = {Knauer, Kim and Gessner, Ursula and Fensholt, Rasmus and Forkuor, Gerald and Kuenzer, Claudia}, title = {Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment}, series = {Remote Sensing}, volume = {9}, journal = {Remote Sensing}, number = {2}, doi = {10.3390/rs9020132}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171905}, year = {2017}, abstract = {Burkina Faso ranges amongst the fastest growing countries in the world with an annual population growth rate of more than three percent. This trend has consequences for food security since agricultural productivity is still on a comparatively low level in Burkina Faso. In order to compensate for the low productivity, the agricultural areas are expanding quickly. The mapping and monitoring of this expansion is difficult, even on the basis of remote sensing imagery, since the extensive farming practices and frequent cloud coverage in the area make the delineation of cultivated land from other land cover and land use types a challenging task. However, as the rapidly increasing population could have considerable effects on the natural resources and on the regional development of the country, methods for improved mapping of LULCC (land use and land cover change) are needed. For this study, we applied the newly developed ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) framework to generate high temporal (8-day) and high spatial (30 m) resolution NDVI time series for all of Burkina Faso for the years 2001, 2007, and 2014. For this purpose, more than 500 Landsat scenes and 3000 MODIS scenes were processed with this automated framework. The generated ESTARFM NDVI time series enabled extraction of per-pixel phenological features that all together served as input for the delineation of agricultural areas via random forest classification at 30 m spatial resolution for entire Burkina Faso and the three years. For training and validation, a randomly sampled reference dataset was generated from Google Earth images and based on expert knowledge. The overall accuracies of 92\% (2001), 91\% (2007), and 91\% (2014) indicate the well-functioning of the applied methodology. The results show an expansion of agricultural area of 91\% between 2001 and 2014 to a total of 116,900 km\(^2\). While rainfed agricultural areas account for the major part of this trend, irrigated areas and plantations also increased considerably, primarily promoted by specific development projects. This expansion goes in line with the rapid population growth in most provinces of Burkina Faso where land was still available for an expansion of agricultural area. The analysis of agricultural encroachment into protected areas and their surroundings highlights the increased human pressure on these areas and the challenges of environmental protection for the future.}, language = {en} } @article{DirscherlDietzKneiseletal.2020, author = {Dirscherl, Mariel and Dietz, Andreas J. and Kneisel, Christof and Kuenzer, Claudia}, title = {Automated mapping of Antarctic supraglacial lakes using a Machine Learning approach}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203735}, year = {2020}, abstract = {Supraglacial lakes can have considerable impact on ice sheet mass balance and global sea-level-rise through ice shelf fracturing and subsequent glacier speedup. In Antarctica, the distribution and temporal development of supraglacial lakes as well as their potential contribution to increased ice mass loss remains largely unknown, requiring a detailed mapping of the Antarctic surface hydrological network. In this study, we employ a Machine Learning algorithm trained on Sentinel-2 and auxiliary TanDEM-X topographic data for automated mapping of Antarctic supraglacial lakes. To ensure the spatio-temporal transferability of our method, a Random Forest was trained on 14 training regions and applied over eight spatially independent test regions distributed across the whole Antarctic continent. In addition, we employed our workflow for large-scale application over Amery Ice Shelf where we calculated interannual supraglacial lake dynamics between 2017 and 2020 at full ice shelf coverage. To validate our supraglacial lake detection algorithm, we randomly created point samples over our classification results and compared them to Sentinel-2 imagery. The point comparisons were evaluated using a confusion matrix for calculation of selected accuracy metrics. Our analysis revealed wide-spread supraglacial lake occurrence in all three Antarctic regions. For the first time, we identified supraglacial meltwater features on Abbott, Hull and Cosgrove Ice Shelves in West Antarctica as well as for the entire Amery Ice Shelf for years 2017-2020. Over Amery Ice Shelf, maximum lake extent varied strongly between the years with the 2019 melt season characterized by the largest areal coverage of supraglacial lakes (~763 km\(^2\)). The accuracy assessment over the test regions revealed an average Kappa coefficient of 0.86 where the largest value of Kappa reached 0.98 over George VI Ice Shelf. Future developments will involve the generation of circum-Antarctic supraglacial lake mapping products as well as their use for further methodological developments using Sentinel-1 SAR data in order to characterize intraannual supraglacial meltwater dynamics also during polar night and independent of meteorological conditions. In summary, the implementation of the Random Forest classifier enabled the development of the first automated mapping method applied to Sentinel-2 data distributed across all three Antarctic regions.