@phdthesis{Kiesel2012, author = {Kiesel, Maximilian Ludwig}, title = {Unconventional Superconductivity in Cuprates, Cobaltates and Graphene: What is Universal and what is Material-Dependent in strongly versus weakly Correlated Materials?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Eine allgemeing{\"u}ltige Theorie f{\"u}r alle unterschiedlichen Arten von unkonventionellen Supraleitern ist immer noch eine der ungel{\"o}sten Kernfragen der Festk{\"o}rperphysik. Momentan ist es nicht einmal bewiesen, dass es {\"u}berhaupt einen gemeinsamen grundlegenden Mechanismus gibt, sondern es m{\"u}ssen vielleicht mehrere verschiedene Ursachen f{\"u}r unkonventionelle Supraleitung ber{\"u}cksichtigt werden. Der Einfluss der Elektron-Phonon-Wechselwirkung ist dabei noch nicht abschließend gekl{\"a}rt. In dieser Dissertation wird ein rein elektronischer Paarungsmechanismus untersucht, in welchem die Paarung durch Spin-Fluktuationen vermittelt wird, was nach dem aktuellen Stand der Forschung auf dem Gebiet der unkonventionellen Supraleiter am wahrscheinlichsten ist. Der Schwerpunkt liegt dabei auf der Bestimmung von Material-unabh{\"a}ngigen Eigenschaften der supraleitenden Phase. Diese k{\"o}nnen durch eine Auswahl sehr unterschiedlicher Systeme herausgearbeitet werden. Eine Untersuchung der Phasendiagramme gibt außerdem Auskunft dar{\"u}ber, welche konkurrierenden Quantenfluktuationen den supraleitenden Zustand abschw{\"a}chen oder verst{\"a}rken. F{\"u}r diese Analyse von sehr unterschiedlichen supraleitenden Materialien ist der Einsatz einer einzelnen numerischen L{\"o}sungsmethode unzureichend. F{\"u}r diese Dissertation ist dies aber kein Nachteil, sondern vielmehr ein großer Vorteil, da der Einsatz verschiedener Techniken die Abh{\"a}ngigkeit der Ergebnisse von der verwendeten Numerik reduziert und dadurch der grundlegende Mechanismus besser untersucht werden kann. Im speziellen werden in dieser Dissertation die Kuprate mit der Variationellen Clustern{\"a}herung ausgewertet, weil die Elektronen hier eine starke Wechselwirkung untereinander besitzen. Besonders die Frage eines m{\"o}glichen Klebstoffs f{\"u}r die Cooper-Paare wird ausf{\"u}hrlich diskutiert, auch mit einer Unterscheidung in retardierte und nicht-retardierte Betr{\"a}ge. Den Kupraten werden das Kobaltat NaCoO sowie Graphen gegen{\"u}bergestellt. Diese Materialien sind jedoch schwach korrelierte Systeme, so dass hier die Funkionelle Renormierungsgruppe als numerisches Grundger{\"u}st dient. Die Ergebnisse sind reichhaltige Phasendiagramme mit vielen verschiedenen langreichweitigen Ordnungen, wie zum Beispiel d+id-wellenartige Supraleitung. Diese bricht die Zeitumkehr-Symmetrie und besitzt eine vollst{\"a}ndige Bandl{\"u}cke, welche im Falle von NaCoO jedoch eine stark Dotierungs-abh{\"a}ngige Anisotropie aufweist. Als letztes wird das Kagome-Gitter allgemein diskutiert, ohne ein konkretes Material zu beschreiben. Hier hat eine destruktive Interferenz zwischen den Elektronen auf verschiedenen Untergittern drastische Auswirkungen auf die Instabilit{\"a}ten der Fermi-Fl{\"a}che, so dass die {\"u}bliche Spin-Dichte-Welle und die damit verbundene d+id-wellenartige Supraleitung unterdr{\"u}ckt werden. Dadurch treten ungew{\"o}hnliche Spin- und Ladungsdichte-Ordnungen sowie eine nematische Pomeranchuck Instabilit{\"a}t hervor. Zusammengefasst bietet diese Dissertation einen Einblick in unterschiedliche Materialklassen von unkonventionellen Supraleitern. Dadurch wird es m{\"o}glich, die Material-spezifischen Eigenschaften von den universellen zu trennen.