@article{WohlgemuthMiyazakiTsukadaetal.2017, author = {Wohlgemuth, Matthias and Miyazaki, Mitsuhiko and Tsukada, Kohei and Weiler, Martin and Dopfer, Otto and Fujii, Masaaki and Mitrić, Roland}, title = {Deciphering environment effects in peptide bond solvation dynamics by experiment and theory}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {33}, doi = {10.1039/C7CP03992A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159647}, pages = {22564-22572}, year = {2017}, abstract = {Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.}, language = {en} } @unpublished{WohlgemuthMiyazakiTsukadaetal.2017, author = {Wohlgemuth, Matthias and Miyazaki, Mitsuhiko and Tsukada, Kohei and Weiler, Martin and Dopfer, Otto and Fujii, Masaaki and Mitrić, Roland}, title = {Deciphering environment effects in peptide bond solvation dynamics by experiment and theory}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03992A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159483}, year = {2017}, abstract = {Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.}, language = {en} } @article{WohlgemuthMitric2016, author = {Wohlgemuth, Matthias and Mitric, Roland}, title = {Photochemical Chiral Symmetry Breaking in Alanine}, series = {Journal of Physical Chemistry A}, volume = {45}, journal = {Journal of Physical Chemistry A}, number = {120}, doi = {10.1021/acs.jpca.6b07611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158557}, pages = {8976-8982}, year = {2016}, abstract = {We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7\%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality.}, language = {en} } @phdthesis{Welz2020, author = {Welz, Eileen}, title = {Theoretical Investigations on Inorganic, Boron-containing Biradicals with a unique Structure}, doi = {10.25972/OPUS-20259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202598}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this work, biradical boron containing systems with various structures are investigated to reveal the dependency of the biradical character on the ligated carbene (NHC, CAAC) and the related steric demands of the substituents.}, subject = {Biradical}, language = {en} } @phdthesis{Weickert2023, author = {Weickert, Anastasia}, title = {Theoretische Untersuchungen zur Aufkl{\"a}rung der reversiblen Hemmung durch kovalente Inhibitoren der Enzyme Golgi-alpha-Mannosidase und Rhodesain}, doi = {10.25972/OPUS-32818}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328181}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Entwicklung maßgeschneiderter Proteinliganden ist ein integraler Bestandteil unterschiedlicher wissenschaftlicher Disziplinen, wie z.B. Wirkstoffentwicklung. Die vorliegende Arbeit befasst sich mit der reversiblen Inhibition in Form von kovalent gebundenen Enzym-Inhibitor-Komplexen der humanen Golgi-alpha-Mannosidase II (GM II) und der Cysteinprotease Rhodesain. Beide Enzyme sind erfolgversprechende Targets in der Bek{\"a}mpfung von zwei sehr unterschiedlichen Erkrankungen. Einerseits die Golgi-alpha-Mannosidase bei der Behandlung der Tumorprogression und andererseits die Cysteinprotease Rhodesain bei der Behandlung der Afrikanischen Schlafkrankheit. Die Arbeit an den zwei Enzymen unterteilt sich in zwei Teilprojekte. Die Entwicklung von maßgeschneiderten kovalent-reversiblen Inhibitoren f{\"u}r die genannten Enzyme wurde im Rahmen eines in-house entwickeltes Protokolls zwecks des rationalen Designs kovalenter Inhibitoren, durchgef{\"u}hrt. Dieses Protokoll basiert auf einer sich gegenseitig unterst{\"u}tzenden Zusammenarbeit zwischen Theorie und Experiment. Die vorliegende Arbeit befasst sich mit den theoretischen Untersuchungen mit Hilfe der quantenmechanischen (QM) als auch mit Hilfe der kombinierten quantenmechanisch/molek{\"u}lmechanischen (QM/MM) Methoden zu den genannten Enzymen. In einem ersten Schritt des Protokolls geht es um die Anwendung von Screeningverfahren. In einem Screening werden Leitstrukturen, zun{\"a}chst in L{\"o}sung (Schritt I), f{\"u}r eine weitere Untersuchung im Enzym (Schritt II) evaluiert. So k{\"o}nnen die Inhibitoren, f{\"u}r die experimentelle Mess- oder theoretische Dockingdaten vorhanden sind, als eine Leitstruktur betrachtet werden. Durch das Screening unter Verwendung der quantenmechanischen (QM-Modell) Methode kann eine Reihe von Inhibitoren nach einem sich konsistent ver{\"a}nderndem Muster erstellt werden und auf Bindungsparameter hin untersucht werden (Schritt I). Diese Parameter sind Reaktionsenergien und H{\"o}hen der Reaktionsbarriere einer Inhibitionsreaktion. Reaktionsenergien werden in dieser Betrachtung quantenmechanisch innerhalb der Born-Oppenheimer-(BO)-N{\"a}herung und im Rahmen des Konzeptes der Potentialhyperfl{\"a}chen (PES) als relative Energien zwischen den optimierten Geometrien der Produkte und der Edukte auf einer Potentialhyperfl{\"a}che f{\"u}r die Inhibitionsreaktion ermittelt. Die H{\"o}hen der Reaktionsbarrieren werden durch die relativen Energien zwischen den Geometrien der Edukte und der Zwischenstufen oder {\"U}bergangszust{\"a}nde abgesch{\"a}tzt. Unter Inhibitionsreaktion wird eine chemische Reaktion verstanden, bei der eine kovalente Bindung zwischen dem Inhibitormolek{\"u}l und den Aminos{\"a}uren in der aktiven Tasche eines Enzyms ausgebildet wird. F{\"u}r den Schritt I werden die Aminos{\"a}uren der aktiven Tasche durch kleine Molek{\"u}le, wie Essigs{\"a}ure und Methanthiol, angen{\"a}hert. Die kovalent-reversiblen Inhibitoren sollten in dieser Betrachtung nur leicht exotherme Reaktionen mit den relativen Energien im Bereich -5 bis -10 kcal/mol aufweisen. Der experimentelle Teil liefert w{\"a}hrenddessen die Synthese der neuen Inhibitoren und die Nachweise zur kovalenten Bindung mit Hilfe massenspektrometrischer Messungen (Schritt I). Die passenden Kandidaten aus dem ersten Schritt des Protokolls, d.h. Inhibitoren mit