}, language = {en} } @article{UphusLuepkeYuanetal.2021, author = {Uphus, Lars and L{\"u}pke, Marvin and Yuan, Ye and Benjamin, Caryl and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Schwindl, Michael and Uhler, Johannes and Menzel, Annette}, title = {Climate effects on vertical forest phenology of Fagus sylvatica L., sensed by Sentinel-2, time lapse camera, and visual ground observations}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs13193982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248419}, year = {2021}, abstract = {Contemporary climate change leads to earlier spring phenological events in Europe. In forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical phenological (mis)match — the phenological difference between overstory and understory — affects the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS) of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 °C in Bavaria, southeast Germany, in the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We explained SOS dates and vertical phenological (mis)match by canopy temperature and compared these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS advanced with higher mean April canopy temperature (visual ground observations: -2.86 days per °C; cameras: -2.57 days per °C). However, understory SOS was not significantly affected by canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy temperature (visual ground observations: +3.90 days per °C; cameras: +2.52 days per °C). These results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more by increased canopy temperature than pixels of lower canopy height. The results may indicate that, with further climate change, spring phenology of F. sylvatica overstory will advance more than F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous forests. This may have major ecological effects, but also methodological consequences for the field of remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the vertical (mis)match.}, language = {en} } @article{NaeschenDiekkruegerEversetal.2019, author = {N{\"a}schen, Kristian and Diekkr{\"u}ger, Bernd and Evers, Mariele and H{\"o}llermann, Britta and Steinbach, Stefanie and Thonfeld, Frank}, title = {The impact of land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {24}, issn = {2071-1050}, doi = {10.3390/su11247083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193825}, year = {2019}, abstract = {Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6-8\% for the LULC scenarios, whereas high flows increase by up to 84\% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.}, language = {en} } @article{GhazaryanRienowOldenburgetal.2021, author = {Ghazaryan, Gohar and Rienow, Andreas and Oldenburg, Carsten and Thonfeld, Frank and Trampnau, Birte and Sticksel, Sarah and J{\"u}rgens, Carsten}, title = {Monitoring of urban sprawl and densification processes in Western Germany in the light of SDG indicator 11.3.1 based on an automated retrospective classification approach}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {9}, issn = {2072-4292}, doi = {10.3390/rs13091694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236671}, year = {2021}, abstract = {By 2050, two-third of the world's population will live in cities. In this study, we develop a framework for analyzing urban growth-related imperviousness in North Rhine-Westphalia (NRW) from the 1980s to date using Landsat data. For the baseline 2017-time step, official geodata was extracted to generate labelled data for ten classes, including three classes representing low, middle, and high level of imperviousness. We used the output of the 2017 classification and information based on radiometric bi-temporal change detection for retrospective classification. Besides spectral bands, we calculated several indices and various temporal composites, which were used as an input for Random Forest classification. The results provide information on three imperviousness classes with accuracies exceeding 75\%. According to our results, the imperviousness areas grew continuously from 1985 to 2017, with a high imperviousness area growth of more than 167,000 ha, comprising around 30\% increase. The information on the expansion of urban areas was integrated with population dynamics data to estimate the progress towards SDG 11. With the intensity analysis and the integration of population data, the spatial heterogeneity of urban expansion and population growth was analysed, showing that the urban expansion rates considerably excelled population growth rates in some regions in NRW. The study highlights the applicability of earth observation data for accurately quantifying spatio-temporal urban dynamics for sustainable urbanization and targeted planning.