@article{HaggMayrMannigetal.2018, author = {Hagg, Wilfried and Mayr, Elisabeth and Mannig, Birgit and Reyers, Mark and Schubert, David and Pinto, Joaquim G. and Peters, Juliane and Pieczonka, Tino and Juen, Martin and Bolch, Tobias and Paeth, Heiko and Mayer, Christoph}, title = {Future climate change and its impact on runoff generation from the debris-covered Inylchek glaciers, Central Tian Shan, Kyrgyzstan}, series = {Water}, volume = {10}, journal = {Water}, number = {11}, issn = {2073-4441}, doi = {10.3390/w10111513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197592}, pages = {1513}, year = {2018}, abstract = {The heavily debris-covered Inylchek glaciers in the central Tian Shan are the largest glacier system in the Tarim catchment. It is assumed that almost 50\% of the discharge of Tarim River are provided by glaciers. For this reason, climatic changes, and thus changes in glacier mass balance and glacier discharge are of high impact for the whole region. In this study, a conceptual hydrological model able to incorporate discharge from debris-covered glacier areas is presented. To simulate glacier melt and subsequent runoff in the past (1970/1971-1999/2000) and future (2070/2071-2099/2100), meteorological input data were generated based on ECHAM5/MPI-OM1 global climate model projections. The hydrological model HBV-LMU was calibrated by an automatic calibration algorithm using runoff and snow cover information as objective functions. Manual fine-tuning was performed to avoid unrealistic results for glacier mass balance. The simulations show that annual runoff sums will increase significantly under future climate conditions. A sensitivity analysis revealed that total runoff does not decrease until the glacier area is reduced by 43\%. Ice melt is the major runoff source in the recent past, and its contribution will even increase in the coming decades. Seasonal changes reveal a trend towards enhanced melt in spring, but a change from a glacial-nival to a nival-pluvial runoff regime will not be reached until the end of this century.}, language = {en} } @article{HaHuthBachoferetal.2022, author = {Ha, Tuyen V. and Huth, Juliane and Bachofer, Felix and Kuenzer, Claudia}, title = {A review of Earth observation-based drought studies in Southeast Asia}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {15}, issn = {2072-4292}, doi = {10.3390/rs14153763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286258}, year = {2022}, abstract = {Drought is a recurring natural climatic hazard event over terrestrial land; it poses devastating threats to human health, the economy, and the environment. Given the increasing climate crisis, it is likely that extreme drought phenomena will become more frequent, and their impacts will probably be more devastating. Drought observations from space, therefore, play a key role in dissimilating timely and accurate information to support early warning drought management and mitigation planning, particularly in sparse in-situ data regions. In this paper, we reviewed drought-related studies based on Earth observation (EO) products in Southeast Asia between 2000 and 2021. The results of this review indicated that drought publications in the region are on the increase, with a majority (70\%) of the studies being undertaken in Vietnam, Thailand, Malaysia and Indonesia. These countries also accounted for nearly 97\% of the economic losses due to drought extremes. Vegetation indices from multispectral optical remote sensing sensors remained a primary source of data for drought monitoring in the region. Many studies (~21\%) did not provide accuracy assessment on drought mapping products, while precipitation was the main data source for validation. We observed a positive association between spatial extent and spatial resolution, suggesting that nearly 81\% of the articles focused on the local and national scales. Although there was an increase in drought research interest in the region, challenges remain regarding large-area and long time-series drought measurements, the combined drought approach, machine learning-based drought prediction, and the integration of multi-sensor remote sensing products (e.g., Landsat and Sentinel-2). Satellite EO data could be a substantial part of the future efforts that are necessary for mitigating drought-related challenges, ensuring food security, establishing a more sustainable economy, and the preservation of the natural environment in the region.}, language = {en} } @article{GlaserSponholz1993, author = {Glaser, R{\"u}diger and Sponholz, Barbara}, title = {Erste Untersuchungen von Hangrutschungen an der Frankenh{\"o}he}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53615}, year = {1993}, abstract = {Der vorliegende Beitrag faßt den derzeitigen Stand der Untersuchungen von Hangrutschungen im Bereich der Frankenh{\"o}he, die im Rahmen des EPOCH-Programmes durchgef{\"u}hrt wurden, zusammen. Nach einer Inventarisierung der regionalen Rutschungsereignisse wird die Rutschung bei Obergailnau in einer geomorphologischen Detailkartierung vorgestellt. F{\"u}r die Ausl{\"o}sung der Rutschung kommen mehrere Faktoren in Betracht: neben einer erh{\"o}hten Rutschungsanf{\"a}lligkeit aufgrund der geologisch-tektonischen Verh{\"a}ltnisse muß v.a. auch eine Einflußnahme durch die Landnutzung mit ber{\"u}cksichtigt werden. Dazu z{\"a}hlen Steinbrucharbeiten in unmittelbarer N{\"a}he der Rutschung, aber auch Wasserbaumaßnahmen am Schloßberg. In diesem potentielllabilisierten Gebiet kam es nach {\"u}berdurchschnittlichen Niederschl{\"a}gen Anfang 1958 zu einer {\"U}berschreitung der Belastungsgrenze des Hanges, die sich in einer großfl{\"a}chigen Rutschung {\"a}ußerte. Die weiteren Untersuchungen sollen zeigen, ob sich die f{\"u}r Obergailnau herausgestellten Faktorenkomplexe im regionalen Rahmen verifizieren lassen.