@article{AtaeeMaghsoudiLatifietal.2019, author = {Ataee, Mohammad Sadegh and Maghsoudi, Yasser and Latifi, Hooman and Fadaie, Farhad}, title = {Improving estimation accuracy of growing stock by multi-frequency SAR and multi-spectral data over Iran's heterogeneously-structured broadleaf Hyrcanian forests}, series = {Forests}, volume = {10}, journal = {Forests}, number = {8}, issn = {1999-4907}, doi = {10.3390/f10080641}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197212}, year = {2019}, abstract = {Via providing various ecosystem services, the old-growth Hyrcanian forests play a crucial role in the environment and anthropogenic aspects of Iran and beyond. The amount of growing stock volume (GSV) is a forest biophysical parameter with great importance in issues like economy, environmental protection, and adaptation to climate change. Thus, accurate and unbiased estimation of GSV is also crucial to be pursued across the Hyrcanian. Our goal was to investigate the potential of ALOS-2 and Sentinel-1's polarimetric features in combination with Sentinel-2 multi-spectral features for the GSV estimation in a portion of heterogeneously-structured and mountainous Hyrcanian forests. We used five different kernels by the support vector regression (nu-SVR) for the GSV estimation. Because each kernel differently models the parameters, we separately selected features for each kernel by a binary genetic algorithm (GA). We simultaneously optimized R\(^2\) and RMSE in a suggested GA fitness function. We calculated R\(^2\), RMSE to evaluate the models. We additionally calculated the standard deviation of validation metrics to estimate the model's stability. Also for models over-fitting or under-fitting analysis, we used mean difference (MD) index. The results suggested the use of polynomial kernel as the final model. Despite multiple methodical challenges raised from the composition and structure of the study site, we conclude that the combined use of polarimetric features (both dual and full) with spectral bands and indices can improve the GSV estimation over mixed broadleaf forests. This was partially supported by the use of proposed evaluation criterion within the GA, which helped to avoid the curse of dimensionality for the applied SVR and lowest over estimation or under estimation.}, language = {en} } @article{MayrKuenzerGessneretal.2019, author = {Mayr, Stefan and Kuenzer, Claudia and Gessner, Ursula and Klein, Igor and Rutzinger, Martin}, title = {Validation of earth observation time-series: a review for large-area and temporally dense land surface products}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {22}, issn = {2072-4292}, doi = {10.3390/rs11222616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193202}, year = {2019}, abstract = {Large-area remote sensing time-series offer unique features for the extensive investigation of our environment. Since various error sources in the acquisition chain of datasets exist, only properly validated results can be of value for research and downstream decision processes. This review presents an overview of validation approaches concerning temporally dense time-series of land surface geo-information products that cover the continental to global scale. Categorization according to utilized validation data revealed that product intercomparisons and comparison to reference data are the conventional validation methods. The reviewed studies are mainly based on optical sensors and orientated towards global coverage, with vegetation-related variables as the focus. Trends indicate an increase in remote sensing-based studies that feature long-term datasets of land surface variables. The hereby corresponding validation efforts show only minor methodological diversification in the past two decades. To sustain comprehensive and standardized validation efforts, the provision of spatiotemporally dense validation data in order to estimate actual differences between measurement and the true state has to be maintained. The promotion of novel approaches can, on the other hand, prove beneficial for various downstream applications, although typically only theoretical uncertainties are provided.}, language = {en} } @article{AbdullahiWesselHuberetal.2019, author = {Abdullahi, Sahra and Wessel, Birgit and Huber, Martin and Wendleder, Anna and Roth, Achim and Kuenzer, Claudia}, title = {Estimating penetration-related X-band InSAR elevation bias: a study over the Greenland ice sheet}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {24}, issn = {2072-4292}, doi = {10.3390/rs11242903}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193902}, year = {2019}, abstract = {Accelerating melt on the Greenland ice sheet leads to dramatic changes at a global scale. Especially in the last decades, not only the monitoring, but also the quantification of these changes has gained considerably in importance. In this context, Interferometric Synthetic Aperture Radar (InSAR) systems complement existing data sources by their capability to acquire 3D information at high spatial resolution over large areas independent of weather conditions and illumination. However, penetration of the SAR signals into the