}, language = {en} } @article{FekriLatifiAmanietal.2021, author = {Fekri, Erfan and Latifi, Hooman and Amani, Meisam and Zobeidinezhad, Abdolkarim}, title = {A training sample migration method for wetland mapping and monitoring using Sentinel data in Google Earth Engine}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {20}, issn = {2072-4292}, doi = {10.3390/rs13204169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248542}, year = {2021}, abstract = {Wetlands are one of the most important ecosystems due to their critical services to both humans and the environment. Therefore, wetland mapping and monitoring are essential for their conservation. In this regard, remote sensing offers efficient solutions due to the availability of cost-efficient archived images over different spatial scales. However, a lack of sufficient consistent training samples at different times is a significant limitation of multi-temporal wetland monitoring. In this study, a new training sample migration method was developed to identify unchanged training samples to be used in wetland classification and change analyses over the International Shadegan Wetland (ISW) areas of southwestern Iran. To this end, we first produced the wetland map of a reference year (2020), for which we had training samples, by combining Sentinel-1 and Sentinel-2 images and the Random Forest (RF) classifier in Google Earth Engine (GEE). The Overall Accuracy (OA) and Kappa coefficient (KC) of this reference map were 97.93\% and 0.97, respectively. Then, an automatic change detection method was developed to migrate unchanged training samples from the reference year to the target years of 2018, 2019, and 2021. Within the proposed method, three indices of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and the mean Standard Deviation (SD) of the spectral bands, along with two similarity measures of the Euclidean Distance (ED) and Spectral Angle Distance (SAD), were computed for each pair of reference-target years. The optimum threshold for unchanged samples was also derived using a histogram thresholding approach, which led to selecting the samples that were most likely unchanged based on the highest OA and KC for classifying the test dataset. The proposed migration sample method resulted in high OAs of 95.89\%, 96.83\%, and 97.06\% and KCs of 0.95, 0.96, and 0.96 for the target years of 2018, 2019, and 2021, respectively. Finally, the migrated samples were used to generate the wetland map for the target years. Overall, our proposed method showed high potential for wetland mapping and monitoring when no training samples existed for a target year.}, language = {en} } @article{SchoenbrodtStittAhmadianKurtenbachetal.2021, author = {Sch{\"o}nbrodt-Stitt, Sarah and Ahmadian, Nima and Kurtenbach, Markus and Conrad, Christopher and Romano, Nunzio and Bogena, Heye R. and Vereecken, Harry and Nasta, Paolo}, title = {Statistical Exploration of SENTINEL-1 Data, Terrain Parameters, and in-situ Data for Estimating the Near-Surface Soil Moisture in a Mediterranean Agroecosystem}, series = {Frontiers in Water}, volume = {3}, journal = {Frontiers in Water}, doi = {10.3389/frwa.2021.655837}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259062}, pages = {655837}, year = {2021}, abstract = {Reliable near-surface soil moisture (θ) information is crucial for supporting risk assessment of future water usage, particularly considering the vulnerability of agroforestry systems of Mediterranean environments to climate change. We propose a simple empirical model by integrating dual-polarimetric Sentinel-1 (S1) Synthetic Aperture Radar (SAR) C-band single-look complex data and topographic information together with in-situ measurements of θ into a random forest (RF) regression approach (10-fold cross-validation). Firstly, we compare two RF models' estimation performances using either 43 SAR parameters (θNov\(^{SAR}\)) or the combination of 43 SAR and 10 terrain parameters (θNov\(^{SAR+Terrain}\)). Secondly, we analyze the essential parameters in estimating and mapping θ for S1 overpasses twice a day (at 5 a.m. and 5 p.m.) in a high spatiotemporal (17 × 17 m; 6 days) resolution. The developed site-specific calibration-dependent model was tested for a short period in November 2018 in a field-scale agroforestry environment belonging to the "Alento" hydrological observatory in southern Italy. Our results show that the combined SAR + terrain model slightly outperforms the SAR-based model (θNov\(^{SAR+Terrain}\) with 0.025 and 0.020 m3 m\(^{-3}\), and 89\% compared to θNov\(^{SAR}\) with 0.028 and 0.022 m\(^3\) m\(^{-3}\, and 86\% in terms of RMSE, MAE, and R2). The higher explanatory power for θNov\(^{SAR+Terrain}\) is assessed with time-variant SAR phase information-dependent elements of the C2 covariance and Kennaugh matrix (i.e., K1, K6, and K1S) and with local (e.g., altitude above channel network) and compound topographic attributes (e.g., wetness index). Our proposed methodological approach constitutes a simple empirical model aiming at estimating θ for rapid surveys with high accuracy. It emphasizes potentials for further improvement (e.g., higher spatiotemporal coverage of ground-truthing) by identifying differences of SAR measurements between S1 overpasses in the morning and afternoon.}, language = {en} } @article{ForkuorHounkpatinWelpetal.2017, author = {Forkuor, Gerald and Hounkpatin, Ozias K.L. and Welp, Gerhard and Thiel, Michael}, title = {High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models}, series = {PLOS One}, volume = {12}, journal = {PLOS One}, number = {1}, doi = {10.1371/journal.pone.0170478}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180978}, pages = {21}, year = {2017}, abstract = {Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources.