@article{MayrKleinRutzingeretal.2021, author = {Mayr, Stefan and Klein, Igor and Rutzinger, Martin and Kuenzer, Claudia}, title = {Determining temporal uncertainty of a global inland surface water time series}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {17}, issn = {2072-4292}, doi = {10.3390/rs13173454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245234}, year = {2021}, abstract = {Earth observation time series are well suited to monitor global surface dynamics. However, data products that are aimed at assessing large-area dynamics with a high temporal resolution often face various error sources (e.g., retrieval errors, sampling errors) in their acquisition chain. Addressing uncertainties in a spatiotemporal consistent manner is challenging, as extensive high-quality validation data is typically scarce. Here we propose a new method that utilizes time series inherent information to assess the temporal interpolation uncertainty of time series datasets. For this, we utilized data from the DLR-DFD Global WaterPack (GWP), which provides daily information on global inland surface water. As the time series is primarily based on optical MODIS (Moderate Resolution Imaging Spectroradiometer) images, the requirement of data gap interpolation due to clouds constitutes the main uncertainty source of the product. With a focus on different temporal and spatial characteristics of surface water dynamics, seven auxiliary layers were derived. Each layer provides probability and reliability estimates regarding water observations at pixel-level. This enables the quantification of uncertainty corresponding to the full spatiotemporal range of the product. Furthermore, the ability of temporal layers to approximate unknown pixel states was evaluated for stratified artificial gaps, which were introduced into the original time series of four climatologic diverse test regions. Results show that uncertainty is quantified accurately (>90\%), consequently enhancing the product's quality with respect to its use for modeling and the geoscientific community.}, language = {en} } @article{WeiBlaschke2018, author = {Wei, Chunzhu and Blaschke, Thomas}, title = {Pixel-wise vs. object-based impervious surface analysis from remote sensing: correlations with land surface temperature and population density}, series = {Urban Science}, volume = {2}, journal = {Urban Science}, number = {1}, issn = {2413-8851}, doi = {10.3390/urbansci2010002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197829}, pages = {2}, year = {2018}, abstract = {Impervious surface areas (ISA) are heavily influenced by urban structure and related structural features. We examined the effects of object-based impervious surface spatial pattern analysis on land surface temperature and population density in Guangzhou, China, in comparison to classic per-pixel analyses. An object-based support vector machine (SVM) and a linear spectral mixture analysis (LSMA) were integrated to estimate ISA fraction using images from the Chinese HJ-1B satellite for 2009 to 2011. The results revealed that the integrated object-based SVM-LSMA algorithm outperformed the traditional pixel-wise LSMA algorithm in classifying ISA fraction. More specifically, the object-based ISA spatial patterns extracted were more suitable than pixel-wise patterns for urban heat island (UHI) studies, in which the UHI areas (landscape surface temperature >37 °C) generally feature high ISA fraction values (ISA fraction >50\%). In addition, the object-based spatial patterns enable us to quantify the relationship of ISA with population density (correlation coefficient >0.2 in general), with global human settlement density (correlation coefficient >0.2), and with night-time light map (correlation coefficient >0.4), and, whereas pixel-wise ISA did not yield significant correlations. These results indicate that object-based spatial patterns have a high potential for UHI detection and urbanization monitoring. Planning measures that aim to reduce the urbanization impacts and UHI intensities can be better supported.}, language = {en} } @article{UereyenKuenzer2019, author = {Uereyen, Soner and Kuenzer, Claudia}, title = {A review of earth observation-based analyses for major river basins}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {24}, issn = {2072-4292}, doi = {10.3390/rs11242951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193849}, pages = {2951}, year = {2019}, abstract = {Regardless of political boundaries, river basins are a functional unit of the Earth's land surface and provide an abundance of resources for the environment and humans. They supply livelihoods supported by the typical characteristics of large river basins, such as the provision of freshwater, irrigation water, and transport opportunities. At the same time, they are impacted i.e., by human-induced environmental changes, boundary conflicts, and upstream-downstream inequalities. In the framework of water resource management, monitoring of river basins is therefore of high importance, in particular for researchers, stake-holders and decision-makers. However, land surface and surface water properties of many major river basins remain largely unmonitored at basin scale. Several inventories exist, yet consistent spatial databases describing the status of major river basins at global scale are lacking. Here, Earth observation (EO) is a potential source of spatial information providing large-scale data on the status of land surface properties. This review provides a comprehensive overview of existing research articles analyzing major river basins primarily using EO. Furthermore, this review proposes to exploit EO data together with relevant open global-scale geodata to establish a database and to enable consistent spatial analyses and evaluate past and current states of major river basins.