gew{\"u}nschten Bindungsparametern, werden durch die QM/MM-Berechnungen im Enzym (Schritt II) und durch die experimentellen Messungen an den Enzym-Inhibitor-Komplexen in Assays (Schritt II) analysiert. Die Untersuchungen f{\"u}r die Stufe II des Protokolls umfassen die Berechnungen der Reaktionsprofile und Minimumenergiereaktionspfade f{\"u}r die chemischen Reaktionen von Inhibitoren im Zielenzym. Ein Pfad minimaler potentieller Energie, der zwei Minima (hier Edukt und Produkt) verbindet, stellt ein Reaktionsprofil f{\"u}r eine chemische Reaktion dar. In der vorliegenden Arbeit wird dies auch als Minimumenergiepfad (MEP) bezeichnet. Der Letztere l{\"a}sst sich durch die Nudged Elastic Band (NEB)-Methode und mittels Potentialhyperfl{\"a}chen darstellen. Die Reversibilit{\"a}t der Inhibitoren wurde anhand der berechneten chemischen Reaktionen in Form von erstellten Reaktionsprofilen analysiert und diskutiert. Durch Protein-Ligand Docking (Schritt III) wird ein Screening von variierbaren Erkennungseinheiten der neuen Inhibitoren durchgef{\"u}hrt. Die Ergebnisse der Untersuchungen aus dem dritten Schritt liefern Hinweise zur Weiterentwicklung der ausgew{\"a}hlten Inhibitoren. Die letzte Stufe des in-house Protokolls besteht in der erneuten Untersuchung der optimierten Inhibitoren mit Hilfe von Theorie und Experiment (Schritt IV). Die theoretische Untersuchung anhand von QM/MM-Berechnungen {\"u}berpr{\"u}ft, ob die Inhibitionsreaktion der reaktiven Kopfgruppe nach der {\"A}nderung der Erkennungseinheit des Inhibitors weiterhin effektiv und nach dem gleichen Mechanismus mit der aktiven Seite des Enzyms ablaufen kann. Die experimentelle Untersuchung liefert, {\"a}hnlich wie im Schritt II, die messbaren Ergebnisse der Inhibition in Hinblick auf die Bindungseigenschaften und die Entstehung der Nebenprodukte. Die Untersuchungen am System Mannosidase GM II wurden in Zusammenarbeit mit den Arbeitskreisen von Prof.Dr. J. Seibel und Prof.Dr. T. Schirmeister durchgef{\"u}hrt. Die Leitstruktur zur Entwicklung des kovalent-reversiblen Inhibitors stellt der cyclische O,O-Acetal-Inhibitor (bestimmt anhand von Dockingexperimenten an der beta-L-Anhydrogulose durch Arbeitskreis Prof.Dr. J. Seibel) dar. Die Ergebnisse der theoretischen Studie liefern f{\"u}r den ersten Schritt im Rahmen des Protokolls den geeigneten Kandidaten aus einer Menge von insgesamt 22 modellierten Inhibitoren f{\"u}r die reversible Inhibition der Mannosidase GM II durch die Ausbildung einer kovalenten Bindung. Hierzu z{\"a}hlen zun{\"a}chst die thermodynamischen Modellberechnungen der Inhibitionsreaktion, welche die Reaktionsenergien f{\"u}r alle Kandidaten des Screenings liefern. Die Inhibitionsreaktion wird in diesem Schritt als Additionsreaktion von Essigs{\"a}ure an den Inhibitor-Kandidaten modelliert. F{\"u}r die Leitstruktur resultiert eine thermoneutrale Beschreibung der Reaktion mit Essigs{\"a}ure und dient im Weiteren als Referenz. Der Inhibitor Nr.7 (der cyclische N,O-Acetal-Inhibitor) zeigt mit -7,7 kcal/mol eine leicht exotherme Reaktion und somit eine bessere Triebkraft der untersuchten Reaktion im Vergleich zur Referenz. Die beiden Inhibitoren wurden dann f{\"u}r Stufe 2 des Protokolls untersucht, in der eine Analyse der Reaktionsprofile im Enzym mit Hilfe der QM/MM-Methodik durchgef{\"u}hrt wurde. Die Ergebnisse des zweiten Teils der Studie zeigen, dass der cyclische N,O-Acetal-Inhibitor eine deutlich bessere Affinit{\"a}t zur aktiven Seite der GM II im Vergleich zu seiner Leitstruktur aufweisen sollte. Dies zeigt sich auch in der deutlich h{\"o}heren Triebkraft der Inhibitionsreaktion von ca. -13 kcal/mol. Dieser Energiebeitrag ist klein genug, um eine Reversibilit{\"a}t der Inhibitionsreaktion gew{\"a}hrleisten zu k{\"o}nnen. Das bedeutet auch, dass der N,O-Acetal-Inhibitor im Vergleich zur Referenzstruktur eine deutlich st{\"a}rkere Inhibition bedingen sollte. Ber{\"u}cksichtigt man dann noch, dass die Reaktion laut Berechnungen nur leicht exotherm sein sollte, erh{\"a}lt man die M{\"o}glichkeit einer reversibel stattfinden kovalenten Hemmung. Zusammenfassend liefert dieser Teil der Arbeit, der mit Hilfe der QM- und QM/MM-Berechnungen durchgef{\"u}hrt wurde, ein reaktives molekulares Ger{\"u}st mit den gew{\"u}nschten Eigenschaften. Durch die theoretischen Untersuchungen (MD-Simulationen am Enzym-Inhibitor-Komplex) konnte außerdem eine zur Komplexbildung geeignete Konformation der Leitstruktur sowie des neuen Inhibitors gefunden werden. Die reversibel agierenden Acetal-Inhibitoren befinden sich in der aktiven Tasche in einer energetisch h{\"o}her liegenden Twist-Boot-Konformation und beg{\"u}nstigen mit zwei entstehenden Bindungen zum Zn2+-Ion die oktaedrische Koordination im Enzym. Als Teil dieser Arbeit wurden NEB-Berechnungen zur Bestimmung von Minimumenergiepfadendurchgef{\"u}hrt. Dies lieferte erweiterte Einblicke in der Berechnung von Reaktionsmechanismen jeweils auch in Kombination von 2- bzw. 3-dimensionalen Scans. Auch in der Beschreibung von Protonen{\"u}bertragungsreaktionen nach Grotthus, die einem Umklappen der kovalenten Bindungen entsprechen, erh{\"a}lt man hier Geometrien f{\"u}r die Teilschritte und somit eine detaillierte Beschreibung des Vorgangs. Der Mechanismus der Inhibition von GM II durch die Leitstruktur beinhaltet einen Wasser-katalysierten (oder auch Wasser-vermittelten) Ring{\"o}ffnungsschritt in der Tasche des Enzyms. Die Testrechnungen zum Protontransfer haben gezeigt, dass der Protontransfer {\"u}ber ein oder mehrere Wassermolek{\"u}le unter Verwendung von Standard-PES-Berechnungen nicht spontan stattfindet. Die Berechnung des MEP durch das Erstellen einer 3-dimensionalen Potentialhyperfl{\"a}che kann nur dann sinnvolle Ergebnisse liefern, wenn der Protontransfer vom Aspartat Asp341 zum Inhibitor {\"u}ber zwei Wassermolek{\"u}le explizit ber{\"u}cksichtigt wird. In diesem Fall ist die