@phdthesis{Boehnke2019, author = {B{\"o}hnke, Julian}, title = {Reaktivit{\"a}t niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme}, doi = {10.25972/OPUS-16333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, vielf{\"a}ltige Reaktivit{\"a}ten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. H{\"a}ufig begr{\"u}ndet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungew{\"o}hnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-F{\"a}higkeiten und der hohen π-Acidit{\"a}t der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivit{\"a}tsstudien mit den entsprechenden NHC-stabilisierten Bor-Bor-Mehrfachbindungssystemen wider. Zun{\"a}chst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgef{\"u}hrt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungsl{\"a}ngen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zug{\"a}nglichkeit f{\"u}r die Reaktivit{\"a}tsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollst{\"a}ndige, oxidative Spaltung der Bor-Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten gr{\"o}ßeren Teilbereich dieser Arbeit dar. Durch die enorme π-R{\"u}ckbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Im weiteren Verlauf konnte ein Mechanismus f{\"u}r die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) - einer Spezies, die f{\"u}r die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde - unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei {\"A}quivalenten tert-Butylisocyanid f{\"u}hrte zur Bildung eines Bis(boraketenimins). {\"A}hnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-R{\"u}ckbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Die Thermolyse der Verbindung f{\"u}hrte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: W{\"a}hrend ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung f{\"u}hrt und potentiell hochinteressante Reaktivit{\"a}ten erm{\"o}glicht. So f{\"u}hrte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B-B-Bindung und Insertion eines µ2-gebundenen CO-Molek{\"u}ls in die BB-Einheit. Die Tatsache, dass ein {\"a}hnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten F{\"a}higkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivit{\"a}t des Diborakumulens 7 gegen{\"u}ber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das R{\"u}hren von 7 unter einer H2-Atmosph{\"a}re f{\"u}hrte zur 1,2-Addition des H2-Molek{\"u}ls an die B2-Einheit unter Ausbildung eines trans-st{\"a}ndigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidit{\"a}t der CAAC-Liganden {\"u}ber das gesamte C-B-B-C-Grundger{\"u}st delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgef{\"u}hrt, um eine Hydridabstraktion aus dem L{\"o}sungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielf{\"a}ltige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu beg{\"u}nstigen, f{\"u}hrte zur Ausbildung verschiedener Tautomere. W{\"a}hrend das Produkt aus der formalen Addition und Insertion von zwei CO-Molek{\"u}len (24) lediglich unter CO-Atmosph{\"a}re stabil war, konnte unter Argonatmosph{\"a}re ein Tautomerengemisch von 25 mit intakter Bor-Bor-Bindung und einer Boraketeneinheit isoliert werden. W{\"a}hrend dieser Prozess vollst{\"a}ndig reversibel war, f{\"u}hrte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Dar{\"u}ber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollst{\"a}ndigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosph{\"a}ren, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen erm{\"o}glichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen f{\"u}hrte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchg{\"a}ngig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark {\"a}hnelte. Eine weitere Umsetzung von 22 mit zwei {\"A}quivalenten Diphenyldisulfid f{\"u}hrte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivit{\"a}tsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molek{\"u}len f{\"u}hrte zur Ausbildung einer Spezies mit einer Boraketenfunktionalit{\"a}t und einem Bors{\"a}ureesterderivat (30). F{\"u}r die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion {\"u}ber eine ungew{\"o}hnliche, sukzessive [2+1]-Cycloaddition an die koordinativ unges{\"a}ttigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton f{\"u}hrte zur Ausbildung eines f{\"u}nfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbr{\"u}ckter Bor-Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Br{\"u}ckner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsf{\"u}hrung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. W{\"a}hrend das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, f{\"u}hrten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. F{\"u}r 