@phdthesis{Krause2024, author = {Krause, Julian}, title = {Auswirkungen des Klimawandels auf charakteristische B{\"o}den in Unterfranken unter Ber{\"u}cksichtigung bodenhydrologischer Monitoringdaten (2018 bis 2022)}, doi = {10.25972/OPUS-36066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360668}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die mit dem Klimawandel einhergehenden Umweltver{\"a}nderungen, wie steigende Temperaturen, Abnahme der Sommer- und Zunahme der Winterniederschl{\"a}ge, h{\"a}ufigere und l{\"a}ngere Trockenperioden, zunehmende Starkniederschl{\"a}ge, St{\"u}rme und Hitzewellen betreffen besonders den Bodenwasserhaushalt in seiner zentralen Regelungsfunktion f{\"u}r den Landschaftswasserhaushalt. Von der Wasserverf{\"u}gbarkeit im Boden h{\"a}ngen zu einem sehr hohen Grad auch die Ertr{\"a}ge der Land- und Forstwirtschaft ab. Eine besonders große Bedeutung kommt dabei der Wasserspeicherkapazit{\"a}t der B{\"o}den zu, da w{\"a}hrend einer Trockenphase die effektiven Niederschl{\"a}ge den Wasserbedarf der Pflanzen nicht decken k{\"o}nnen und das bereits gespeicherte Bodenwasser das {\"U}berleben der Pflanzen sicherstellen kann. F{\"u}r die land- und forstwirtschaftlichen Akteure sind in diesem Kontext quantitative und qualitative Aussagen zu den Auswirkungen des Klimawandels auf den Boden essenziell, um die notwendigen Anpassungsmaßnahmen f{\"u}r ihre Betriebe treffen zu k{\"o}nnen. Zielsetzungen der vorliegenden Arbeit bestehen darin, die Dynamik der Bodenfeuchte in unterfr{\"a}nkischen B{\"o}den besser zu verstehen, die Datenlage zum Verlauf der Bodenfeuchte zu verbessern und die Auswirkungen von prognostizierten klimatischen Parametern absch{\"a}tzen zu k{\"o}nnen. Hierzu wurden an sechs f{\"u}r ihre jeweiligen Naturr{\"a}ume und hinsichtlich ihrer anthropogenen Nutzung charakteristischen Standorten meteorologisch-bodenhydrologische Messstationen installiert. Die Messstationen befinden sich in einem Rigosol auf Buntsandstein in einem Weinberg bei B{\"u}rgstadt sowie auf einer Parabraunerde im L{\"o}ssgebiet bei Herchsheim unter Ackernutzung. Am {\"U}bergang von Muschelkalk in Keuper befinden sich die Stationen in Obbach, wo eine Braunerde unter Ackernutzung vorliegt und im Forst des Universit{\"a}tswalds Sailershausen werden die Untersuchungen in einer Braunerde-Terra fusca durchgef{\"u}hrt. Im Forst befinden sich auch die Stationen in Oberrimbach mit Braunerden aus Sandsteinkeuper und in Willmars mit Braunerden aus Buntsandstein. Der Beobachtungszeitraum dieser Arbeit reicht von Juli 2018 bis November 2022. In diesen Zeitraum fiel die dreij{\"a}hrige D{\"u}rre von 2018 bis 2020, das Jahr 2021 mit einem durchschnittlichen Witterungsverlauf und das D{\"u}rrejahr 2022. Das Langzeitmonitoring wurde von umfangreichen Gel{\"a}nde- und Laboranalysen der grundlegenden bodenkundlichen Parameter der Bodenprofile und der Standorte begleitet. Die bodengeographischen-geomorphologischen Standortanalysen bilden zusammen mit den qualitativen Auswertungen der Bodenfeuchtezeitreihen die Grundlage f{\"u}r Einsch{\"a}tzungen zu den Auswirkungen des Klimawandels auf den Bodenwasserhaushalt. Verl{\"a}ssliche Aussagen zum Bodenwasserhaushalt k{\"o}nnen nur auf Grundlage von zeitlich und r{\"a}umlich hoch aufgel{\"o}sten Daten getroffen werden. Bodenfeuchtezeitreihen zusammen mit den bodenphysikalischen Daten lagen in dieser Datenqualit{\"a}t f{\"u}r Unterfranken bisher nur sehr vereinzelt vor. Die vorliegenden Ergebnisse zeigen, dass die untersuchten B{\"o}den entsprechend den jeweiligen naturr{\"a}umlichen Gegebenheiten sehr unterschiedliche bodenhydrologische Eigenschaften aufweisen. W{\"a}hrend langer Trockenphasen k{\"o}nnen beispielsweise die Parabraunerden am Standort Herchsheim wegen ihrer h{\"o}heren Wasserspeicherkapazit{\"a}t die Pflanzen l{\"a}nger mit Wasser versorgen als die sandigen Braunerden am Standort Oberrimbach. Die Bodenfeuchteregime im Beobachtungszeitraum waren sehr stark vom Witterungsverlauf einzelner Jahre abh{\"a}ngig. Das Bodenfeuchteregime bei einem durchschnittlichen Witterungsverlauf wie in 2021 zeichnet sich durch eine langsame Abnahme der Bodenfeuchte ab Beginn der Vegetationsperiode im Fr{\"u}hjahr aus. Regelm{\"a}ßige Niederschl{\"a}ge im Fr{\"u}hjahr f{\"u}llen den oberfl{\"a}chennahen Bodenwasserspeicher immer wieder auf und sichern den Bodenwasservorrat in der Tiefe bis in den Hochsommer. Im Hochsommer k{\"o}nnen Pflanzen dann w{\"a}hrend der Trockenphasen ihren Wasserbedarf aus den tieferen Horizonten decken. Im Gegensatz dazu nimmt