@phdthesis{Bertram2003, author = {Bertram, Silke}, title = {Late Quaternary sand ramps in south-western Namibia - Nature, origin and palaeoclimatological significance}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6176}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Sand ramps have been (and still are) neglected in geomorphological research. Only recently any awareness of their potential of being a major source of palaeoenvironmental information, thanks to their multi-process character, has been developed. In Namibia, sand ramps were terra incognita. This study defines, classifies and systematizes sand ramps, investigates the formative processes and examines their palaeoenvironmental significance. The study region is located between the coastal Namib desert and the Great Escarpment, between the Tiras Mountains to the north and the Aus area to the south. Two lines of work were followed: geomorphological and sedimentological investigations in the field, assisted by interpretation of satellite images, aerial photographs and topographic maps, and palaeopedological and sedimentological analytical work in the laboratory. Two generations of sand ramps could be identified. The older generation, represented by a single sand ramp within the study region, is characterized by the presence of old basal sediments. The bulk of the sand ramps is assigned to the young generation, which is divided into three morpho-types: in windward positions voluminous ramps are found, in leeward positions low-volume ramps exist, either of very high or very low slope angle. The most distinct characteristic of sand ramp sediments is their formation by interacting aeolian deposition and fluvial slope wash. The last period of deposition, which shaped all the entire young sand ramps, but also the upper part of the old ramp, is suggested to have occurred after c. 40 ka BP, implying a highly dynamic climatic system during that time, with seasonal aridity and low-frequency, but high-intensity rainfall. A phase of environmental stability followed, most likely around 25 ka BP, supporting growth of vegetation, stabilization and consolidation of the sediments as well as soil formation. Subsequently, the profile was truncated and a desert pavement formed, under climatic conditions comparable to those of the present semi-desert. The ramps were then largely cut off from the bedrock slopes, implying a change towards higher ecosystem variability. As the final major process, recent and modern aeolian sands accumulated on the upper ramp slopes. A luminescence date for the recent sand places their deposition at about 16 ka BP, close to the Last Glacial Maximum. Regarding the source of the sands, a local origin is proposed. For the sand ramp of the old generation the "basic cycle" of initial deposition, stabilization and denudation occurred twelve times, including a phase of calcrete and/or root-cast formation in each of them, adding up to around 60 changes in morphodynamics altogether. At least nine of these cycles took place between 105 ka BP and the LGM, indicating that the general cooling trend during the Late Pleistocene was subject to a high number of oscillations of the environmental conditions not identified before for southern Namibia. Due to the high resolution obtained by the study of sand ramp sediments, but also due to the very special situation of the study area in a desert margin, 100 km from the South Atlantic and in the transition zone between summer and winter rainfall, correlation with stratigraphies (of mostly lower resolution) established for different regions in southern Africa did not appear promising. In conclusion, sand ramps generally serve as a valuable tool for detailed deciphering of past morphodynamics and thereby palaeoenvironmental conditions. For south-west Namibia, sand ramps shed some more light on the Late Quaternary landscape evolution.}, subject = {Namibia }, language = {en} }