snow and ice surface leads to a bias in measured height, which has to be corrected to obtain accurate elevation data. Therefore, this study purposes an easy transferable pixel-based approach for X-band penetration-related elevation bias estimation based on single-pass interferometric coherence and backscatter intensity which was performed at two test sites on the Northern Greenland ice sheet. In particular, the penetration bias was estimated using a multiple linear regression model based on TanDEM-X InSAR data and IceBridge laser-altimeter measurements to correct TanDEM-X Digital Elevation Model (DEM) scenes. Validation efforts yielded good agreement between observations and estimations with a coefficient of determination of R\(^2\) = 68\% and an RMSE of 0.68 m. Furthermore, the study demonstrates the benefits of X-band penetration bias estimation within the application context of ice sheet elevation change detection.}, language = {en} } @article{TrappeKneisel2019, author = {Trappe, Julian and Kneisel, Christof}, title = {Geophysical and sedimentological investigations of Peatlands for the assessment of lithology and subsurface water pathways}, series = {Geosciences}, volume = {9}, journal = {Geosciences}, number = {3}, doi = {10.3390/geosciences9030118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201699}, pages = {118}, year = {2019}, abstract = {Peatlands located on slopes (herein called slope bogs) are typical landscape units in the Hunsrueck, a low mountain range in Southwestern Germany. The pathways of the water feeding the slope bogs have not yet been documented and analyzed. The identification of the different mechanisms allowing these peatlands to originate and survive requires a better understanding of the subsurface lithology and hydrogeology. Hence, we applied a multi-method approach to two case study sites in order to characterize the subsurface lithology and to image the variable spatio-temporal hydrological conditions. The combination of Electrical Resistivity Tomography (ERT) and an ERT-Monitoring and Ground Penetrating Radar (GPR), in conjunction with direct methods and data (borehole drilling and meteorological data), allowed us to gain deeper insights into the subsurface characteristics and dynamics of the peatlands and their catchment area. The precipitation influences the hydrology of the peatlands as well as the interflow in the subsurface. Especially, the geoelectrical monitoring data, in combination with the precipitation and temperature data, indicate that there are several forces driving the hydrology and hydrogeology of the peatlands. While the water content of the uppermost layers changes with the weather conditions, the bottom layer seems to be more stable and changes to a lesser extent. At the selected case study sites, small differences in subsurface properties can have a huge impact on the subsurface hydrogeology and the water paths. Based on the collected data, conceptual models have been deduced for the two case study sites.}, language = {en} } @article{Schamel2015, author = {Schamel, Johannes}, title = {Ableitung von Pr{\"a}ferenzen aus GPS-Trajektorien bei landschaftsbezogenen Erholungsaktivit{\"a}ten}, series = {AGIT - Journal f{\"u}r Angewandte Geoinformatik}, volume = {2015}, journal = {AGIT - Journal f{\"u}r Angewandte Geoinformatik}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153590}, pages = {9}, year = {2015}, abstract = {No abstract available.}, language = {de} } @article{LandmannSchrammColditzetal.2010, author = {Landmann, Tobias and Schramm, Matthias and Colditz, Rene R. and Dietz, Andreas and Dech, Stefan}, title = {Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68628}, year = {2010}, abstract = {Wetlands in West Africa are among the most vulnerable ecosystems to climate change. West African wetlands are often freshwater transfer mechanisms from wetter climate regions to dryer areas, providing an array of ecosystem services and functions. Often wetland-specific data in Africa is only available on a per country basis or as point data. Since wetlands are challenging to map, their accuracies are not well considered in global land cover products. In this paper we describe a methodology to map wetlands using well-corrected 250-meter MODIS time-series data for the year 2002 and over a 360,000 km2 large study area in western Burkina Faso and southern Mali (West Africa). A MODIS-based spectral index table is used to map basic wetland morphology classes. The index uses the wet season near infrared (NIR) metrics as a surrogate for flooding, as a function of the dry season chlorophyll activity metrics (as NDVI). Topographic features such as sinks and streamline areas were used to mask areas where wetlands can potentially occur, and minimize spectral confusion. 