die Bodenfeuchte in D{\"u}rrejahren wie 2018 bis 2020 oder 2022 bereits im Fr{\"u}hjahr bis in die untersten Horizonte stark ab. Die nutzbare Feldkapazit{\"a}t ist zum Teil schon im Juni weitgehend ausgesch{\"o}pft, womit f{\"u}r sp{\"a}tere Trockenphasen kein Bodenwasser mehr zur Verf{\"u}gung steht. Die Herbst- und Winterniederschl{\"a}ge s{\"a}ttigen den Bodenwasservorrat wieder bis zur Feldkapazit{\"a}t auf. Bei tiefreichender Ersch{\"o}pfung des Bodenwassers wurde die Feldkapazit{\"a}t erst im Januar oder Februar erreicht. Im Zuge der land- und forstwirtschaftlichen Nutzung ist eine gute Datenlage zu den bodenkundlichen und stand{\"o}rtlichen Gegebenheiten f{\"u}r klimaadaptierte Anpassungsstrategien essentiell. Wichtige Zielsetzungen bestehen grunds{\"a}tzlich in der Erhaltung der Bodenfunktionen, in der Verbesserung der Infiltrationskapazit{\"a}t und Wasserspeicherkapazit{\"a}t. Hier kommt dem Boden als interaktive Austauschfl{\"a}che zwischen den Sph{\"a}ren und damit dem Bodenschutz eine zentrale Bedeutung zu. Die in Zukunft erwarteten klimatischen Bedingungen stellen an jeden Boden andere Herausforderungen, welchen mit stand{\"o}rtlich abgestimmten Bodenschutzmaßnahmen begegnet werden kann.}, subject = {Bodengeografie}, language = {de} } @article{WurmStarkZhuetal.2019, author = {Wurm, Michael and Stark, Thomas and Zhu, Xiao Xiang and Weigand, Matthias and Taubenb{\"o}ck, Hannes}, title = {Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks}, series = {ISPRS Journal of Photogrammetry and Remote Sensing}, volume = {150}, journal = {ISPRS Journal of Photogrammetry and Remote Sensing}, doi = {10.1016/j.isprsjprs.2019.02.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233799}, pages = {59-69}, year = {2019}, abstract = {Unprecedented urbanization in particular in countries of the global south result in informal urban development processes, especially in mega cities. With an estimated 1 billion slum dwellers globally, the United Nations have made the fight against poverty the number one sustainable development goal. To provide better infrastructure and thus a better life to slum dwellers, detailed information on the spatial location and size of slums is of crucial importance. In the past, remote sensing has proven to be an extremely valuable and effective tool for mapping slums. The nature of used mapping approaches by machine learning, however, made it necessary to invest a lot of effort in training the models. Recent advances in deep learning allow for transferring trained fully convolutional networks (FCN) from one data set to another. Thus, in our study we aim at analyzing transfer learning capabilities of FCNs to slum mapping in various satellite images. A model trained on very high resolution optical satellite imagery from QuickBird is transferred to Sentinel-2 and TerraSAR-X data. While free-of-charge Sentinel-2 data is widely available, its comparably lower resolution makes slum mapping a challenging task. TerraSAR-X data on the other hand, has a higher resolution and is considered a powerful data source for intra-urban structure analysis. Due to the different image characteristics of SAR compared to optical data, however, transferring the model could not improve the performance of semantic segmentation but we observe very high accuracies for mapped slums in the optical data: QuickBird image obtains 86-88\% (positive prediction value and sensitivity) and a significant increase for Sentinel-2 applying transfer learning can be observed (from 38 to 55\% and from 79 to 85\% for PPV and sensitivity, respectively). Using transfer learning proofs extremely valuable in retrieving information on small-scaled urban structures such as slum patches even in satellite images of decametric resolution.}, language = {en} } @article{TaubenboeckWeigandEschetal.2019, author = {Taubenb{\"o}ck, H. and Weigand, M. and Esch, T. and Staab, J. and Wurm, M. and Mast, J. and Dech, S.}, title = {A new ranking of the world's largest cities—Do administrative units obscure morphological realities?