@phdthesis{Renziehausen2014, author = {Renziehausen, Klaus}, title = {Wechselwirkung von Molek{\"u}len mit Laserpulsen: Untersuchungen zur numerischen Implementierung zeitabh{\"a}ngiger St{\"o}rungstheorie und zu Effekten der absoluten Phase von Laserpulsen beliebiger L{\"a}nge}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In dieser Dissertation wurden zwei Aspekte der Wechselwirkung von Laserpulsen mit Molek{\"u}len betrachtet: Erstens wurden numerische Algorithmen, die auf der zeitabh{\"a}ngigen St{\"o}rungstheorie basieren, zur Berechnung von quantenmechanischen Wellenfunktionen analysiert. Zweitens wurden Effekte der absoluten Phase (Carrier envelope phase = CEP) von Laserpulsen bei der Laseranregung molekularer Systeme analysiert. In den Analysen zum ersten Aspekt wurden zwei verschiedene Algorithmen - in dieser Arbeit als simple und improved algorithm bezeichnet - verwendet, und die Normabweichung von mit diesen Algorithmen berechneten Wellenfunktionen untersucht. Es konnte gezeigt werden, dass diese Normabweichung f{\"u}r beide Algorithmen in zwei unterschiedliche Beitr{\"a}ge zerlegt werden kann. Der erste Normabweichungsbeitrag tritt aufgrund der numerischen Diskretisierung der Zeit auf und verschwindet, wenn der Zeitschritt, der die Dauer der Intervalle f{\"u}r diese Diskretisierung angibt, gegen Null geht. Man kann den ersten Normabweichungsbeitrag mit exzellenter Genauigkeit berechnen und seine Eigenschaften, die sich f{\"u}r die beiden Algorithmen erheblich unterschieden, eingehend analysieren. Der zweite Normabweichungsbeitrag tritt dadurch auf, dass die zeitabh{\"a}ngige St{\"o}rungstheorie nicht normerhaltend ist, und geht daher gegen Null, wenn die St{\"o}rungsordnung gegen unendlich geht. Dieser zweite Beitrag ist außerdem in guter N{\"a}herung unabh{\"a}ngig vom Zeitschritt und f{\"u}r beide Algorithmen n{\"a}herungsweise gleich. Des Weiteren kann man das Verhalten des zweiten Normabweichungsbeitrags im Gegensatz zum ersten Beitrag nur qualitativ beschreiben. F{\"u}r die Analyse zum zweiten Themengebiet dieser Arbeit, den CEP-Effekten, wurde betrachtet, ob CEP-Effekte auch f{\"u}r Laserpulse beliebiger L{\"a}nge auftreten k{\"o}nnen. {\"U}ber eine analytische Betrachtung erkennt man, dass dies f{\"u}r ein Zweiniveausystem nur dann der Fall ist, wenn beide Zust{\"a}nde vor Beginn der Wechselwirkung des Systems mit dem Laserpuls besetzt sind. Man kann aus diesem Ergebnis folgern, dass f{\"u}r einen Laserpuls, der zwei elektronische Zust{\"a}nde eines Molek{\"u}ls {\"u}ber Einphotonen{\"u}berg{\"a}nge koppelt, in der Regel kein CEP-Effekt f{\"u}r beliebige L{\"a}ngen dieses Pulses auftritt. Der Grund daf{\"u}r ist, dass vor der Wechselwirkung eines molekularen Systems mit einem Laserpuls f{\"u}r dieses {\"u}blicherweise nur der elektronische Grundzustand besetzt ist. In dieser Arbeit wird gezeigt, dass dieses Problem durch ein spezielles Zweipulsschema f{\"u}r die Anregung eines molekularen Systems gel{\"o}st werden kann. F{\"u}r dieses Pulsschema wird ein erster Puls verwendet, der zeitlich so kurz ist, dass Wellenpakete in mehreren elektronischen Zust{\"a}nden angeregt werden. Der nachfolgende zweite Laserpuls ist spektral schmal, und seine zeitliche L{\"a}nge kann beliebig groß gew{\"a}hlt werden. Man erh{\"a}lt f{\"u}r dieses Pulsschema Observablen, die von der CEP des zweiten Pulses, aber nicht von der CEP des ersten Pulses abh{\"a}ngen; somit ist ein CEP-Effekt nachweisbar. Derartige Observablen sind geometrische Asymmetrien f{\"u}r Zerfallsprodukte von Photodissoziationsreaktionen. Insbesondere unterscheidet sich das hier vorgestellte Pulsschema von anderen Zweipulsschemata, f{\"u}r welche Observablen von der Differenz der CEPs beider Pulse abh{\"a}ngen, aber nicht von der CEP einer der beiden Pulse allein.}, subject = {St{\"o}rungstheorie}, language = {de} }