}, language = {en} } @article{PhilippDietzUllmannetal.2022, author = {Philipp, Marius and Dietz, Andreas and Ullmann, Tobias and Kuenzer, Claudia}, title = {Automated extraction of annual erosion rates for Arctic permafrost coasts using Sentinel-1, Deep Learning, and Change Vector Analysis}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {15}, issn = {2072-4292}, doi = {10.3390/rs14153656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281956}, year = {2022}, abstract = {Arctic permafrost coasts become increasingly vulnerable due to environmental drivers such as the reduced sea-ice extent and duration as well as the thawing of permafrost itself. A continuous quantification of the erosion process on large to circum-Arctic scales is required to fully assess the extent and understand the consequences of eroding permafrost coastlines. This study presents a novel approach to quantify annual Arctic coastal erosion and build-up rates based on Sentinel-1 (S1) Synthetic Aperture RADAR (SAR) backscatter data, in combination with Deep Learning (DL) and Change Vector Analysis (CVA). The methodology includes the generation of a high-quality Arctic coastline product via DL, which acted as a reference for quantifying coastal erosion and build-up rates from annual median and standard deviation (sd) backscatter images via CVA. The analysis was applied on ten test sites distributed across the Arctic and covering about 1038 km of coastline. Results revealed maximum erosion rates of up to 160 m for some areas and an average erosion rate of 4.37 m across all test sites within a three-year temporal window from 2017 to 2020. The observed erosion rates within the framework of this study agree with findings published in the previous literature. The proposed methods and data can be applied on large scales and, prospectively, even for the entire Arctic. The generated products may be used for quantifying the loss of frozen ground, estimating the release of stored organic material, and can act as a basis for further related studies in Arctic coastal environments.}, language = {en} } @article{MayrKleinRutzingeretal.2021, author = {Mayr, Stefan and Klein, Igor and Rutzinger, Martin and Kuenzer, Claudia}, title = {Systematic water fraction estimation for a global and daily surface water time-series}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {14}, issn = {2072-4292}, doi = {10.3390/rs13142675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242586}, year = {2021}, abstract = {Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product's performance regarding mixed water/non-water pixels by an average of 11.6\% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.}, language = {en} } @article{StereńczakLaurinChiricietal.2020, author = {Stereńczak, Krzysztof and Laurin, Gaia Vaglio and Chirici, Gherardo and Coomes, David A. and Dalponte, Michele and Latifi, Hooman and Puletti, Nicola}, title = {Global Airborne Laser Scanning Data Providers Database (GlobALS) — a new tool for monitoring ecosystems and biodiversity}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {11}, issn = {2072-4292}, doi = {10.3390/rs12111877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207819}, year = {2020}, abstract = {Protection and recovery of natural resource and biodiversity requires accurate monitoring at multiple scales. Airborne Laser Scanning (ALS) provides high-resolution imagery that is valuable for monitoring structural changes to vegetation, providing a reliable reference for ecological analyses and comparison purposes, especially if used in conjunction with other remote-sensing and field products. However, the potential of ALS data has not been fully exploited, due to limits in data availability and validation. To bridge this gap, the global network for airborne laser scanner data (GlobALS) has been established as a worldwide network of ALS data providers that aims at linking those interested in research and applications related to natural resources and biodiversity monitoring. The network does not collect data itself but collects metadata and facilitates networking and collaborative research amongst the end-users and data providers. This letter describes this facility, with the aim of broadening participation in GlobALS.}, language = {en} } @article{HuthGessnerKleinetal.2020, author = {Huth, Juliane and Gessner, Ursula and Klein, Igor and Yesou, Herv{\´e} and Lai, Xijun and Oppelt, Natascha and Kuenzer, Claudia}, title = {Analyzing water dynamics based on Sentinel-1 time series — a study for Dongting Lake wetlands in China}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {11}, issn = {2072-4292}, doi = {10.3390/rs12111761}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205977}, year = {2020}, abstract = {In China, freshwater is an increasingly scarce resource and wetlands are under great pressure. This study focuses on China's second largest freshwater lake in the middle reaches of the Yangtze River — the Dongting Lake — and its surrounding wetlands, which are declared a protected Ramsar site. The Dongting Lake area is also a research region of