Berechnung der PES kein Standard und erfordert eine zus{\"a}tzliche Variation der Bindungsabst{\"a}nde O-H der beteiligten Molek{\"u}le des Protontransfers. Die Details f{\"u}r die zus{\"a}tzliche Variation der Bindungsabst{\"a}nde O-H bei der Berechnung der 3-dimensionalen PES haben die NEB-Berechnungen geliefert. Der NEB-Formalismus hat sich in der Beschreibung dieser komplexen Reaktionskoordinaten als besser geeignet erwiesen und wurde in dieser Arbeit aus diesem Grund haupts{\"a}chlich verwendet. Die Berechnung des Protonentransfers w{\"a}hrend einer Hemmungsreaktion durch zwei Wassermolek{\"u}le mit der NEB-Methode hat den MEP ermittelt, welcher zun{\"a}chst nicht auf der Grundlage eines 3-dimensionalen Scans ermittelt werden konnte. Solche QM/MM-Rechnungen wurden im Rahmen des in-house Protokolls zum ersten Mal durchgef{\"u}hrt. Dieser Protontransfer ist mit dem Grotthus-Mechanismus konform und kann plausibel anhand einer Klapp-Mechanismus-Betrachtung nachvollzogen werden. Mit Hilfe der NEB-Methode ist es m{\"o}glich MEPs effektiv und relativ schnell zu ermitteln. Es werden sowohl die Geometrien entlang des Pfades wie auch die einzelnen relativen Energien erhalten. Zur {\"U}berpr{\"u}fung der gefundenen {\"U}bergangszust{\"a}nde wurden die einzelnen Strukturen mit Hilfe der Normalmodenanalyse weiter untersucht und konnten verifiziert werden. Die MEP-Berechnungen f{\"u}r den Inhibitor Nr.1 erm{\"o}glichen die Etablierung eines Protokolls zur Berechnung eines Reaktionspfades {\"u}ber mehrere Molek{\"u}le, welches anschließend zur Berechnung des MEP f{\"u}r den Inhibitor Nr.7 angewendet wird. Das Protokoll beinhaltet in seiner einfachen Form die Ermittlung der Two-End-Komponenten einer chemischen Reaktion - Geometrien von Reaktant und Produkt. Betrifft dies eine Reaktion, die {\"u}ber mehrere Molek{\"u}le, z.B. Wassermolek{\"u}le oder deren Netzwerk, stattfindet, wird die Aufgabe komplexer. In diesem Fall ist eine Berechnung mit Hilfe des NEB-Moduls wesentlich produktiver als die Charakterisierung mit Hilfe der 3-dimensionalen PES. Der Vorteil liegt in der kollektiven Beschreibung der Reaktionskoordinaten, sodass die entscheidenden Reaktionskoordinaten und Variablen f{\"u}r die Durchf{\"u}hrung von Scans nicht einzeln bestimmt werden m{\"u}ssen. Dennoch kann es hier bei komplexen Reaktionskoordinaten auch zu Konvergenzproblemen bzw. zu langwierigen Optimierungszyklen kommen. Als weiteres Resultat liefern die durchgef{\"u}hrten MEP-Berechnungen Einblicke in die katalytischen Eigenschaften der Wassermolek{\"u}le f{\"u}r den Proton{\"u}bertragungsmechanismus nach Grotthus. Die Daten zeigen, dass die Barriere am niedrigsten wird, wenn zwei Wassermolek{\"u}le beim Protontransfer beteiligt sind. Wenn nur ein oder gar kein Wassermolek{\"u}l die Ring{\"o}ffnung katalysiert, steigt die Barriere auf 12 und 17 kcal/mol. Die Untersuchung in diesem Teil der Arbeit l{\"a}sst zudem Einblicke in die nukleophile Substitution der Vollacetale in der Enzym-Tasche der GM II erlangen. Die Rechnungen deuten darauf hin, dass die Vollacetal-Inhibitoren durch Wassermolek{\"u}le in der Tasche aktiviert werden. Die ausgebildeten Wasserstoffbr{\"u}ckenbindungen beg{\"u}nstigen die Geometrie des Enzym-Inhibitor-Komplexes. Dies bef{\"o}rdert die Ring{\"o}ffnungreaktion gleichzeitig mit dem nucleophilen Angriff des Aspartatrestes an dem C1-Atom des Inhibitors. Im Falle des gemischten Acetal-Inhibitors hingegen wird die Treibkraft bereits durch die Einf{\"u}hrung des Stickstoffatoms deutlich erh{\"o}ht. Durch die richtig angeordneten Grotthus-Wassermolek{\"u}le ist in diesem Fall die Barriere der Proton{\"u}bertragung durch das Aspartat-Aspartat-System der GM II (Asp341/Asp240) sekund{\"a}r. Betrachtet man die Schwingungsbewegung entlang der imagin{\"a}ren Moden der {\"U}bergangszust{\"a}nde, sind diese in beiden E-I-Komplexen {\"a}hnlich. Hierbei wird eine synergistische Bewegung der Bindungsabst{\"a}nde OD2-C1-O6 (Inhibitor Nr.1) bzw. OD2-C1-N (Inhibitor Nr.7) beobachtet. Die Entwicklung der kovalent-reversiblen Inhibitoren f{\"u}r das Enzym Rhodesain wurde in Zusammenarbeit mit dem Arbeitskreis Prof.Dr. T. Schirmeister durchgef{\"u}hrt. Als Leitstruktur zur Entwicklung des neuen kovalent-reversiblen Vinylsulfon-Inhibitors 4-Pyridyl-Phenylalanyl-Homophenylalanyl-alpha-Fluor-Phenylvinylsulfon dient in diesem Projekt der kovalent-irreversibel bindende Inhibitor K777, f{\"u}r den kristallographische Daten bekannt sind. Im Rahmen des Protokolls wurde eine Reihe von Inhibitoren untersucht, in denen ein alpha-H-Atom der Vinylsulfon-Einheit (im Weiteren VS f{\"u}r Vinylsulfon) durch verschiedene Gruppen X substituiert wurde. F{\"u}r den zun{\"a}chst vorgeschlagenen Cyano-Substituent (CN) in einem VS-Inhibitor ergab sich bei Berechnungen in einem polaren L{\"o}sungsmittel eine relativ niedrige Reaktionsenergie, d.h. es wurde eine reversible Reaktion vorhergesagt. Dies wurde experimentell best{\"a}tigt. Die theoretischen und experimentellen Ergebnisse von Schritt II widersprechen sich aber. W{\"a}hrend experimentell eine schwache reversible Hemmung gefunden wurde, sagten die Berechnungen keine Hemmung voraus. Tats{\"a}chlich zeigte sich im Nachhinein, dass die experimentell gefundene Hemmung nicht-kompetitiv ist, d.h. nicht in der aktiven Tasche stattfindet. Im Rahmen des Protokolls werden dagegen nur die kompetitiv interagierenden Inhibitoren ausgewertet. An dieser Stelle lassen sich die anhand theoretischen Methoden erhaltenen Daten {\"u}ber die Reversibilit{\"a}t der Hemmung (Reaktion im aktiven Zentrum) mit den Ergebnissen aus den experimentellen Untersuchungen (Reaktion außerhalb des aktiven Zentrums) nicht vergleichen. Durch den Wechsel von CN zu Halogenen wurde schließlich eine neue Reihe von Inhibitoren auf VS-Basis entwickelt. Die Berechnungen von Reaktionsenergien in L{\"o}sung und im Enzym haben f{\"u}r diese Inhibitoren