}, language = {en} } @article{NillUllmannKneiseletal.2019, author = {Nill, Leon and Ullmann, Tobias and Kneisel, Christof and Sobiech-Wolf, Jennifer and Baumhauer, Roland}, title = {Assessing Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral Indices in the Arctic Mackenzie Delta Region between 1985 and 2018}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs11192329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193301}, year = {2019}, abstract = {Air temperatures in the Arctic have increased substantially over the last decades, which has extensively altered the properties of the land surface. Capturing the state and dynamics of Land Surface Temperatures (LSTs) at high spatial detail is of high interest as LST is dependent on a variety of surficial properties and characterizes the land-atmosphere exchange of energy. Accordingly, this study analyses the influence of different physical surface properties on the long-term mean of the summer LST in the Arctic Mackenzie Delta Region (MDR) using Landsat 30 m-resolution imagery between 1985 and 2018 by taking advantage of the cloud computing capabilities of the Google Earth Engine. Multispectral indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Tasseled Cap greenness (TCG), brightness (TCB), and wetness (TCW) as well as topographic features derived from the TanDEM-X digital elevation model are used in correlation and multiple linear regression analyses to reveal their influence on the LST. Furthermore, surface alteration trends of the LST, NDVI, and NDWI are revealed using the Theil-Sen (T-S) regression method. The results indicate that the mean summer LST appears to be mostly influenced by the topographic exposition as well as the prevalent moisture regime where higher evapotranspiration rates increase the latent heat flux and cause a cooling of the surface, as the variance is best explained by the TCW and northness of the terrain. However, fairly diverse model outcomes for different regions of the MDR (R2 from 0.31 to 0.74 and RMSE from 0.51 °C to 1.73 °C) highlight the heterogeneity of the landscape in terms of influential factors and suggests accounting for a broad spectrum of different factors when modeling mean LSTs. The T-S analysis revealed large-scale wetting and greening trends with a mean decadal increase of the NDVI/NDWI of approximately +0.03 between 1985 and 2018, which was mostly accompanied by a cooling of the land surface given the inverse relationship between mean LSTs and vegetation and moisture conditions. Disturbance through wildfires intensifies the surface alterations locally and lead to significantly cooler LSTs in the long-term compared to the undisturbed surroundings.}, language = {en} } @article{AsareKyeiForkuorVenus2015, author = {Asare-Kyei, Daniel and Forkuor, Gerald and Venus, Valentijn}, title = {Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches}, series = {Water}, volume = {7}, journal = {Water}, doi = {10.3390/w7073531}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151581}, pages = {3531 -- 3564}, year = {2015}, abstract = {Robust risk assessment requires accurate flood intensity area mapping to allow for the identification of populations and elements at risk. However, available flood maps in West Africa lack spatial variability while global datasets have resolutions too coarse to be relevant for local scale risk assessment. Consequently, local disaster managers are forced to use traditional methods such as watermarks on buildings and media reports to identify flood hazard areas. In this study, remote sensing and Geographic Information System (GIS) techniques were combined with hydrological and statistical models to delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves estimating peak runoff concentrations at different elevations and then applying statistical methods to develop a Flood Hazard Index (FHI). Results show that about half of the study areas fall into high intensity flood zones. Empirical validation using statistical confusion matrix and the principles of Participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77\% to 81\%. This was supported with local expert knowledge which accurately classified 79\% of communities deemed to be highly susceptible to flood hazard. The results will assist disaster managers to reduce the risk to flood disasters at the community level where risk outcomes are first materialized.}, language = {en} } @article{UllmannSauerbreyHoffmeisteretal.2019, author = {Ullmann, Tobias and Sauerbrey, Julia and Hoffmeister, Dirk and May, Simon Matthias and Baumhauer, Roland and Bubenzer, Olaf}, title = {Assessing Spatiotemporal Variations of Sentinel-1 InSAR Coherence at Different Time Scales over the Atacama Desert (Chile) between 2015 and 2018}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {24}, issn = {2072-4292}, doi = {10.3390/rs11242960}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193836}, pages = {2960}, year = {2019}, abstract = {This study investigates synthetic aperture radar (SAR) time series of the Sentinel-1 mission acquired over the Atacama Desert, Chile, between March 2015 and December 2018. The contribution analyzes temporal and spatial variations of Sentinel-1 interferometric SAR (InSAR) coherence and exemplarily illustrates factors that are responsible for observed signal differences. The analyses are based on long temporal baselines (365-1090 days) and temporally dense time series constructed with short temporal baselines (12-24 days). Results are compared to multispectral data of Sentinel-2, morphometric features of the digital elevation model (DEM) TanDEM-X WorldDEM™, and to a detailed governmental geographic information system (GIS) dataset of the local hydrography. Sentinel-1 datasets are suited for generating extensive, nearly seamless InSAR coherence mosaics covering the entire Atacama Desert (>450 × 1100 km) at a spatial resolution of 20 × 20 meter per pixel. Temporal baselines over several years lead only to very minor decorrelation, indicating a very high signal stability of C-Band in this region, especially in the hyperarid uplands between the Coastal Cordillera and the Central Depression. Signal decorrelation was associated with certain types of surface cover (e.g., water or aeolian deposits) or with actual surface dynamics (e.g., anthropogenic disturbance (mining) or fluvial activity and overland flow). Strong rainfall events and fluvial activity in the periods 2015 to 2016 and 2017 to 2018 caused spatial patterns with significant signal decorrelation; observed linear coherence anomalies matched the reference channel network and indicated actual episodic and sporadic discharge events. In the period 2015-2016, area-wide loss of coherence appeared as strip-like patterns of more than 80 km length that matched the prevailing wind direction. These anomalies, and others observed in that period and in the period 2017-2018, were interpreted to be caused by overland flow of high magnitude, as their spatial location matched well with documented heavy rainfall events that showed cumulative precipitation amounts of more than 20 mm.