focus within the Sino-European Dragon Programme, aiming for the international collaboration of Earth Observation researchers. ESA's Copernicus Programme enables comprehensive monitoring with area-wide coverage, which is especially advantageous for large wetlands that are difficult to access during floods. The first year completely covered by Sentinel-1 SAR satellite data was 2016, which is used here to focus on Dongting Lake's wetland dynamics. The well-established, threshold-based approach and the high spatio-temporal resolution of Sentinel-1 imagery enabled the generation of monthly surface water maps and the analysis of the inundation frequency at a 10 m resolution. The maximum extent of the Dongting Lake derived from Sentinel-1 occurred in July 2016, at 2465 km\(^2\), indicating an extreme flood year. The minimum size of the lake was detected in October, at 1331 km\(^2\). Time series analysis reveals detailed inundation patterns and small-scale structures within the lake that were not known from previous studies. Sentinel-1 also proves to be capable of mapping the wetland management practices for Dongting Lake polders and dykes. For validation, the lake extent and inundation duration derived from the Sentinel-1 data were compared with excerpts from the Global WaterPack (frequently derived by the German Aerospace Center, DLR), high-resolution optical data, and in situ water level data, which showed very good agreement for the period studied. The mean monthly extent of the lake in 2016 from Sentinel-1 was 1798 km\(^2\), which is consistent with the Global WaterPack, deviating by only 4\%. In summary, the presented analysis of the complete annual time series of the Sentinel-1 data provides information on the monthly behavior of water expansion, which is of interest and relevance to local authorities involved in water resource management tasks in the region, as well as to wetland conservationists concerned with the Ramsar site wetlands of Dongting Lake and to local researchers.}, language = {en} } @article{ForkuorUllmannGriesbeck2020, author = {Forkuor, Gerald and Ullmann, Tobias and Griesbeck, Mario}, title = {Mapping and monitoring small-scale mining activities in Ghana using Sentinel-1 time series (2015-2019)}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {6}, issn = {2072-4292}, doi = {10.3390/rs12060911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203204}, year = {2020}, abstract = {Illegal small-scale mining (galamsey) in South-Western Ghana has grown tremendously in the last decade and caused significant environmental degradation. Excessive cloud cover in the area has limited the use of optical remote sensing data to map and monitor the extent of these activities. This study investigated the use of annual time-series Sentinel-1 data to map and monitor illegal mining activities along major rivers in South-Western Ghana between 2015 and 2019. A change detection approach, based on three time-series features — minimum, mean, maximum — was used to compute a backscatter threshold value suitable to identify/detect mining-induced land cover changes in the study area. Compared to the mean and maximum, the minimum time-series feature (in both VH and VV polarization) was found to be more sensitive to changes in backscattering within the period of investigation. Our approach permitted the detection of new illegal mining areas on an annual basis. A backscatter threshold value of +1.65 dB was found suitable for detecting illegal mining activities in the study area. Application of this threshold revealed illegal mining area extents of 102 km\(^2\), 60 km\(^2\) and 33 km\(^2\) for periods 2015/2016-2016/2017, 2016/2017-2017/2018 and 2017/2018-2018/2019, respectively. The observed decreasing trend in new illegal mining areas suggests that efforts at stopping illegal mining yielded positive results in the period investigated. Despite the advantages of Synthetic Aperture Radar data in monitoring phenomena in cloud-prone areas, our analysis revealed that about 25\% of the Sentinel-1 data, mostly acquired in March and October (beginning and end of rainy season respectively), were unusable due to atmospheric effects from high intensity rainfall events. Further investigation in other geographies and climatic regions is needed to ascertain the susceptibility of Sentinel-1 data to atmospheric conditions.}, language = {en} } @article{HoeserBachoferKuenzer2020, author = {Hoeser, Thorsten and Bachofer, Felix and Kuenzer, Claudia}, title = {Object detection and image segmentation with deep learning on Earth Observation data: a review — part II: applications}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {18}, issn = {2072-4292}, doi = {10.3390/rs12183053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213152}, year = {2020}, abstract = {In Earth observation (EO), large-scale land-surface dynamics are traditionally analyzed by investigating aggregated classes. The increase in data with a very high spatial resolution enables investigations on a fine-grained feature level which can help us to better understand the dynamics of land surfaces by taking object dynamics into account. To extract fine-grained features and objects, the most popular deep-learning model for image analysis is commonly used: the convolutional neural network (CNN). In this review, we provide a comprehensive overview of the impact of deep learning on EO applications by reviewing 429 studies on image segmentation and object detection with CNNs. We extensively examine the spatial distribution of study sites, employed sensors, used datasets and CNN architectures, and give a thorough overview of applications in EO which used CNNs. Our main finding is that CNNs are in an advanced transition phase from computer vision to EO. Upon this, we argue that in the near future, investigations which analyze object dynamics with CNNs will have a significant impact on EO research. With a focus on EO applications in this Part II, we complete the methodological review provided in Part I.