eine reversible Hemmung vorhergesagt. Allerdings findet man eine einfache Additionsreaktion an der Doppelbindung der Vinylsulfon-Gruppe. F{\"u}r X=CN wurde von einer SN2-Reaktion ausgegangen. F{\"u}r X=Br fand man, dass sich nach der Addition ein HBr-Molek{\"u}l abspaltet, sodass die Hemmung insgesamt irreversibel ist. Da die Substitutionsreaktion ein irreversibler Prozess ist und die Freisetzung von Bromwasserstoff durch die experimentellen Untersuchungen best{\"a}tigt werden konnte, scheint Fluor ein geeigneter Substituent zu sein (X=F). Hier konnte man auch experimentell eine deutlich bessere Hemmung messen. Es wurden daher die Berechnungen im Enzym f{\"u}r Systeme mit den Inhibitoren K777-X mit X=F und X=H (K777-F- und K777-H-Inhibitor) durchgef{\"u}hrt und analysiert. In der vorliegenden Arbeit wurde versucht, die Reversibilit{\"a}t des K777-F-Inhibitors gegen die Irreversibilit{\"a}t des K777-H-Inhibitors durch die quantenmechanischen Berechnungen im Rahmen des Protokolls darzulegen. Die QM/MM-Berechnungen unterteilen sich in zwei Bereiche. Zun{\"a}chst wurde das Reaktionsprofil (auch Reaktionspfad) der Additionsreaktion des K777-X-Inhibitors an die aktive Tasche von Rhodesain ausgehend von der vorhandenen Kristallstruktur (PDB-Datei) berechnet. Im Folgenden wird dieses Teilergebnis als XP-Berechnung (im Weiteren XP f{\"u}r X-ray-Pfad) bezeichnet. Alle vier PES (X=H, F, Br und Cl) weisen prinzipiell die gleiche Form auf. Es ergeben sich aber Unterschiede in den berechneten Reaktionsenergien der Additionsreaktion (-20, -16, -10 und -11 kcal/mol). Die Reaktionsenergien der Substituenten Brom und Chlor entsprechen dem Bereich f{\"u}r reversible Reaktionen (ca. -10 kcal/mol), wobei Fluor mit -16 kcal/mol einen Grenzfall darstellt. Die Konturen der beiden PES (X=H vs. X=F) sind allerdings sehr {\"a}hnlich: In beiden F{\"a}llen findet sich f{\"u}r das anionische Intermediat kein Minimum. In der Potentialhyperfl{\"a}che f{\"u}r X=F steigt die Barriere der R{\"u}ckreaktion zwischen dem Intermediat und dem nicht-kovalenten Komplex auf etwa 5 kcal/mol an, die R{\"u}ckreaktion ist im Vergleich zu dem X=H mit ca. 1,5 kcal/mol leicht exotherm. Das ver{\"a}nderte Verh{\"a}ltnis zwischen der H{\"o}he der Reaktionsbarriere und dem Betrag der Reaktionsenergie (der {\"U}bergang von der endothermen zur exothermen Reaktion) auf diesem Abschnitt der PES k{\"o}nnte dazu beitragen, dass die Gesamtreaktion insgesamt reversibel ablaufen kann. Die Reversibilit{\"a}t des Inhibitors mit dem Substituenten Fluor l{\"a}sst sich auf diesem Schritt der Untersuchung durch die Absenkung der Reaktionsenergie der Additionsreaktion auf etwa 16 kcal/mol erkl{\"a}ren, denn die irreversible Reaktionen wurden bisher mit deutlich h{\"o}heren Reaktionsenergien assoziiert. Die erhaltenen nicht-kovalenten Enzym-Inhibitor-Komplexe der XP-Berechnungen wurden in einem zweiten Teilergebnis weiter verwendet, indem der Reaktionspfad der Additionsreaktion des K777-X-Inhibitors vom nicht-kovalenten Enzym-Inhibitor-Komplex zum kovalenten Enzym-Inhibitor-Komplex hin berechnet wurde. Im Folgenden wird dieses Teilergebnis als NP-Berechnung (NP f{\"u}r Nicht-kovalente-Pfad) bezeichnet. Die Berechnung der Reaktionsprofile der Additionsreaktion des VS-Inhibitors f{\"u}r X=H und X=F am alpha-Kohlenstoffatom der VS-Kopfgruppe lieferte konsistente Ergebnisse in Bezug auf die Reaktionsenergien. {\"A}hnlich den XP-Berechnungen, wurde ebenfalls die Tendenz der Absenkung der Reaktionsenergie von -7 kcal/mol (X=H) auf -4,3 (X=F) und -0,9 kcal/mol (X=Br) beobachtet. Die Thermodynamik der Additionsreaktion wurde durch einen Wechsel des Substituenten X von H nach F in der VS-Kopfgruppe des K777-X Inhibitors beeinflusst, indem die niedrigere Energiedifferenz zwischen den Edukten und den Produkten erzielt werden konnte. F{\"u}r beide Teile der Arbeit (XP- und NP-Berechnungen) implizierte dies einen Wechsel von einem irreversiblen zum einem reversiblen Verlauf in der Beschreibung der Reaktionsprofile. Die Ergebnisse des zweiten Teils der Arbeit (NP-Berechnungen) liefern nicht nur die konsistent geringeren Reaktionsenergien (Thermodynamik) sondern auch die h{\"o}heren Reaktionsbarrieren der Additionsreaktion im Vergleich zu den Ergebnissen der XP-Berechnungen. Die {\"A}nderungen der Reaktionsbarrieren im NP-Ansatz weisen zus{\"a}tzliche Diskrepanzen auf, wenn diese jeweils mittels der PES-Scan- und CI-NEB-Dimer-Methodik berechnet werden. W{\"a}hrend die Barriere des irreversiblen Inhibitors K11777 mit dem NEB-Ansatz ca. 11 kcal/mol betr{\"a}gt und durch den PES-Scan nur um 4 kcal/mol h{\"o}her liegt, ergibt sich eine umgekehrte Situation beim {\"U}bergang zu Fluor als Substituent: Durch die NEB-Berechnung liegt die Barriere bei ca. 18 kcal/mol und durch den PES-Scan ergibt sich eine um 4 kcal/mol niedrig liegende Barriere. Um die Ergebnisse der NP-Berechnungen zu {\"u}berpr{\"u}fen, wurden diese QM/MM-Rechnungen wiederholt durchgef{\"u}hrt. In den beiden neu durchgef{\"u}hrten Berechnungen f{\"u}r die Inhibitoren K777-X mit X=H und X=F wurden nur sehr kleine Abweichungen gefunden, die kleiner als die Fehler der Berechnung sind. Die Startstrukturen f{\"u}r die Berechnung des MEP stammten aus der erneut durchgef{\"u}hrten MD-Simulation an der Geometrie des nicht-kovalenten Enzym-Inhibitor-Komplexes, welche die XP-Berechnung resultierte. Die Gesamtdauer der MD-Simulation wurde zu einem Wert von 9 ns gew{\"a}hlt, welche insgesamt 900 Startstrukturen entlang der Simulation lieferte. Die Berechnung ergab die Reaktionsenergie von -8,4 kcal/mol (-7,0 kcal/mol als erstes Ergebnis) und die relative Energie des Int-Komplexes von 13,2 kcal/mol. Somit betr{\"a}gt die Barriere der R{\"u}ckreaktion zur Freisetzung des Inhibitors K11777 (X=H) in Form von einem nicht-kovalenten Enzym-Inhibitor-Komplex einen Wert von 21,6 kcal/mol. In analoger Vorgehensweise wurde die