31 konnte dar{\"u}ber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander {\"u}berf{\"u}hrt werden konnte. Die Reaktion des Diborakumulens mit M{\"u}nzmetallhalogeniden ergab f{\"u}r die Umsetzung von 7 mit drei {\"A}quivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-f{\"o}rmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem {\"A}quivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilit{\"a}t, sodass sich nach einem Zeitraum von 24 Stunden bei erh{\"o}hter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-S{\"a}ure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren {\"A}quivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zun{\"a}chst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor-Bor-Bindung besitzt. Die Reaktion von 34 gegen{\"u}ber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments f{\"u}hrt hier zu einer erheblichen π-R{\"u}ckbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen f{\"u}r die CO-Schwingung in einer derartigen Funktionalit{\"a}t aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff f{\"u}hrte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor-Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verh{\"a}ltnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor-Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit besch{\"a}ftigte sich mit der Synthese und Reaktivit{\"a}t von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundger{\"u}st, C-C- und B-C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols {\"a}hneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der {\"U}bergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor-Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen erm{\"o}glichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an {\"U}bergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 m{\"o}glich war. Die Ausbildung eines quinoiden Systems f{\"u}hrte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 {\"A}quivalenten Zirkoniumtetrachlorid f{\"u}hrte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang dar{\"u}ber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen f{\"u}r [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche R{\"u}ckbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant h{\"o}here Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als {\"u}beraus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivit{\"a}tsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit besch{\"a}ftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid f{\"u}hrte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor-Bor-Mehrfachbindung. W{\"a}hrend die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor-Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben f{\"u}r 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten dar{\"u}ber hinaus zeigen, dass die Singulett-Zust{\"a}nde der synthetisierten Diborene stabiler als die Triplett-Zust{\"a}nde sind und dass die Triplett-Zust{\"a}nde der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zust{\"a}nde sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verst{\"a}ndnis dieser Verbindungsklasse.}, subject = {Bor}, language = {de} } @unpublished{BraunschweigKrummenacherLichtenbergetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Lichtenberg, Crispin and Mattock, James and Sch{\"a}fer, Marius and Schmidt, Uwe and Schneider, Christoph and Steffenhagen, Thomas and Ullrich, Stefan and Vargas, Alfredo}, title = {Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201609601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141981}, pages = {9}, year = {2016}, abstract = {Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.}, subject = {Metallocene}, language = {en} } @phdthesis{Griesbeck2020, author = {Griesbeck, Stefanie Ingrid}, title = {A Very Positive Image of Boron: Triarylborane Chromophores for Live Cell Imaging}, doi = {10.25972/OPUS-17992}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179921}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Efficient quadrupolar chromophores (A-pi-A) with triarylborane moieties as acceptors have been studied by the Marder group regarding their non-linear optical properties and two-photon absorption ability for many years. Within the present work, this class of dyes found applications in live-cell imaging. Therefore, the dyes need to be water-soluble and water-stable in diluted aqueous solutions, which was examined in Chapter 2. Furthermore, the influence of the pi-bridge on absorption and emission maxima, fluorescence quantum yields and especially the two-photon