}, language = {en} } @article{HoeserKuenzer2020, author = {Hoeser, Thorsten and Kuenzer, Claudia}, title = {Object detection and image segmentation with deep learning on Earth observation data: a review-part I: evolution and recent trends}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs12101667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205918}, year = {2020}, abstract = {Deep learning (DL) has great influence on large parts of science and increasingly established itself as an adaptive method for new challenges in the field of Earth observation (EO). Nevertheless, the entry barriers for EO researchers are high due to the dense and rapidly developing field mainly driven by advances in computer vision (CV). To lower the barriers for researchers in EO, this review gives an overview of the evolution of DL with a focus on image segmentation and object detection in convolutional neural networks (CNN). The survey starts in 2012, when a CNN set new standards in image recognition, and lasts until late 2019. Thereby, we highlight the connections between the most important CNN architectures and cornerstones coming from CV in order to alleviate the evaluation of modern DL models. Furthermore, we briefly outline the evolution of the most popular DL frameworks and provide a summary of datasets in EO. By discussing well performing DL architectures on these datasets as well as reflecting on advances made in CV and their impact on future research in EO, we narrow the gap between the reviewed, theoretical concepts from CV and practical application in EO.}, language = {en} } @article{HeinemannSiegmannThonfeldetal.2020, author = {Heinemann, Sascha and Siegmann, Bastian and Thonfeld, Frank and Muro, Javier and Jedmowski, Christoph and Kemna, Andreas and Kraska, Thorsten and Muller, Onno and Schultz, Johannes and Udelhoven, Thomas and Wilke, Norman and Rascher, Uwe}, title = {Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203557}, year = {2020}, abstract = {Land surface temperature (LST) is a fundamental parameter within the system of the Earth's surface and atmosphere, which can be used to describe the inherent physical processes of energy and water exchange. The need for LST has been increasingly recognised in agriculture, as it affects the growth phases of crops and crop yields. However, challenges in overcoming the large discrepancies between the retrieved LST and ground truth data still exist. Precise LST measurement depends mainly on accurately deriving the surface emissivity, which is very dynamic due to changing states of land cover and plant development. In this study, we present an LST retrieval algorithm for the combined use of multispectral optical and thermal UAV images, which has been optimised for operational applications in agriculture to map the heterogeneous and diverse agricultural crop systems of a research campus in Germany (April 2018). We constrain the emissivity using certain NDVI thresholds to distinguish different land surface types. The algorithm includes atmospheric corrections and environmental thermal emissions to minimise the uncertainties. In the analysis, we emphasise that the omission of crucial meteorological parameters and inaccurately determined emissivities can lead to a considerably underestimated LST; however, if the emissivity is underestimated, the LST can be overestimated. The retrieved LST is validated by reference temperatures from nearby ponds and weather stations. The validation of the thermal measurements indicates a mean absolute error of about 0.5 K. The novelty of the dual sensor system is that it simultaneously captures highly spatially resolved optical and thermal images, in order to construct the precise LST ortho-mosaics required to monitor plant diseases and drought stress and validate airborne and satellite data.}, language = {en} } @article{LatifiHeurich2019, author = {Latifi, Hooman and Heurich, Marco}, title = {Multi-scale remote sensing-assisted forest inventory: a glimpse of the state-of-the-art and future prospects}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {11}, issn = {2072-4292}, doi = {10.3390/rs11111260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197358}, year = {2019}, abstract = {Advances in remote inventory and analysis of forest resources during the last decade have reached a level to be now considered as a crucial complement, if not a surrogate, to the long-existing field-based methods. This is mostly reflected in not only the use of multiple-band new active and passive remote sensing data for forest inventory, but also in the methodic and algorithmic developments and/or adoptions that aim at maximizing the predictive or calibration performances, thereby minimizing both random and systematic errors, in particular for multi-scale spatial domains. With this in mind, this editorial note wraps up the recently-published Remote Sensing special issue "Remote Sensing-Based Forest Inventories from Landscape to Global Scale", which hosted a set of state-of-the-art experiments on remotely sensed inventory of forest resources conducted by a number of prominent researchers worldwide.