Evaluierung der NP-Berechnung f{\"u}r den Inhibitor K777-X mit X=F durchgef{\"u}hrt. Die Reaktionsenergien in den beiden Berechnungen unterscheiden sich in einem marginalen Abstieg zu den Werten von -2,9 kcal/mol und -3,3 kcal/mol (-4,3 kcal/mol als erstes Ergebnis). Beide Berechnungen liefern zudem die relativ kleinen Anstiege der Reaktionsbarriere zu den Werten von 19,8 kcal/mol und 20,9 kcal/mol. F{\"u}r die Inhibitoren K777-X mit X=H und X=F entsprechen die gefundenen Barrieren einer verzerrten Konformation des nicht-kovalenten Enzym-Inhibitor-Komplexes, die als eine bioaktive Konformation bezeichnet werden kann. Der anionische {\"U}bergangszustand Int*, der oft in der Literatur als ein anionisches Intermediat der Additionsreaktion bezeichnet wird, wurde nur f{\"u}r den Inhibitor mit dem Substituenten Brom (K777-X mit X=Br) identifiziert. Da der {\"U}bergangszustand (Int* mit der relativen Energie von 11,1 kcal/mol) nur 1,5 kcal/mol {\"u}ber der bioaktiven Konformation (Int mit der relativen Energie von 12,6 kcal/mol) liegt und die NEB-Reaktionspfade alleine die Barrieren {\"u}bersch{\"a}tzen, besitzen die anionischen {\"U}bergangszust{\"a}nde der Additionsreaktion der Inhibitoren mit X=H und X=F eine gesch{\"a}tzte relative Energie mit vergleichbaren Abweichungen von ca. 2 kcal/mol zu den identifizierten Int-Geometrien. Die durchgef{\"u}hrten Berechnungen zeigen, dass die Substituenten X=H und X=F im Vergleich zum Brom die anionischen Geometrien der nicht-kovalenten Enzym-Inhibitor-Komplexe jedoch mangelhaft bis ausreichend stabilisieren k{\"o}nnen. Zus{\"a}tzlich liegt die gesch{\"a}tzte Energiedifferenz zwischen den Geometrien Int* und Int unter der m{\"o}glichen Fehlergrenze der Berechnungen (ca. 3-4 kcal/mol). Aus diesem Grund misslang die Optimierung in Richtung der metastabilen anionischen Geometrien Int* mit Hilfe der CI-NEB-Dimer-Methodik im Fall der VS-Inhibitoren K777-X mit X=H und X=F. Der direkte Vergleich der geometrischen Parameter der nicht-kovalenten Enzym-Inhibitor-Komplexe f{\"u}r den Inhibitor K777-F aus den XP-Berechnungen mit solchen aus den NP-Berechnungen l{\"a}sst darauf schließen, dass die Geometrien der Enzym-Inhibitor-Komplexe der XP-Berechnung nur die lokalen Minima mit der verzerrten Geometrie des Inhibitors auf der PES darstellen und die Gesamtinformation {\"u}ber die Barrieren der Reaktion durch die Ergebnisse aus der NP-Berechnung erg{\"a}nzt werden sollten. Zusammenfassend sagen die Berechnungen f{\"u}r die reaktiven Kopfgruppen der Substanzklasse der halogenierten Vinylsulfone K777-X (X=Br, Cl und F) im Vergleich zur Leitstruktur des Vinylsulfon-Inhibitors K11777 deutlich geringere exotherme Additionsreaktionen im aktiven Zentrum von Rhodesain voraus. Dar{\"u}berhinaus konnte anhand der QM/MM-Berechnungen ein experimentell gemessenen verlangsamten Verlauf der reversiblen Inhibition im Falle von X=F (Inhibitor K777-X) durch die relativ erh{\"o}hte Reaktionsbarriere im Vergleich zur Leitstruktur erkl{\"a}rt werden. Dieser Inhibitor dient zun{\"a}chst als ein erfolgreich selektiertes reaktives Ger{\"u}st des neuen Inhibitors K777-X-S3 mit X=F und S3=4-Pyridyl (K777-F-Pyr), welcher mit Hilfe des Docking-Experiments (Schritt III durch die Arbeitsgruppe Prof.Dr. T. Schirmeister) deutlich verbessert werden konnte. Die Affinit{\"a}t des durch Docking verbesserten VS-Inhibitors mit Fluor als Substituent durch die eingef{\"u}hrte Seitenkette S3=4-Pyridyl (4-Pyridyl-Phenylalanyl-Homophenylalanyl-(Phenyl)-alpha-F-Vinylsulfon) stieg im Rhodesain von 190 nM zu 32 nM (Schritt IV, experimenteller Teil). Gleichzeitig konnte durch die QM/MM-Berechnungen in Schritt IV gezeigt werden, dass die Reaktion der reaktiven Kopfgruppe im neuen Inhibitor immer noch eine kovalent-reversible Hemmung von Rhodesain darstellt, auch wenn die Erkennungseinheit ge{\"a}ndert wurde. Hierf{\"u}r kann man die beiden Reaktionsprofile der NP-Berechnungen vergleichen. Die beiden fluorierten VS-Inhibitoren weisen eine {\"A}hnlichkeit bez{\"u}glich der Barrierenh{\"o}he und der Reaktionsenergie auf. Der fluorierte Vinylsulfon-Inhibitor K777-F wurde somit als ein neuer kovalent-reversibler Vinylsulfon-Inhibitor der Cysteinprotease Rhodesain erfolgreich eingef{\"u}gt.}, subject = {Computational Chemistry}, language = {de} } @phdthesis{Voelker2014, author = {V{\"o}lker, Sebastian}, title = {Synthesis, Spectroscopic and Electrochemical Properties of Squaraine Polymers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work the synthesis, the spectroscopic and electrochemical investigation as well as some applications of a broad diversity of indolenine squaraine dyes were presented. This diversity was based on two parent squaraine dyes, one standard trans-configured compound (M1) and one in which one central oxygen atom was replaced by a dicyanomethylene moiety (M2), which increased the acceptor strength and induced a cis-configuration. The variety of synthesised dyes included functionalised squaraine monomers, donor- and acceptor-substituted monomeric model squaraines, donor- and acceptor-squaraine copolymers, pure squaraine homopolymers, a squaraine-squaraine copolymer, as well as some conjugated cyclic oligomers. In order to be able to synthesise all these different kinds of dyes, several bromine and boronic ester derivatives were synthesised, which enabled the use of the Suzuki cross coupling reaction, to generate model dyes and copolymers. In addition, the bromine derivatives were used to carry out the Yamamoto homocoupling reaction to the respective homopolymers and macrocycles. The absorption maximum of unsubstituted reference dye M1 was found at ~ 15500 cm-1, while that of M2 was red-shifted to ~ 14300 cm-1 due to the increased acceptor strength of the central unit. The extinction coefficients were in the order of ~ 300000 M-1 cm-1 and ~ 200000 M-1 cm-1, respectively. It was found that the