@article{BuraBeaupreLegareetal.2018, author = {Bura, Thomas and Beaupr{\´e}, Serge and L{\´e}gar{\´e}, Marc-Andr{\´e} and Ibraikulov, Olzhas A. and Leclerc, Nicolas and Leclerc, Mario}, title = {Theoretical calculations for highly selective Direct Heteroarylation Polymerization: new nitrile-substituted Dithienyl-Diketopyrrolopyrrole-based polymers}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules23092324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197648}, pages = {2324}, year = {2018}, abstract = {Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C-H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers' convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C-H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues.}, language = {en} } @unpublished{AuerhammerArrowsmithBoehnkeetal.2018, author = {Auerhammer, Dominic and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dewhurst, Rian D. and Kupfer, Thomas}, title = {Brothers from Another Mother: a Borylene and its Dimer are Non-Interconvertible but Connected through Reactivity}, series = {Chemical Science}, journal = {Chemical Science}, doi = {10.1039/C7SC04789D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157125}, year = {2018}, abstract = {The self-stabilizing, tetrameric cyanoborylene [(cAAC)B(CN)]4 (I, cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) and its diborene relative, [(cAAC)(CN)B=B(CN)(cAAC)] (II), both react with disulfides and diselenides to yield the corresponding cAAC-supported cyanoboron bis(chalcogenides). Furthermore, reactions of I or II with elemental sulfur and selenium in various stoichiometries provided access to a variety of cAAC- stabilized cyanoboron-chalcogen heterocycles, including a unique dithiaborirane, a diboraselenirane, 1,3-dichalcogena-2,4-diboretanes, 1,3,4-trichalcogena- 2,5-diborolanes and a rare six-membered 1,2,4,5-tetrathia-3,6-diborinane. Stepwise addition reactions and solution stability studies provided insights into the mechanism of these reactions and the subtle differences in reactivity observed between I and II.}, language = {en} } @unpublished{BoehnkeBraunschweigJimenezHallaetal.2018, author = {B{\"o}hnke, Julian and Braunschweig, Holger and Jim{\´e}nez-Halla, Oscar and Krummenacher, Ivo and Stennett, Tom E.}, title = {Half-Sandwich Complexes of an Extremely Electron-Donating, Re-dox-Active η\(^6\)-Diborabenzene Ligand}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.7b12394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156766}, year = {2018}, abstract = {The heteroarene 1,4-bis(CAAC)-1,4-diborabenzene (1; CAAC = cyclic (alkyl)(amino)carbene) reacts with [(MeCN)\(_3\)M(CO)\(_3\)] (M = Cr, Mo, W) to yield half-sandwich complexes of the form [(η\(^6\)-diborabenzene)M(CO)\(_3\)] (M = Cr (2), Mo (3), W (4)). Investigation of the new complexes with a combination of X-ray diffraction, spectroscopic methods and DFT calculations shows that ligand 1 is a remarkably strong electron donor. In particular, [(η\(^6\)-arene)M(CO)\(_3\)] complexes of this ligand display the lowest CO stretching frequencies yet observed for this class of complex. Cyclic voltammetry on complexes 2-4 revealed one reversi- ble oxidation and two reversible reduction events in each case, with no evidence of ring-slippage of the arene to the η\(^4\) binding mode. Treatment of 4 with lithium metal in THF led to identification of the paramagnetic complex [(1)W(CO)\(_3\)]Li·2THF (5). Compound 1 can also be reduced in the absence of a transition metal to its dianion 1\(^{2-}\), which possesses a quinoid-type structure.}, language = {en} } @unpublished{StoyBoehnkeJiménezHallaetal.2018, author = {Stoy, Andreas and B{\"o}hnke, Julian and Jiménez-Halla, J. Oscar C. and Dewhurst, Rian D. and Thiess, Torsten and Braunschweig, Holger}, title = {CO\(_2\) Binding and Splitting by Boron-Boron Multiple Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201802117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164265}, year = {2018}, abstract = {CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction.}, language = {en} } @unpublished{ArrowsmithMattockBoehnkeetal.2018, author = {Arrowsmith, Merle and Mattock, James D. and B{\"o}hnke, Julian and Krummenacher, Ivo and Vargas, Alfredo and Braunschweig, Holger}, title = {Direct access to a cAAC-supported dihydrodiborene and its dianion}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C8CC01580E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164276}, year = {2018}, abstract = {The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2-}\) causes a decrease in the B-B bond order whereas the B-C bond orders increase.}, language = {en} } @article{BoehnkeBruecknerHermannetal.2018, author = {B{\"o}hnke, Julian and Br{\"u}ckner, Tobias and Hermann, Alexander and Gonz{\´a}lez-Belman, Oscar F. and Arrowsmith, Merle and Jim{\´e}nez-Halla, J. Oscar C. and Braunschweig, Holger}, title = {Single and double activation of acetone by isolobal B≡N and B≡B triple bonds}, series = {Chemical Science}, volume = {9}, journal = {Chemical Science}, doi = {10.1039/c8sc01249k}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164286}, pages = {5354-5359}, year = {2018}, abstract = {B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand.}, language = {en} } @unpublished{CidHermannRadcliffeetal.2018, author = {Cid, Jessica and Hermann, Alexander and Radcliffe, James E. and Curless, Liam D. and Braunschweig, Holger and Ingleson, Michael J.