}, subject = {Geographie}, language = {de} } @article{GhazaryanRienowOldenburgetal.2021, author = {Ghazaryan, Gohar and Rienow, Andreas and Oldenburg, Carsten and Thonfeld, Frank and Trampnau, Birte and Sticksel, Sarah and J{\"u}rgens, Carsten}, title = {Monitoring of urban sprawl and densification processes in Western Germany in the light of SDG indicator 11.3.1 based on an automated retrospective classification approach}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {9}, issn = {2072-4292}, doi = {10.3390/rs13091694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236671}, year = {2021}, abstract = {By 2050, two-third of the world's population will live in cities. In this study, we develop a framework for analyzing urban growth-related imperviousness in North Rhine-Westphalia (NRW) from the 1980s to date using Landsat data. For the baseline 2017-time step, official geodata was extracted to generate labelled data for ten classes, including three classes representing low, middle, and high level of imperviousness. We used the output of the 2017 classification and information based on radiometric bi-temporal change detection for retrospective classification. Besides spectral bands, we calculated several indices and various temporal composites, which were used as an input for Random Forest classification. The results provide information on three imperviousness classes with accuracies exceeding 75\%. According to our results, the imperviousness areas grew continuously from 1985 to 2017, with a high imperviousness area growth of more than 167,000 ha, comprising around 30\% increase. The information on the expansion of urban areas was integrated with population dynamics data to estimate the progress towards SDG 11. With the intensity analysis and the integration of population data, the spatial heterogeneity of urban expansion and population growth was analysed, showing that the urban expansion rates considerably excelled population growth rates in some regions in NRW. The study highlights the applicability of earth observation data for accurately quantifying spatio-temporal urban dynamics for sustainable urbanization and targeted planning.}, language = {en} } @article{GeyerPaisWotte2020, author = {Geyer, Gerd and Pais, Miguel Caldeira and Wotte, Thomas}, title = {Unexpectedly curved spines in a Cambrian trilobite: considerations on the spinosity in Kingaspidoides spinirecurvatus sp. nov. from the Anti-Atlas, Morocco, and related Cambrian ellipsocephaloids}, series = {PalZ}, volume = {94}, journal = {PalZ}, issn = {0031-0220}, doi = {10.1007/s12542-020-00514-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231873}, pages = {645-660}, year = {2020}, abstract = {The new ellipsocephaloid trilobite species Kingaspidoides spinirecurvatus has a spectacular morphology because of a unique set of two long and anteriorly recurved spines on the occipital ring and the axial ring of thoracic segment 8. Together with the long genal spines this whimsical dorsally directed spine arrangement is thought to act as a non-standard protective device against predators. This is illustrated by the body posture during different stages of enrolment, contrasting with the more sophisticated spinosities seen in later trilobites, which are discussed in brief. Kingaspidoides spinirecurvatus from the lower-middle Cambrian boundary interval of the eastern Anti-Atlas in Morocco has been known for about two decades, with specimens handled as precious objects on the fossil market. Similar, but far less spectacular, spine arrangements on the thoracic axial rings are known from other ellipsocephaloid trilobites from the Anti-Atlas of Morocco and the Franconian Forest region of Germany. This suggests that an experimental phase of spine development took place within the Kingaspi-doides clade during the early-middle Cambrian boundary interval.}, language = {en} } @article{GeyerLanding2021, author = {Geyer, Gerd and Landing, Ed}, title = {The Souss lagerstatte of the Anti-Atlas, Morocco: discovery of the first Cambrian fossil lagerstatte from Africa}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-82546-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259236}, pages = {3107}, year = {2021}, abstract = {Episodic low oxygenated conditions on the sea-floor are likely responsible for exceptional preservation of animal remains in the upper Amouslek Formation (lower Cambrian, Stage 3) on the northern slope of the western Anti-Atlas, Morocco. This stratigraphic interval has yielded trilobite, brachiopod, and hyolith fossils with preserved soft parts, including some of the oldest known trilobite guts. The "Souss fossil lagerstatte" (newly proposed designation) represents the first Cambrian fossil lagerstatte in Cambrian strata known from Africa and is one of the oldest trilobite-bearing fossil lagerstatten on Earth. Inter-regional correlation of the Souss fossil lagerstatte in West Gondwana suggests its development during an interval of high eustatic levels recorded by dark shales that occur in informal upper Cambrian Series 2 in Siberia, South China, and East Gondwana.