}, series = {Remote Sensing of Environment}, volume = {232}, journal = {Remote Sensing of Environment}, doi = {10.1016/j.rse.2019.111353}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240634}, year = {2019}, abstract = {With 37 million inhabitants, Tokyo is the world's largest city in UN statistics. With this work we call this ranking into question. Usually, global city rankings are based on nationally collected population figures, which rely on administrative units. Sprawling urban growth, however, leads to morphological city extents that may surpass conventional administrative units. In order to detect spatial discrepancies between the physical and the administrative city, we present a methodology for delimiting Morphological Urban Areas (MUAs). We understand MUAs as a territorially contiguous settlement area that can be distinguished from low-density peripheral and rural hinterlands. We design a settlement index composed of three indicators (settlement area, settlement area proportion and density within the settlements) describing a gradient of built-up density from the urban center to the periphery applying a sectoral monocentric city model. We assume that the urban-rural transition can be defined along this gradient. With it, we re-territorialize the conventional administrative units. Our data basis are recent mapping products derived from multi-sensoral Earth observation (EO) data - namely the Global Urban Footprint (GUF) and the GUF Density (GUF-DenS) - providing globally consistent knowledge about settlement locations and densities. For the re-territorialized MUAs we calculate population numbers using WorldPop data. Overall, we cover the 1692 cities with >300,000 inhabitants on our planet. In our results we compare the consistently re-territorialized MUAs and the administrative units as well as their related population figures. We find the MUA in the Pearl River Delta the largest morphologically contiguous urban agglomeration in the world with a calculated population of 42.6 million. Tokyo, in this new list ranked number 2, loses its top position. In rank-size distributions we present the resulting deviations from previous city rankings. Although many MUAs outperform administrative units by area, we find that, contrary to what we assumed, in most cases MUAs are considerably smaller than administrative units. Only in Europe we find MUAs largely outweighing administrative units in extent.}, language = {en} } @phdthesis{KanmegneTamga2024, author = {Kanmegne Tamga, Dan Emmanuel}, title = {Modelling Carbon Sequestration of Agroforestry Systems in West Africa using Remote Sensing}, doi = {10.25972/OPUS-36926}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369269}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The production of commodities such as cocoa, rubber, oil palm and cashew, is the main driver of deforestation in West Africa (WA). The practiced production systems correspond to a land managment approach referred to as agroforestry systems (AFS), which consist of managing trees and crops on the same unit of land.Because of the ubiquity of trees, AFS reported as viable solution for climate mitigation; the carbon sequestrated by the trees could be estimated with remote sensing (RS) data and methods and reported as emission reduction efforts. However, the diversity in AFS in relation to their composition, structure and spatial distribution makes it challenging for an accurate monitoring of carbon stocks using RS. Therefore, the aim of this research is to propose a RS-based approach for the estimation of carbon sequestration in AFS across the climatic regions of WA. The main objectives were to (i) provide an accurate classification map of AFS by modelling the spatial distribution of the classification error; (ii) estimate the carbon stock of AFS in the main climatic regions of WA using RS data; (iii) evaluate the dynamic of carbon stocks within AFS across WA. Three regions of interest (ROI) were defined in Cote d'Ivoire and Burkina Faso, one in each climatic region of WA namely the Guineo-Congolian, Guinean and Sudanian, and three field campaigns were carried out for data collection. The collected data consisted of reference points for image classification, biometric tree measurements (diameter, height, species) for biomass estimation. A total of 261 samples were collected in 12 AFS across WA. For the RS data, yearly composite images from Sentinel-1 and -2 (S1 and S2), ALOS-PALSAR and GEDI data were used. A supervised classification using random forest (RF) was implemented and the classification error was assessed using the Shannon entropy generated from the class probabilities. For carbon estimation, different RS data, machine learning algorithms and carbon reference sources were compared for the prediction of the aboveground biomass in AFS. The assessment of the carbon dynamic was carried between 2017 and 2021. An average carbon map was genrated and use as reference for the comparison of annual carbon estimations, using the standard deviation as threshold. As