}, subject = {Supraleitung}, language = {en} } @phdthesis{Platt2012, author = {Platt, Christian}, title = {A Common Thread in Unconventional Superconductivity: The Functional Renormalization Group in Multi-Band Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die supraleitenden Eigenschaften von komplexen Materialsystemen, wie den erst k{\"u}rzlich entdeckten Eisen-Pniktiden oder den Strontium-Ruthenaten, sind oftmals durch das Zusammenspiel vieler elektronischer Orbitale bestimmt. Um die Supraleitung in derartigen Systemen besser zu verstehen, entwickeln wir in dieser Arbeit eine Multi-Orbital-Implementierung der funktionalen Renormierungsgruppe und untersuchen die Elektronenpaarung in verschiedenen charakteristischen Materialverbindungen. In den Eisen-Pniktiden finden wir hierbei mehrere Spinfluktuationskan{\"a}le, die eine Elektronenpaarung hervorrufen, sofern die Paarwellenfunktion einen Vorzeichenwechsel zwischen den verschiedenen genesteten Bereichen der Fermifl{\"a}che aufweist. Abh{\"a}ngig von den spezifischen Materialeigenschaften, wie der Dotierung oder der Position des Pniktogenatoms, f{\"u}hren diese Spinfluktuationen dann zu \$s_{\pm}\$-wellenartiger Paarung mit durchg{\"a}ngiger Energiel{\"u}cke oder mit Knoten auf der Fermifl{\"a}che. In manchen F{\"a}llen wird zudem auch \$d\$-wellenartige Paarung induziert, die in der N{\"a}he des {\"U}bergangs zur \$s_{\pm}\$-Symmetrie einen gemischten \$(s+id)\$-Zustand mit gebrochener Zeitinversionssymmetrie aufweist. Diese neuartige Phase zeigt faszinierende Eigenschaften, wie zum Beispiel das spontane Entstehen von Suprastr{\"o}men am Probenrand und um nichtmagnetische St{\"o}rstellen. Auf Grund der durchg{\"a}ngigen Energiel{\"u}cke ist dieser \$(s+id)\$-Zustand energetisch beg{\"u}nstigt. Im Folgenden untersuchen wir zudem auch die elektronischen Instabilit{\"a}ten eines weiteren außergew{\"o}hnlichen Materials -- dotiertes Graphen. Diese rein zweidimensionale Kohlenstoffverbindung ist schon seit mehreren Jahren im Fokus der Festk{\"o}rperforschung und wurde mittlerweile auch durch neuartige experimentelle Verfahren dotiert, ohne die zugrundeliegende hexagonale Gittersturktur merklich zu st{\"o}ren. Eine theoretische Beschreibung dieses Systems erfordert die Ber{\"u}cksichtigung zweier nicht-equivalenter Gitterpl{\"a}tze, was wiederum effektiv als Zwei-Orbital-System aufgefasst werden kann. Durch die besondere Symmetrie der hexagonalen Gitterstruktur sind beide \$d\$-wellenartigen Paarungskan{\"a}le entartet und ahnlich der \$(s+id)\$-Paarung in den Pniktiden finden wir hier eine chirale \$(d+id)\$-Paarung in einem weiten Dotierungsbereich um van-Hove F{\"u}llung. Des Weiteren identifizieren wir Spin-Triplet-Paarung und eine exotische Form der Spindichtewelle, welche beide durch leichte Ver{\"a}nderung der langreichweitigen H{\"u}pfamplituden und Wechselwirkungensparameter realisiert werden k{\"o}nnen. Als drittes Beispiel betrachten wir die Supraleitung in dem Strontium-Ruthenat Sr\$_2\$RuO\$_4\$. Die Besonderheit dieser Materialverbindung liegt in der m{\"o}glichen Realisierung einer chiralen Spin-Triplet Paarung, die wiederum faszinierende Eigenschaften wie die Existenz von halbganzzahligen Flussvortizes mit nicht-Abelscher Vertauschungsstatistik aufweisen w{\"u}rde. Mittels eines mikroskopischen Drei-Orbital-Modells und der Ber{\"u}cksichtigung von Spin-Bahn-Kopplung finden wir hierbei, dass moderate ferromagnetische Spinfluktuationen immer noch ausreichen, um diesen speziellen Paarungszustand anzutreiben. Die berechnete Energiel{\"u}cke zeigt im Weiteren sehr starke Anisotropien auf dem \$d_{xy}\$-Orbital-dominierten Bereich der Fermifl{\"a}che und verschwindet nahezu vollst{\"a}ndig auf den anderen beiden Fermifl{\"a}chen.}, subject = {Supraleitung}, language = {en} }