30-m Landsat trajectories from the same year, over two reference sites, were used for accuracy assessment, which considered the area-proportion of each class mapped in Landsat for every MODIS cell. We were able to map a total of five wetland categories. Aerial extend of all mapped wetlands (class "Wetland") is 9,350 km2, corresponding to 4.3\% of the total study area size. The classes "No wetland"/"Wetland" could be separated with very high certainty; the overall agreement (KHAT) was 84.2\% (0.67) and 97.9\% (0.59) for the two reference sites, respectively. The methodology described herein can be employed to render wide area base line information on wetland distributions in semi-arid West Africa, as a data-scarce region. The results can provide (spatially) interoperable information feeds for inter-zonal as well as local scale water assessments.}, subject = {Geologie}, language = {en} } @article{ConradFritschZeidleretal.2010, author = {Conrad, Christopher and Fritsch, Sebastian and Zeidler, Julian and R{\"u}cker, Gerd and Dech, Stefan}, title = {Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68630}, year = {2010}, abstract = {The overarching goal of this research was to explore accurate methods of mapping irrigated crops, where digital cadastre information is unavailable: (a) Boundary separation by object-oriented image segmentation using very high spatial resolution (2.5-5 m) data was followed by (b) identification of crops and crop rotations by means of phenology, tasselled cap, and rule-based classification using high resolution (15-30 m) bi-temporal data. The extensive irrigated cotton production system of the Khorezm province in Uzbekistan, Central Asia, was selected as a study region. Image segmentation was carried out on pan-sharpened SPOT data. Varying combinations of segmentation parameters (shape, compactness, and color) were tested for optimized boundary separation. The resulting geometry was validated against polygons digitized from the data and cadastre maps, analysing similarity (size, shape) and congruence. The parameters shape and compactness were decisive for segmentation accuracy. Differences between crop phenologies were analyzed at field level using bi-temporal ASTER data. A rule set based on the tasselled cap indices greenness and brightness allowed for classifying crop rotations of cotton, winter-wheat and rice, resulting in an overall accuracy of 80 \%. The proposed field-based crop classification method can be an important tool for use in water demand estimations, crop yield simulations, or economic models in agricultural systems similar to Khorezm.}, subject = {Geologie}, language = {en} } @article{Sponholz1988, author = {Sponholz, Barbara}, title = {Beobachtungen zur Morphodynamik an Koris des s{\"u}dlichen Air-Vorlandes (Niger)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53579}, year = {1988}, abstract = {Am Beispiel von vier Koris l) (T{\´e}loua, Barghot, Tazol{\´e}, Oufagu{\´e}dout) des s{\"u}dlichen Air-Vorlandes werden Beobachtungen zum aktuellen morphodynamischen Geschehen dieser Region vorgestellt. Durch die regionalen Unterschiede der durchschnittlichen j{\"a}hrlichen Niederschlagsh{\"o}hen und durch unterschiedliche Charakteristika ihrer Einzugsgebiete k{\"o}nnen diese vier Koris als typische Vertreter verschiedener fluviatil/{\"a}olischer Formungsgruppen angesehen werden. Der {\"U}bergang von vorherrschend fluviatiler zu vorherrschend {\"a}olischer Formung liegt dabei im Bereich des Kori Oufagu{\´e}dout, im {\"o}stlichen Teil des Untersuchungsraumes. Hier konnte durch mehrere Sch{\"u}rfe auch der zeitliche {\"U}bergang zwischen beiden Formungskreisen in der j{\"u}ngeren Reliefgeschichte nachgewiesen werden.}, subject = {Geographie}, language = {de} } @article{GlaserSponholz1993, author = {Glaser, R{\"u}diger and Sponholz, Barbara}, title = {Erste Untersuchungen von Hangrutschungen an der Frankenh{\"o}he}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53615}, year = {1993}, abstract = {Der vorliegende Beitrag faßt den derzeitigen Stand der Untersuchungen von Hangrutschungen im Bereich der Frankenh{\"o}he, die im Rahmen des EPOCH-Programmes durchgef{\"u}hrt wurden, zusammen. Nach einer Inventarisierung der regionalen Rutschungsereignisse wird die Rutschung bei Obergailnau in einer geomorphologischen Detailkartierung vorgestellt. F{\"u}r die Ausl{\"o}sung der Rutschung kommen mehrere Faktoren in Betracht: neben einer erh{\"o}hten Rutschungsanf{\"a}lligkeit aufgrund der geologisch-tektonischen Verh{\"a}ltnisse muß v.a. auch eine Einflußnahme durch die Landnutzung mit ber{\"u}cksichtigt werden. Dazu z{\"a}hlen Steinbrucharbeiten in unmittelbarer N{\"a}he der Rutschung, aber auch Wasserbaumaßnahmen am Schloßberg. In diesem potentielllabilisierten Gebiet kam es nach {\"u}berdurchschnittlichen Niederschl{\"a}gen Anfang 1958 zu einer {\"U}berschreitung der Belastungsgrenze des Hanges, die sich in einer großfl{\"a}chigen Rutschung {\"a}ußerte. Die weiteren Untersuchungen sollen zeigen, ob sich die f{\"u}r Obergailnau herausgestellten Faktorenkomplexe im regionalen Rahmen verifizieren lassen.}, subject = {Geographie}, language = {de} } @article{Sponholz1990, author = {Sponholz, Barbara}, title = {Sedimentologische Untersuchungen an Verf{\"u}llungen von Silikatkarstformen im Djado und an der Stufe von Bilma (NE-Niger)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56650}, year = {1990}, abstract = {Vorstellung eines durch die Jubil{\"a}umsstiftung der Universit{\"a}t W{\"u}rzburg gef{\"o}rderten Forschungsvorhabens}, subject = {Geographie}, language = {de} }