absorption properties of the chromophores was investigated in Chapter 3. In Chapter 4, a different strategy for the design of efficient two-photon excited fluorescence imaging dyes was explored using dipoles (D-A) and octupoles (DA3). Finding the optimum balance between water-stability and pi-conjugation and, therefore, red-shifted absorption and emission and high fluorescence quantum yields, was investigated in Chapter 5}, subject = {Borane}, language = {en} } @phdthesis{Prieschl2021, author = {Prieschl, Dominic}, title = {Reaktivit{\"a}tsstudien zu Diboranen(4) und NHC-stabilisierten µ-Hydridodiboranen(5)}, doi = {10.25972/OPUS-21074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210749}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die vorliegende Arbeit behandelt im ersten Abschnitt die Synthese und Reaktivit{\"a}t neuartiger Diborane(4). Ebenfalls wurde die Reaktivit{\"a}t von Dihalogendiboranen(4) gegen{\"u}ber Phenylazid untersucht, wobei symmetrische Vertreter unter Beibehalt der B-B-Bindung die f{\"u}nfgliedrigen B2N3 Heterocyclen 14 und 15 lieferten. Der zweite Abschnitt dieser Arbeit besch{\"a}ftigt sich mit der unerwarteten Reaktivit{\"a}t der NHC-stabilisierten μ-Hydridodiborane(5) XXIII und XXIV. Der abschließende Teil dieser Arbeit befasst sich mit den ersten Versuchen zur Darstellung eines CAAC-stabilisierten, Diboranyl-substituierten Borylens.}, subject = {Diborane}, language = {de} } @phdthesis{Muessig2020, author = {M{\"u}ssig, Jonas Heinrich}, title = {Synthese und Reaktvit{\"a}t von Gruppe 13 Elementhalogeniden gegen{\"u}ber metallischen und nicht-metallischen Lewis-Basen}, doi = {10.25972/OPUS-17983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen der vorliegenden Arbeit wurden Dibortetrahalogenide dargestellt, deren Eigenschaften strukturell sowie spektroskopisch analysiert und deren Reaktivit{\"a}t gegen{\"u}ber Lewis-basischen Hauptgruppenelementverbindungen untersucht. Durch anschließende Reaktivit{\"a}tsstudien konnten unter anderem neuartige Diborene dargestellt und analysiert werden. Weiterhin wurde die Verbindungsklasse der Elementhalogenide der Gruppe 13 in der Oxidationsstufe +2 (B, Ga, In) und +3 (In) bez{\"u}glich ihrer Reaktivit{\"a}t gegen{\"u}ber {\"U}bergangsmetall Lewis-Basen untersucht. Die gebildeten, neuartigen Bindungsmodi der Gruppe 13 Elemente am {\"U}bergangsmetall wurden strukturell, spektroskopisch sowie quantenchemisch analysiert.}, subject = {{\"U}bergangsmetallkomplex}, language = {de} } @phdthesis{Seufert2019, author = {Seufert, Jens}, title = {Synthese und Reduktionsverhalten neuer Lewis-Basen-Addukte des Bors sowie Redox-aktiver Ligandentransfer durch Silylene}, doi = {10.25972/OPUS-17398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, diverse Lewis-Basen f{\"u}r deren Einsatz zur Stabilisierung niedervalenter Borverbindungen zu testen. Dabei wurden neuartige Mono- und Diboran(4)-Addukte mit mesoionischen Carbenen, Phosphanen und Alkyl-verbr{\"u}ckten Carbenen synthetisiert, charakterisiert und deren Reduktionsverhalten getestet. Des Weiteren konnte gezeigt werden, dass elektronenreiche Bis(amidinato)- und Bis(guanidinato)silylene eine diverse Vielfalt an Reaktionstypen induzieren und dabei zu Redox-Reaktionen und Liganden{\"u}bertrag neigen.}, subject = {Bor}, language = {de} } @phdthesis{Ritschel2022, author = {Ritschel, Benedikt Tobias}, title = {Lewis-Basen-stabilisierte Bor-Bor-Mehrfachbindungssysteme - Reaktivit{\"a}tsstudien an Diboracumulenen und Dicyanodiborenen}, doi = {10.25972/OPUS-24330}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243306}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit umfasst im Wesentlichen Studien {\"u}ber die Reaktivit{\"a}t von Diboracumulenen sowie Dicyanodiborenen gegen{\"u}ber diversen Substraten verschiedener Substanzklassen, wie z. B. Acetylenen, Aminen, Aziden, Nitrilen, Isonitrilen und {\"U}bergangsmetallen. Auf diese Weise sollen zun{\"a}chst Einblicke in das unterschiedliche Reaktionsverhalten der niedervalenten Borverbindungen erm{\"o}glicht sowie ein Verst{\"a}ndnis f{\"u}r die erhaltenen, teils neuartigen, Bindungsmodi und Substanzklassen etabliert werden. Die jeweiligen MecAAC- und CycAAC-stabilisierten Verbindungen wurden hierbei auf den Einfluss des sterischen Anspruchs der Liganden in Bezug auf die Reaktivit{\"a}t untersucht. Die aufgef{\"u}hrten Kapitel beziehen sich daher auf die Reaktivit{\"a}t der Diboracumulene wie auch die der Dicyanodiborene gegen{\"u}ber Verbindungen jeweils einer bestimmten Substanzklasse. Die erhaltenen Produkte werden, soweit m{\"o}glich, miteinander verglichen.