implementation of functional groups (M3-M9), additional electron donors (M10-M19) or acceptors (M20-M22) at the periphery lead to bathochromic shifts of the absorption depending on the strength of either - and/or -donating properties of the substituents. For the bis- and triarylamine substituted dyes M10-M13 and the dibrominated dyes M5 and M7 the electronic structure of the mono- and diradical (di)cations was explored using the interplay of cyclic voltammetry, spectroelectrochemistry, and DFT calculations. It was demonstrated that the monoradical cations still show a cyanine-like character and are delocalised Robin-Day class III species due to the low redox potential of the squaraine bridge between the additional amine redox centres. To the best of my knowledge, this made M13+∙, with an N-N-distance of 26 bonds between the additional redox centres to the longest bis(triarylamine) radical cation that is completely delocalised. For the diradical dications, the situation was of larger complexity. The computed most stable energetic state of the dianisylamine-substituted dyes turned out to be a broken-symmetry state with almost equal contributions of an open-shell singlet and triplet state. In addition, it was shown that the HOMO-1→HOMO transition dominated the absorption spectra of the diradical dications where the trans-/cis-configuration of the squaraines had a direct impact due to symmetry reasons. Based on the donor-squaraine model compounds M10-M19, a series of donor-squaraine copolymers was synthesised (P7-P12) in order to further red shift and broaden the low energy absorption band. However, these effects were only of marginal extent. Both the optical and the electrochemical derived band gaps were barely lowered compared to the respective monomeric model dyes. This was assigned to an increased squaraine-squaraine distance and resulting lower exciton coupling between the squaraine chromophores due to the bridging units. In addition, according to semiempirical calculations the bridges were twisted out of the squaraine plane what reduced conjugational effects between the chromophores. To sum up, the idea to insert additional electron rich bridging units in order to create copolymers with broad and red-shifted absorption did not fully work out for the presented systems. The addition of strong electron accepting NDI units at the periphery resulted in M21, the most unique monomeric model squaraine in this work. The common picture of a sharp low energy squaraine absorption completely altered due to the addition of the NDIs and a rather broad and solvent dependent low energy absorption was found. Spectroelectrochemical experiments and semiempirical calculations showed that this band is a superposition of the common squaraine HOMO→LUMO transition and a partial squaraine→NDI charge transfer transition. The latter was lost upon oxidation of the squaraine and the absorption spectrum of the monocation of M21 was found to be nearly a 1:1 image of a pure squaraine monocation. Both the monomeric model M21 and the respective copolymer P13 showed low electrochemically obtained band gaps of 1.05-1.20 eV, which were the lowest of all squaraines in this work. For both dyes, transient absorption measurements in the fs-time regime revealed the ultrafast formation of a CS state via an intermediate CT state within a few ps. Besides, charge recombination to the ground state also occured within a few ps. In the polymer, there was barely any further energy or charge transfer within the excited state lifetime and therefore the CS state was confined on adjacent squaraine-NDI pairs and did not further travel along the polymer strand. The Ni-mediated Yamamoto homocoupling reaction was applied for the synthesis of the homopolymers (P1-P5). In contrast to the donor-squaraine copolymers, those polymers revealed strongly red-shifted and broad absorption in the red to NIR region in addition to a sharp fluorescence. These features could be explained to originate mainly from the exciton coupling of localised excited states and the presence of different superstructures in solution. For the polymers P1 and P2, an elongated J-type polymer chain caused the strong lowest energy absorption band whereas a zig-zag type arrangement of the single chromophores lead to transitions into both low and high energy excited states of the excitonic manifold. For the polymers P3 and P4, several polymer fractions of different size were investigated. Here, also an elongated chain with J-type character induced the lowest energy absorption band whereas a helical H-type arrangement caused transitions to higher energies of the excitonic manifold. The fractions to which these structures were formed depended on the chain length and the solvent. In thin film measurements, it was shown that the initially in solution formed superstructures were partly retained in the thin film but could be altered by annealing procedures. A control of the superstructures should enable the controlled tuning of the optical properties. Despite the strong interaction of the chromophores in the excited state, the redox potentials of the homopolymers barely differed to those of the respective reference dyes, indicating negligible electronic interaction in the ground state. In addition squaraine-squaraine copolymer P6, consisting of alternating parent dyes M1 and M2, was synthesised. Likewise to the homopolymers, a broad and red-shifted absorption was observed. This was explained by exciton coupling theory, which was extended to also suit alternating copolymers. In toluene, an extraordinary narrow and intense lowest energy absorption band was observed. This exchange narrowing might be a result of a highly ordered J-type structure of the polymer especially in this solvent because it was not found in others. The features of the polymer may be compared to typical J-aggregates formed