}, language = {en} } @article{HolzwarthThonfeldAbdullahietal.2020, author = {Holzwarth, Stefanie and Thonfeld, Frank and Abdullahi, Sahra and Asam, Sarah and Da Ponte Canova, Emmanuel and Gessner, Ursula and Huth, Juliane and Kraus, Tanja and Leutner, Benjamin and Kuenzer, Claudia}, title = {Earth Observation based monitoring of forests in Germany: a review}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs12213570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216334}, year = {2020}, abstract = {Forests in Germany cover around 11.4 million hectares and, thus, a share of 32\% of Germany's surface area. Therefore, forests shape the character of the country's cultural landscape. Germany's forests fulfil a variety of functions for nature and society, and also play an important role in the context of climate levelling. Climate change, manifested via rising temperatures and current weather extremes, has a negative impact on the health and development of forests. Within the last five years, severe storms, extreme drought, and heat waves, and the subsequent mass reproduction of bark beetles have all seriously affected Germany's forests. Facing the current dramatic extent of forest damage and the emerging long-term consequences, the effort to preserve forests in Germany, along with their diversity and productivity, is an indispensable task for the government. Several German ministries have and plan to initiate measures supporting forest health. Quantitative data is one means for sound decision-making to ensure the monitoring of the forest and to improve the monitoring of forest damage. In addition to existing forest monitoring systems, such as the federal forest inventory, the national crown condition survey, and the national forest soil inventory, systematic surveys of forest condition and vulnerability at the national scale can be expanded with the help of a satellite-based earth observation. In this review, we analysed and categorized all research studies published in the last 20 years that focus on the remote sensing of forests in Germany. For this study, 166 citation indexed research publications have been thoroughly analysed with respect to publication frequency, location of studies undertaken, spatial and temporal scale, coverage of the studies, satellite sensors employed, thematic foci of the studies, and overall outcomes, allowing us to identify major research and geoinformation product gaps.}, language = {en} } @article{HaunertWolff2017, author = {Haunert, Jan-Henrik and Wolff, Alexander}, title = {Beyond maximum independent set: an extended integer programming formulation for point labeling}, series = {ISPRS International Journal of Geo-Information}, volume = {6}, journal = {ISPRS International Journal of Geo-Information}, number = {11}, doi = {10.3390/ijgi6110342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158960}, pages = {342}, year = {2017}, abstract = {Map labeling is a classical problem of cartography that has frequently been approached by combinatorial optimization. Given a set of features in a map and for each feature a set of label candidates, a common problem is to select an independent set of labels (that is, a labeling without label-label intersections) that contains as many labels as possible and at most one label for each feature. To obtain solutions of high cartographic quality, the labels can be weighted and one can maximize the total weight (rather than the number) of the selected labels. We argue, however, that when maximizing the weight of the labeling, the influences of labels on other labels are insufficiently addressed. Furthermore, in a maximum-weight labeling, the labels tend to be densely packed and thus the map background can be occluded too much. We propose extensions of an existing model to overcome these limitations. Since even without our extensions the problem is NP-hard, we cannot hope for an efficient exact algorithm for the problem. Therefore, we present a formalization of our model as an integer linear program (ILP). This allows us to compute optimal solutions in reasonable time, which we demonstrate both for randomly generated point sets and an existing data set of cities. Moreover, a relaxation of our ILP allows for a simple and efficient heuristic, which yielded near-optimal solutions for our instances.