}, subject = {Bor}, language = {de} } @phdthesis{Englert2022, author = {Englert, Lukas}, title = {Synthese und Reaktivit{\"a}t Phosphan-stabilisierter Diborene}, doi = {10.25972/OPUS-24136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241365}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese und Reaktivit{\"a}t von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweiz{\"a}hnigen (84a-87c) und einz{\"a}hnigen Phosphanen (43a-c; 88a-89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen F{\"a}llen gelang es mithilfe der Molek{\"u}lstrukturen im Festk{\"o}rper die Verbindungen n{\"a}her zu untersuchen. Dabei konnten erstmalig Phosphan-verbr{\"u}ckte Diboran(6)-Verbindungen 86a-87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zur{\"u}ckzuf{\"u}hren ist. Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise f{\"u}r die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur f{\"u}r 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-{\"U}bergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend f{\"u}r eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der r{\"a}umliche Anspruch der Phosphane einen entscheidenden Stabilit{\"a}tsfaktor f{\"u}r das entstehende Phosphan-stabilisierte Diboren dar. Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a-98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbr{\"u}ckten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen f{\"u}r diese Verbindungsklasse typische NMR-spektroskopische und r{\"o}ntgenkristallographische Messdaten. Zus{\"a}tzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden n{\"a}her analysiert. Das Hauptaugenmerk der durchgef{\"u}hrten Forschungsarbeiten lag auf der Untersuchung der Reaktivit{\"a}t des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels f{\"u}r ein strukturell aufgekl{\"a}rtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollst{\"a}ndige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden. Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festk{\"o}rper und quantenchemisch n{\"a}her untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizit{\"a}t. Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). W{\"a}hrend f{\"u}r die Umsetzungen mit diversen Silanen nur {\"u}ber die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufkl{\"a}rung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallr{\"o}ntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112-113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zus{\"a}tzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H-1H-NOESY-NMR-Experimenten best{\"a}tigt werden. Das Diboren 48a zeigt auch ein reichhaltiges Reaktivit{\"a}tsverhalten gegen{\"u}ber kleinen Molek{\"u}len. Nach dem Austausch der Schutzgasatmosph{\"a}re gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden. G{\"a}nzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molek{\"u}len und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festk{\"o}rperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da f{\"u}r alle drei Strukturvorschl{\"a}ge experimentelle Hinweise gefunden werden k{\"o}nnen. Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erh{\"o}htem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen f{\"u}hrten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. F{\"u}r beide Reaktivit{\"a}ten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schl{\"u}sselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich f{\"u}r eine Vielzahl an Reaktivit{\"a}ten von 48a verantwortlich ist. Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen unges{\"a}ttigten Substraten. Die Reaktivit{\"a}t gegen{\"u}ber Aziden konnte hierbei nicht vollst{\"a}ndig aufgekl{\"a}rt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen. Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a-c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abh{\"a}ngig war. Das Azadiboretidin 123a konnte im Festk{\"o}rper n{\"a}her untersucht werden und stellt ein seltenes Beispiel f{\"u}r einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollst{\"a}ndig aufgekl{\"a}rtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-R{\"u}ckgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen f{\"u}r 124a {\"a}hnliche Bindungsparameter wie f{\"u}r ein literaturbekanntes π-acides NHC voraus. Die Reaktion von 48a mit terminalen Alkinen f{\"u}hrte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a-d. In L{\"o}sung konnten f{\"u}r 126c/d zus{\"a}tzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10\% NMR-spektroskopisch beobachtet werden. Im Festk{\"o}rper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen best{\"a}tigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabst{\"a}nden innerhalb der BCsp2B-Einheiten von 126a-c und 127d unterst{\"u}tzt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten l{\"a}sst. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festk{\"o}rper gibt einen Hinweis auf eine anf{\"a}ngliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die {\"u}ber eine 1,3-Umlagerung zur Bildung der 1,3-Diborete f{\"u}hrt. Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4-Diethinylbenzol die Darstellung der Mono- und Bis(1,3-dihydro-1,3-diborete) 128 und 129, wobei 129 nur im Festk{\"o}rper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5-Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3-n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen f{\"u}r das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen {\"u}ber den zentralen Benzolring voraus, was die Ursache f{\"u}r die beobachtete Fluoreszenz sein k{\"o}nnte. Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a-e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem r{\"a}umlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen L{\"o}slichkeit in g{\"a}ngigen L{\"o}sungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abh{\"a}ngig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilit{\"a}t der Diborane(4) 132b/c gegen{\"u}ber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht. Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gew{\"a}hlten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivit{\"a}t wurde jedoch im Rahmen dieser Arbeit nicht durchgef{\"u}hrt. Die Schl{\"u}sselschritte des Reaktionsmechanismus zur Bildung von 133 f{\"u}hren h{\"o}chstwahrscheinlich wieder {\"u}ber das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133. Mit dieser Arbeit ist es gelungen, neue Erkenntnisse {\"u}ber die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane er{\"o}ffnen diesen Diborenen eine einzigartige Reaktivit{\"a}t, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft k{\"o}nnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. W{\"u}nschenswert w{\"a}re es die Diboren-Monomere miteinander zu Ketten zu verkn{\"u}pfen.}, subject = {Bor}, language = {de} } @phdthesis{Hagspiel2022, author = {Hagspiel, Stephan Alexander}, title = {Synthesis and Reactivity of Pseudohalide-substituted Boranes and Borylenes}, doi = {10.25972/OPUS-24945}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249459}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work involves the synthesis and reactivity of pseudohalide-substituted boranes and borylenes. A series of compounds of the type (CAAC)BR2Y (CAAC = cyclic alkyl(amino)carbene; R = H, Br; Y = CN, NCS, PCO) were prepared first. The two-electron reduction of (CAAC)BBr2Y (Y = CN, NCS) in the presence of a second Lewis base L (L = N-heterocyclic carbene) resulted in the formation of the corresponding doubly Lewis base-stabilized pseudohaloborylenes (CAAC)(L)BY. These borylenes show versatile reactivity patterns, including their oxidation to the corresponding radical cations, coordination via the respective pseudohalide substituent to group 6 metal carbonyl complexes, as well as a boron-centered protonation with Br{\o}nsted acids to boronium cations. Reduction of (CAAC)BBr2(NCS) in the absence of a second donor ligand, led to the formation of boron-doped thiazolothiazoles via reductive dimerization of two isothiocyanatoborylenes. These B,N,S-heterocycles possess a low degree of aromaticity as well as interesting photophysical properties and can furthermore be protonated as well as hydroborated. Additionally, CAAC adducts of the parent boraphosphaketene (CAAC)BH2(PCO) could be prepared, which readily reacted with boroles [Ph4BR'] (R' = aryl) via decarbonylation in a ring expansion reaction. The obtained 1,2-phosphaborinines represent B,P-isosteres of benzene and consequently could be coordinated to metal carbonyl complexes of the chromium triade via η6-coordination, resulting in new half-sandwich complexes thereof.}, subject = {Borylene}, language = {en} } @phdthesis{Rempel2022, author = {Rempel, Anna}, title = {Synthese und Reaktivit{\"a}t von Boryldiazenidokomplexen}, doi = {10.25972/OPUS-24741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und Reaktivit{\"a}t von Boryldiazenidokomplexen. Im ersten Abschnitt wird die Synthese von neuartigen Boryldiazenidokomplexen behandelt. Im zweiten Teil werden Studien zu den Reaktivit{\"a}ten dieser Verbindungen gegen{\"u}ber Elektrophilen, Lewis-Basen sowie Reaktionen an den Element-Halogen-Bindungen vorgestellt.}, subject = {{\"U}bergangsmetallkomplexe}, language = {de} }