from monomeric cyanine molecules for example and the polymer used as model for excitonic interactions in an alternating copolymer. Transient absorption measurements revealed a strong energy dependence of the decay traces of the copolymer, most strikingly at early decay times. This was assigned to the occurrence of multiple excitations of one polymer strand (due to the large extinction coefficients of the polymer) and resulting exciton-exciton annihilation. Due to the large exciton diffusion constants that were estimated, the static exciton-exciton annihilation was the rate limiting process of the decay, in contrast to other conjugated polymers, where in thin film measurements the decay was diffusion controlled. To sum up, for the polymers consisting of exclusively squaraine chromophores, it was shown that the exciton coupling of single chromophores with strong transition dipole moments was a fruitful way to tune the absorption spectra. As a side product of some of the polycondensation reactions, unprecedented cyclic conjugated oligomers such as the triarylamine-bridged dimer Dim1, the cyclic homotrimers Tri1-Tri3, and the tetramer Tet1 were obtained by recycling GPC in low yields. Especially the cyclic trimers showed unusual absorption and even more extraordinary fluorescence properties. They showed multiple fluorescence bands in the NIR that covered a range from ~ 8000-12500 cm-1 (800-1250 nm). First hints from theoretical calculations indicated that the trimer was not fully planar but comprised a mixture of both planar and bent single squaraine chromophores. However, final results of the calculations were still missing at the time of writing. In the last part of this work, the application of some monomeric and polymeric squaraines in binary and ternary bulk heterojunction solar cells was demonstrated. Also the utilisation as a dopant in a polymer matrix in an OLED device was shown. The homopolymers P1-P4 were tested in the binary BHJ solar cells revealing poor performances and especially very low short circuit currents. The utilisation of the polymers P3 and P4 that carried the dicyanomethylene group resulted in higher open circuit voltages due to the lower LUMO energy levels but still an overall poor performance. Neither for the different alkyl chains nor for the size of the polymers was a trend observed. In the ternary BHJ solar cells, small amounts of either monomer M14 or polymers P1A, P4-1 or P13 were added to a P3HT/PCBM system in order to generate an additional pathway for charge or energy transfer that should result in a better device performance. However, for none of the tested squaraines, improved solar cells could be built. In similarity to the binary solar cells, the short circuit currents were lower compared to a P3HT/PCBM reference device. These low short circuit currents indicated that the morphology of the squaraine dyes was the major limitation in those devices. It is possible that the dimethyl groups at the indolenine hindered a favoured alignment of the compounds that would allow decent charge transport. In the squaraine doped OLED the squaraine M6 worked rather well as an NIR emitter. Already at low dye loads the fluorescence of the host polymer SY-PPV was completely quenchend and emission from the squaraine was observed. For electroluminescence measurements, a lower dye load (0.5 wt.\%) compared to the photoluminescence measurements was sufficient, indicating that apart from FRET additional quenching mechanisms were at work in the electrically driven devices such as charge carrier dynamics.}, subject = {Squaraine}, language = {en} } @phdthesis{Voelckel2022, author = {Voelckel, Markus}, title = {Zeitaufgel{\"o}ste Spektroskopie von nanoskaligen Halbleitern und Pyrenderivaten}, doi = {10.25972/OPUS-27611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Um den jahrtausendealten Weg der Menschheit vom Papyrus {\"u}ber Buchdruck und siliziumbasierte Halbleiter in Richtung noch leistungsf{\"a}higerer Technologien zu gehen und weiterhin Heureka-Momente zu schaffen, bieten Kohlenstoffnanor{\"o}hren ein weites Forschungsfeld. Besonders die halbleitenden Charakteristika von SWNTs sowie die Manipulation dieser durch Dotierung bergen viele M{\"o}glichkeiten f{\"u}r zuk{\"u}nftige Anwendungen in moderner Elektrotechnologie. Der Weg zu einer industriellen Implementierung von SWNTs in neuartigen optoelektronischen Bauteilen ließe sich durch eine Ausweitung des Wissens bez{\"u}glich SWNTs und der dotierungsbasierten Anpassung ihrer Eigenschaften ebnen. Mit dieser Erkenntniserweiterung als Zielsetzung wurden im Rahmen dieser Dissertation halbleitende, einwandige (6,5)-Kohlenstoffnanor{\"o}hren als chiralit{\"a}tsreine, polymerstabilisierte Proben untersucht. Die ultrakurzzeitaufgel{\"o}ste Spektroskopie der SWNTs erfolgte an organischen Suspensionen wie auch D{\"u}nnschichtfilmen, die je mittels eines gewissen Quantums an Gold(III)-chlorid dotiert worden waren. So konnten die ablaufenden Dynamiken auf einer ps-Zeitskala untersucht werden. In Kapitel 4 konnte mittels transienter Absorptionsexperimente an redoxchemisch p-dotierter SWNT-Suspensionen zun{\"a}chst gezeigt werden, dass sich die bei optischer Anregung gebildeten Trionen nicht analog zu Exzitonen diffusiv entlang der Nanor{\"o}hre bewegen, sondern lokalisiert vorliegen. Die l{\"a}ngere trionischen Zerfallsdauer nach X\$_1\$- verglichen mit X\$_1^+\$-resonanter Anregung zeugt außerdem davon, dass das Trion aus dem Exziton gespeist wird. Der Einfluss der Dotierung auf die Zerfallsdynamiken von X\$_1\$ und X\$_1^+\$ wurde an SWNT-D{\"u}nnschichtfilmen untersucht. Das Photobleichsignal des Exzitons verschiebt hypsochrom und zerf{\"a}llt schneller mit zunehmender Ladungstr{\"a}gerdichte durch h{\"o}herer Gold(III)-chloridkonzentrationen. Dies resultiert aus dem verringerten Abstand zwischen den Ladungstr{\"a}gern, welche als