}, language = {en} } @article{AsamGessnerAlmengorGonzalezetal.2022, author = {Asam, Sarah and Gessner, Ursula and Almengor Gonz{\´a}lez, Roger and Wenzl, Martina and Kriese, Jennifer and Kuenzer, Claudia}, title = {Mapping crop types of Germany by combining temporal statistical metrics of Sentinel-1 and Sentinel-2 time series with LPIS data}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {13}, issn = {2072-4292}, doi = {10.3390/rs14132981}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278969}, year = {2022}, abstract = {Nationwide and consistent information on agricultural land use forms an important basis for sustainable land management maintaining food security, (agro)biodiversity, and soil fertility, especially as German agriculture has shown high vulnerability to climate change. Sentinel-1 and Sentinel-2 satellite data of the Copernicus program offer time series with temporal, spatial, radiometric, and spectral characteristics that have great potential for mapping and monitoring agricultural crops. This paper presents an approach which synergistically uses these multispectral and Synthetic Aperture Radar (SAR) time series for the classification of 17 crop classes at 10 m spatial resolution for Germany in the year 2018. Input data for the Random Forest (RF) classification are monthly statistics of Sentinel-1 and Sentinel-2 time series. This approach reduces the amount of input data and pre-processing steps while retaining phenological information, which is crucial for crop type discrimination. For training and validation, Land Parcel Identification System (LPIS) data were available covering 15 of the 16 German Federal States. An overall map accuracy of 75.5\% was achieved, with class-specific F1-scores above 80\% for winter wheat, maize, sugar beet, and rapeseed. By combining optical and SAR data, overall accuracies could be increased by 6\% and 9\%, respectively, compared to single sensor approaches. While no increase in overall accuracy could be achieved by stratifying the classification in natural landscape regions, the class-wise accuracies for all but the cereal classes could be improved, on average, by 7\%. In comparison to census data, the crop areas could be approximated well with, on average, only 1\% of deviation in class-specific acreages. Using this streamlined approach, similar accuracies for the most widespread crop types as well as for smaller permanent crop classes were reached as in other Germany-wide crop type studies, indicating its potential for repeated nationwide crop type mapping.}, language = {en} } @article{WehnerHuchlerFritz2022, author = {Wehner, Helena and Huchler, Katharina and Fritz, Johannes}, title = {Quantification of foraging areas for the Northern Bald Ibis (Geronticus eremita) in the northern Alpine foothills: a random forest model fitted with optical and actively sensed earth observation data}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {4}, issn = {2072-4292}, doi = {10.3390/rs14041015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262245}, year = {2022}, abstract = {The Northern Bald Ibis (Geronticus eremita, NBI) is an endangered migratory species, which went extinct in Europe in the 17th century. Currently, a translocation project in the frame of the European LIFE program is carried out, to reintroduce a migratory population with breeding colonies in the northern and southern Alpine foothills and a common wintering area in southern Tuscany. The population meanwhile consists of about 200 individuals, with about 90\% of them carrying a GPS device on their back. We used biologging data from 2021 to model the habitat suitability for the species in the northern Alpine foothills. To set up a species distribution model, indices describing environmental conditions were calculated from satellite images of Landsat-8, and in addition to the well-proven use of optical remote sensing data, we also included Sentinel-1 actively sensed observation data, as well as climate and urbanization data. A random forest model was fitted on NBI GPS positions, which we used to identify regions with high predicted foraging suitability within the northern Alpine foothills. The model resulted in 84.5\% overall accuracy. Elevation and slope had the highest predictive power, followed by grass cover and VV intensity of Sentinel-1 radar data. The map resulting from the model predicts the highest foraging suitability for valley floors, especially of Inn, Rhine, and Salzach-Valley as well as flatlands, like the Swiss Plateau and the agricultural areas surrounding Lake Constance. Areas with a high suitability index largely overlap with known historic breeding sites. This is particularly noteworthy because the model only refers to foraging habitats without considering the availability of suitable breeding cliffs. Detailed analyses identify the transition zone from extensive grassland management to intensive arable farming as the northern range limit. The modeling outcome allows for defining suitable areas for further translocation and management measures in the frame of the European NBI reintroduction program. Although required in the international IUCN translocation guidelines, the use of models in the context of translocation projects is still not common and in the case of the Northern Bald Ibis not considered in the present Single Species Action Plan of the African-Eurasian Migratory Water bird Agreement. Our species distribution model represents a contemporary snapshot, but sustainability is essential for conservation planning, especially in times of climate change. In this regard, a further model could be optimized by investigating sustainable land use, temporal dynamics, and climate change scenarios.}, language = {en} }