}, language = {en} } @article{BaumhoerDietzKneiseletal.2019, author = {Baumhoer, Celia A. and Dietz, Andreas J. and Kneisel, C. and Kuenzer, C.}, title = {Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs11212529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193150}, pages = {2529}, year = {2019}, abstract = {Sea level rise contribution from the Antarctic ice sheet is influenced by changes in glacier and ice shelf front position. Still, little is known about seasonal glacier and ice shelf front fluctuations as the manual delineation of calving fronts from remote sensing imagery is very time-consuming. The major challenge of automatic calving front extraction is the low contrast between floating glacier and ice shelf fronts and the surrounding sea ice. Additionally, in previous decades, remote sensing imagery over the often cloud-covered Antarctic coastline was limited. Nowadays, an abundance of Sentinel-1 imagery over the Antarctic coastline exists and could be used for tracking glacier and ice shelf front movement. To exploit the available Sentinel-1 data, we developed a processing chain allowing automatic extraction of the Antarctic coastline from Seninel-1 imagery and the creation of dense time series to assess calving front change. The core of the proposed workflow is a modified version of the deep learning architecture U-Net. This convolutional neural network (CNN) performs a semantic segmentation on dual-pol Sentinel-1 data and the Antarctic TanDEM-X digital elevation model (DEM). The proposed method is tested for four training and test areas along the Antarctic coastline. The automatically extracted fronts deviate on average 78 m in training and 108 m test areas. Spatial and temporal transferability is demonstrated on an automatically extracted 15-month time series along the Getz Ice Shelf. Between May 2017 and July 2018, the fronts along the Getz Ice Shelf show mostly an advancing tendency with the fastest moving front of DeVicq Glacier with 726 ± 20 m/yr.}, language = {en} } @article{PhilippLevick2019, author = {Philipp, Marius B. and Levick, Shaun R.}, title = {Exploring the potential of C-Band SAR in contributing to burn severity mapping in tropical savanna}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs12010049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193789}, pages = {49}, year = {2019}, abstract = {The ability to map burn severity and to understand how it varies as a function of time of year and return frequency is an important tool for landscape management and carbon accounting in tropical savannas. Different indices based on optical satellite imagery are typically used for mapping fire scars and for estimating burn severity. However, cloud cover is a major limitation for analyses using optical data over tropical landscapes. To address this pitfall, we explored the suitability of C-band Synthetic Aperture Radar (SAR) data for detecting vegetation response to fire, using experimental fires in northern Australia. Pre- and post-fire results from Sentinel-1 C-band backscatter intensity data were compared to those of optical satellite imagery and were corroborated against structural changes on the ground that we documented through terrestrial laser scanning (TLS). Sentinel-1 C-band backscatter (VH) proved sensitive to the structural changes imparted by fire and was correlated with the Normalised Burn Ratio (NBR) derived from Sentinel-2 optical data. Our results suggest that C-band SAR holds potential to inform the mapping of burn severity in savannas, but further research is required over larger spatial scales and across a broader spectrum of fire regime conditions before automated products can be developed. Combining both Sentinel-1 SAR and Sentinel-2 multi-spectral data will likely yield the best results for mapping burn severity under a range of weather conditions.}, language = {en} } @article{SognoKleinKuenzer2022, author = {Sogno, Patrick and Klein, Igor and Kuenzer, Claudia}, title = {Remote sensing of surface water dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs14102475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275274}, year = {2022}, abstract = {Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution.}, language = {en} } @article{LappeUllmannBachofer2022, author = {Lappe, Ronja and Ullmann, Tobias and Bachofer, Felix}, title = {State of the Vietnamese coast — assessing three decades (1986 to 2021) of coastline dynamics using the Landsat archive}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs14102476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275281}, year = {2022}, abstract = {Vietnam's 3260 km coastline is densely populated, experiences rapid urban and economic growth, and faces at the same time a high risk of coastal hazards. Satellite archives provide a free and powerful opportunity for long-term area-wide monitoring of the coastal zone. This paper presents an automated analysis of coastline dynamics from 1986 to 2021 for Vietnam's entire coastal zone using the Landsat archive. The proposed method is implemented within the cloud-computing platform Google Earth Engine to only involve publicly and globally available datasets and tools. We generated annual coastline composites representing the mean-high water level and extracted sub-pixel coastlines. We further quantified coastline change rates along shore-perpendicular transects, revealing that half of Vietnam's coast did not experience significant change, while the remaining half is classified as erosional (27.7\%) and accretional (27.1\%). A hotspot analysis shows that coastal segments with the highest change rates are concentrated in the low-lying deltas of the Mekong River in the south and the Red River in the north. Hotspots with the highest accretion rates of up to +47 m/year are mainly associated with the construction of artificial coastlines, while hotspots with the highest erosion rates of -28 m/year may be related to natural sediment redistribution and human activity.}, language = {en} }