}, title = {Synthesis of Unsymmetrical Diboron(5) Compounds and Their Conversion to Diboron(5) Cations}, series = {Organometallics}, journal = {Organometallics}, doi = {10.1021/acs.organomet.8b00288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164299}, year = {2018}, abstract = {Reaction of bis-catecholatodiboron-NHC adducts, B\(_2\)Cat\(_2\)(NHC), (NHC = IMe (tetramethylimidazol-2-ylidene), IMes (1,3-dimesitylimidazol-2-ylidene) or IDIPP (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)) with BCl3 results in the replacement of the catecholato group bound to the four coordinate boron with two chlorides to yield diboron(5) Lewis acid-base adducts of formula CatB-BCl\(_2\)(NHC). These compounds are precursors to diboron(5) monocations, accessed by adding AlCl\(_3\) or K[B(C\(_6\)F\(_5\))\(_4\)] as halide abstraction agents in the presence of a Lewis base. The substitution of the chlorides of CatB-BCl\(_2\)(NHC) for hydrides is achieved using Bu\(_3\)SnH and a halide abstracting agent to form 1,1-dihydrodiboron(5) compounds, CatB-BH\(_2\)(NHC). Attempts to generate diboron(4) monocations of formula [CatB-B(Y)(NHC)]\(^+\) (Y = Cl or H) led to the rapid formation of CatBY.}, language = {en} } @phdthesis{Mao2018, author = {Mao, Lujia}, title = {Transition Metal-Catalyzed Construction of Benzyl/Allyl sp\(^3\) and Vinyl/Allenyl sp\(^2\) C-B Bonds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Organoboron compounds, such as benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates, have been synthesized via metal-catalyzed borylations of sp3 C-O and C-H bonds. Thus, Cu-catalyzed borylations of alcohols and their derivatives provide benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates via nucleophilic substitution. The employment of Ti(OiPr)4 turns the OH moiety into a good leaving group ('OTi'). The products of Pd-catalyzed oxidative borylations of allylic C-H bonds of alkenes were isolated and purified, and their application in the one-pot synthesis of stereodefined homoallyl alcohols was also investigated. Chapter 2 presents a copper-catalyzed synthesis of benzyl-, allyl-, and allenyl-boronates from benzylic, allylic, and propargylic alcohols, respectively, employing a commercially available catalyst precursor, [Cu(CH3CN)4]2+[BF4-]2, and Xantphos as the ligand. The borylation of benzylic alcohols was carried out at 100 oC with 5-10 mol \% [Cu(CH3CN)4]2+[BF4-]2, which afforded benzylic boronates in 32\%-95\% yields. With 10 mol \% [Cu(CH3CN)4]2+[BF4-]2, allylic boronates were provided in 53\%-89\% yields from the borylation of allylic alcohols at 60 or 100 oC. Secondary allylboronates were prepared in 72\%-84\% yields from the borylation of primary allylic alcohols, which also suggests that a nucleophilic substitution pathway is involved in this reaction. Allenylboronates were also synthesized in 72\%-89\% yields from the borylation of propargylic alcohols at 40 or 60 oC. This methodology can be extended to borylation of benzylic and allylic acetates. This protocol exhibits broad reaction scope (40 examples) and high efficiency (up to 95\% yield) under mild conditions, including the preparation of secondary allylic boronates. Preliminary mechanistic studies suggest that nucleophilic substitution is involved in this reaction. Chapter 3 reports an efficient methodology for the synthesis of vinyl-, allyl-, and (E)-2-boryl allylboronates from propargylic alcohols via copper-catalyzed borylation reactions under mild conditions. In the presence of a commercially available catalyst precursor (Cu(OAc)2 or Cu(acac)2) and ligand (Xantphos), the reaction affords the desired products in up to 92\% yield with a broad substrate scope (43 examples). Vinylboronates were synthesized in 50\%-83\% yields via Cu-catalyzed hydroboration of mono-substituted propargylic alcohols. With 1,1-disubstituted propargylic alcohols as the starting materials and Cu(OAc)2 as the catalyst precursor, a variety of allylboronates were synthesized in 44\%-83\% yields. The (E)-2-boryl allylboronates were synthesized in 54\%-92\% yields via the Cu-catalyzed diboration of propargylic alcohols. The stereoselectivity is different from the Pd(dba)2-catalyzed diboration of allenes that provided (Z)-2-boryl allylboronates predominantly. The isolation of an allenyl boronate as the reaction intermediate suggests that an SN2'-type reaction, followed by borylcupration, is involved in the mechanism of the diboration of propargylic alcohols. In chapter 4, a Pd-catalyzed allylic C-H borylation of alkenes is reported. The transformation exhibits high regioselectivity with a variety of linear alkenes, employing a Pd-pincer complex as the catalyst precursor, and the allylic boronate products were isolated and purified. This protocol can also be extended to one-pot carbonyl allylation reactions to provide homoallyl alcohols efficiently. An interesting mechanistic feature is that the reaction proceeds via a Pd(II)/Pd(IV) catalytic cycle. Formation of the Pd(IV) intermediate occurs by a unique combination of an NCNpincer complex and application of F-TEDA-BF4 as the oxidant. An important novelty of the present C-H borylation reaction is that all allyl-Bpin products can be isolated with usually high yields. This is probably a consequence of the application of the NCN-pincer complex as catalyst, which selectively catalyzes C-B bond formation avoiding subsequent C-B bond cleavage based side-reactions}, subject = {{\"U}bergangsmetall}, language = {en} } @unpublished{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diradical products of twisted double bonds}, series = {Nature Communications}, journal = {Nature Communications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160248}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @unpublished{StennettMattockVollertetal.2018, author = {Stennett, Tom and Mattock, James and Vollert, Ivonne and Vargas, Alfredo and Braunschweig, Holger}, title = {Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene}, series = {Angewandte Chemie, International Edition}, volume = {57}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201800671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160258}, pages = {4098-4102}, year = {2018}, abstract = {Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene.}, language = {en} }