far as the results are concerned, the classification accuracy was higher than 0.9 in all the ROIs, and AFS were mainly represented by rubber (38.9\%), cocoa (36.4\%), palm (10.8\%) in the ROI-1, mango (15.2\%) and cashew (13.4\%) in ROI-2, shea tree (55.7\%) and African locust bean (28.1\%) in ROI-3. However, evidence of misclassification was found in cocoa, mango, and shea butter. The assessment of the classification error suggested that the error level was higher in the ROI-3 and ROI-1. The error generated from the entropy was able to reduced the level of misclassification by 63\% with 11\% of loss of information. Moreover, the approach was able to accuretely detect encroachement in protected areas. On carbon estimation, the highest prediction accuracy (R²>0.8) was obtained for a RF model using the combination of S1 and S2 and AGB derived from field measurements. Predictions from GEDI could only be used as reference in the ROI-1 but resulted in a prediction error was higher in cashew, mango, rubber and cocoa plantations, and the carbon stock level was higher in African locust bean (43.9 t/ha), shea butter (15 t/ha), cashew (13.8 t/ha), mango (12.8 t/ha), cocoa (7.51 t/ha) and rubber (7.33 t/ha). The analysis showed that carbon stock is determined mainly by the diameter (R²=0.45) and height (R²=0.13) of trees. It was found that crop plantations had the lowest biodiversity level, and no significant relationship was found between the considered biodiversity indices and carbon stock levels. The assessment of the spatial distribution of carbon sources and sinks showed that cashew plantations are carbon emitters due to firewood collection, while cocoa plantations showed the highest potential for carbon sequestration. The study revealed that Sentinel data could be used to support a RS-based approach for modelling carbon sequestration in AFS. Entropy could be used to map crop plantations and to monitor encroachment in protected areas. Moreover, field measurements with appropriate allometric models could ensure an accurate estimation of carbon stocks in AFS. Even though AFS in the Sudanian region had the highest carbon stocks level, there is a high potential to increase the carbon level in cocoa plantations by integrating and/or maintaining forest trees.}, subject = {Sequestrierung}, language = {en} } @article{KasparOttHertigKasparetal.2019, author = {Kaspar-Ott, Irena and Hertig, Elke and Kaspar, Severin and Pollinger, Felix and Ring, Christoph and Paeth, Heiko and Jacobeit, Jucundus}, title = {Weights for general circulation models from CMIP3/CMIP5 in a statistical downscaling framework and the impact on future Mediterranean precipitation}, series = {The International Journal of Climatology}, volume = {39}, journal = {The International Journal of Climatology}, doi = {10.1002/joc.6045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325628}, pages = {3639-3654}, year = {2019}, abstract = {This study investigates the projected precipitation changes of the 21st century in the Mediterranean area with a model ensemble of all available CMIP3 and CMIP5 data based on four different scenarios. The large spread of simulated precipitation change signals underlines the need of an evaluation of the individual general circulation models in order to give higher weights to better and lower weights to worse performing models. The models' spread comprises part of the internal climate variability, but is also due to the differing skills of the circulation models. The uncertainty resulting from the latter is the aim of our weighting approach. Each weight is based on the skill to simulate key predictor variables in context of large and medium scale atmospheric circulation patterns within a statistical downscaling framework for the Mediterranean precipitation. Therefore, geopotential heights, sea level pressure, atmospheric layer thickness, horizontal wind components and humidity data at several atmospheric levels are considered. The novelty of this metric consists in avoiding the use of the precipitation data by itself for the weighting process, as state-of-the-art models still have major deficits in simulating precipitation. The application of the weights on the downscaled precipitation changes leads to more reliable and precise change signals in some Mediterranean sub-regions and seasons. The model weights differ between sub-regions and seasons, however, a clear sequence from better to worse models for the representation of precipitation in the Mediterranean area becomes apparent.}, language = {en} }