nichtstrahlende L{\"o}schstellen fungieren. F{\"u}r das X\$_1^+\$-PB ist ein {\"a}hnliches Verhalten zu beobachten. Dabei wird dieses Signal mit weiter steigender Dotierung von einer der H-Bande zuzuordnenden Photoabsorption {\"u}berlagert. Diese l{\"a}sst sich in einer starken S{\"a}ttigung der Dotierung wie auch einer hohen Bandkantenverschiebung begr{\"u}nden. In Kapitel 5 wurde die Gr{\"o}ße der Exzitonen und Trionen in dotierten SWNT-D{\"u}nnschichtfilmen mittels des Phasenraumf{\"u}llmodells bestimmt. Dabei lag besonderes Augenmerk auf der Kompensation des PB/PA-{\"U}berlapps, dem schnellen Zerfall, einem Ausgleich von Differenzen zwischen Anrege- und Absorptionsspektrum sowie dem Anteil intrinsischer/dotierter Nanorohrsegmente, um korrigierte Gr{\"o}ßen \$\xi_\mathrm{k}\$ zu erhalten. F{\"u}r die Trionengr{\"o}ße wurde zus{\"a}tzlich der {\"U}berlapp der Absorptionsbanden einbezogen, um korrigierte Werte \$\xi_{\mathrm{T,k}}\$ zu bestimmen. \$\xi_\mathrm{k}\$ betr{\"a}gt in der intrinsischen Form 6\$\pm\$2\,nm und bleibt bis zu einer Ladungstr{\"a}gerdichte \$n_{\mathrm{LT}}<0.10\$\,nm\$^{-1}\$ etwa gleich, anschließend ist ein Absinken bis auf etwa 4\,nm bei \$n_{\mathrm{LT}}\approx0.20\$\,nm\$^{-1}\$ zu beobachten. F{\"u}r diesen Trend ist die {\"U}berlagerung von Exziton- und H-Bande verantwortlich, da so der Faktor zur Bestimmung des Anteils intrinsischer Nanorohrsegmente an der SWNT verf{\"a}lscht wird. Die Abweichung der intrinsischen Gr{\"o}ße von den in der Literatur berichteten 13\$\pm\$3\,nm ist m{\"o}glicherweise auf Unterschiede in der Probenpr{\"a}paration zur{\"u}ckzuf{\"u}hren. F{\"u}r die Trionengr{\"o}ße ergibt sich bei steigender Dotierung ein {\"a}hnliches Verhalten: Sie betr{\"a}gt f{\"u}r \$n_{\mathrm{LT}}<0.20\$\,nm\$^{-1}\$ 1.83\$\pm\$0.47\,nm, was in der Gr{\"o}ßenordnung in guter {\"U}bereinstimmung mit der Literatur ist. F{\"u}r h{\"o}here Dotierungen sinkt \$\xi_{\mathrm{T,k}}\$ bis auf 0.92\$\pm\$0.26nm ab. Dies erkl{\"a}rt sich dadurch, dass bei h{\"o}herer \$n_{\mathrm{LT}}\$ die H-Bande das Spektrum dominiert, sodass der Einfluss der Absorptionsbanden{\"u}berlagerung nicht mehr vollst{\"a}ndig durch den entsprechenden Korrekturfaktor kompensiert werden kann. Kapitel 6 besch{\"a}ftigte sich anstelle redoxchemischer Dotierung der nanoskaligen Halbleiter mit der (spektro-)elektrochemischen Untersuchung von Vorl{\"a}ufern molekularer Radikale. SWV-Messungen weisen dabei darauf hin, dass die Pyrene Pyr1-Pyr3 entsprechend der Anzahl ihrer Substituenten bei Reduktion Mono-, Bi- beziehungsweise Tetraradikale bilden. Die strukturelle {\"A}hnlichkeit der Molek{\"u}le {\"a}ußert sich in gleichen Reduktionspotentialen wie auch {\"a}hnlichen potentialabh{\"a}ngigen Absorptionsspektren. W{\"a}hrend nur marginale Unterschiede in den PL-Spektren der neutralen und reduzierten Spezies festgestellt werden konnte, lieferte das zeitkorrelierte Einzelphotonenz{\"a}hlen aufschlussreichere Ergebnisse: So wird die Fluoreszenzlebensdauer stark von der Polarit{\"a}t der Umgegbung beeinflusst - bereits die Zugabe des Leitsalzes f{\"u}hrt hier zu {\"A}nderungen. Die durchschnittliche Fluoreszenzlebensdauer \$\tau_{\mathrm{av}}\$ sinkt außerdem mit Reduktion und Radikalbildung; f{\"u}r h{\"o}here Emissionswellenl{\"a}ngen ist \$\tau_{\mathrm{av}}\$ außerdem h{\"o}her. Insgesamt verdeutlichten die Experimente die gute Abschirmung zwischen Pyrenkern und Naphthalimidsubstituenten der Molek{\"u}le sowie die Sensibilit{\"a}t gegen{\"u}ber dem Medium durch TICT, das Vorhandensein von Bi- und Tetraradikalen kann allerdings nicht vollst{\"a}ndig belegt werden, wof{\"u}r EPR-Messugen notwendig w{\"a}ren.}, subject = {Dotierung}, language = {de} } @article{VermaSteinbacherSchmiedeletal.2016, author = {Verma, Pramod Kumar and Steinbacher, Andreas and Schmiedel, Alexander and Nuernberger, Patrick and Brixner, Tobias}, title = {Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy}, series = {Structural Dynamics}, volume = {3}, journal = {Structural Dynamics}, doi = {10.1063/1.4937363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181301}, year = {2016}, abstract = {We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state.}, language = {en} } @unpublished{TitovHumeniukMitric2020, author = {Titov, Evgenii and Humeniuk, Alexander and Mitric, Roland}, title = {Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections}, series = {Chemical Physics}, journal = {Chemical Physics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199225}, year = {2020}, abstract = {We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency.}, language = {en} } @unpublished{TitovHumeniukMitric2018, author = {Titov, Evgenii and Humeniuk, Alexander and Mitric, Roland}, title = {Exciton localization in excited-state dynamics of a tetracene trimer: A surface hopping LC-TDDFTB study}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198680}, year = {2018}, abstract = {Excitons in the molecular aggregates of chromophores are key participants in important processes such as photosynthesis or the functioning of organic photovoltaic devices. Therefore, the exploration of exciton dynamics is crucial. Here we report on exciton localization during excited-state dynamics of the recently synthesized tetracene trimer [Liu et al., Org. Lett., 2017, 19, 580]. We employ the surface hopping approach to nonadiabatic molecular dynamics in conjunction with the long-range corrected time-dependent density functional tight binding (LC-TDDFTB) method [Humeniuk and Mitrić, Comput. Phys. Commun., 2017, 221, 174]. Utilizing a set of descriptors based on the transition density matrix, we perform comprehensive analysis of exciton dynamics. The obtained results reveal an ultrafast exciton localization to a single tetracene unit of the trimer during excited-state dynamics, along with exciton transfer between units.}, language = {en} }