}, language = {en} } @article{ForkuorUllmannGriesbeck2020, author = {Forkuor, Gerald and Ullmann, Tobias and Griesbeck, Mario}, title = {Mapping and monitoring small-scale mining activities in Ghana using Sentinel-1 time series (2015-2019)}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {6}, issn = {2072-4292}, doi = {10.3390/rs12060911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203204}, year = {2020}, abstract = {Illegal small-scale mining (galamsey) in South-Western Ghana has grown tremendously in the last decade and caused significant environmental degradation. Excessive cloud cover in the area has limited the use of optical remote sensing data to map and monitor the extent of these activities. This study investigated the use of annual time-series Sentinel-1 data to map and monitor illegal mining activities along major rivers in South-Western Ghana between 2015 and 2019. A change detection approach, based on three time-series features — minimum, mean, maximum — was used to compute a backscatter threshold value suitable to identify/detect mining-induced land cover changes in the study area. Compared to the mean and maximum, the minimum time-series feature (in both VH and VV polarization) was found to be more sensitive to changes in backscattering within the period of investigation. Our approach permitted the detection of new illegal mining areas on an annual basis. A backscatter threshold value of +1.65 dB was found suitable for detecting illegal mining activities in the study area. Application of this threshold revealed illegal mining area extents of 102 km\(^2\), 60 km\(^2\) and 33 km\(^2\) for periods 2015/2016-2016/2017, 2016/2017-2017/2018 and 2017/2018-2018/2019, respectively. The observed decreasing trend in new illegal mining areas suggests that efforts at stopping illegal mining yielded positive results in the period investigated. Despite the advantages of Synthetic Aperture Radar data in monitoring phenomena in cloud-prone areas, our analysis revealed that about 25\% of the Sentinel-1 data, mostly acquired in March and October (beginning and end of rainy season respectively), were unusable due to atmospheric effects from high intensity rainfall events. Further investigation in other geographies and climatic regions is needed to ascertain the susceptibility of Sentinel-1 data to atmospheric conditions.}, language = {en} } @article{FleuchausBlumWildeetal.2021, author = {Fleuchaus, Paul and Blum, Philipp and Wilde, Martina and Terhorst, Birgit and Butscher, Christoph}, title = {Retrospective evaluation of landslide susceptibility maps and review of validation practice}, series = {Environmental Earth Sciences}, volume = {80}, journal = {Environmental Earth Sciences}, issn = {1866-6280}, doi = {10.1007/s12665-021-09770-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308911}, year = {2021}, abstract = {Despite the widespread application of landslide susceptibility analyses, there is hardly any information about whether or not the occurrence of recent landslide events was correctly predicted by the relevant susceptibility maps. Hence, the objective of this study is to evaluate four landslide susceptibility maps retrospectively in a landslide-prone area of the Swabian Alb (Germany). The predictive performance of each susceptibility map is evaluated based on a landslide event triggered by heavy rainfalls in the year 2013. The retrospective evaluation revealed significant variations in the predictive accuracy of the analyzed studies. Both completely erroneous as well as very precise predictions were observed. These differences are less attributed to the applied statistical method and more to the quality and comprehensiveness of the used input data. Furthermore, a literature review of 50 peer-reviewed articles showed that most landslide susceptibility analyses achieve very high validation scores. 73\% of the analyzed studies achieved an area under curve (AUC) value of at least 80\%. These high validation scores, however, do not reflect the high uncertainty in statistical susceptibility analysis. Thus, the quality assessment of landslide susceptibility maps should not only comprise an index-based, quantitative validation, but also an additional qualitative plausibility check considering local geomorphological characteristics and local landslide mechanisms. Finally, the proposed retrospective evaluation approach cannot only help to assess the quality of susceptibility maps and demonstrate the reliability of such statistical methods, but also identify issues that will enable the susceptibility maps to be improved in the future.}, language = {en} } @article{FekriLatifiAmanietal.2021, author = {Fekri, Erfan and Latifi, Hooman and Amani, Meisam and Zobeidinezhad, Abdolkarim}, title = {A training sample migration method for wetland mapping and monitoring using Sentinel data in Google Earth Engine}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {20}, issn = {2072-4292}, doi = {10.3390/rs13204169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248542}, year = {2021}, abstract = {Wetlands are one of the most important ecosystems due to their critical services to both humans and the environment. Therefore, wetland mapping and monitoring are essential for their conservation. In this regard, remote sensing offers efficient solutions due to the availability of cost-efficient archived images over different spatial scales. However, a lack of sufficient consistent training samples at different times is a significant limitation of multi-temporal wetland monitoring. In this study, a new training sample migration method was developed to identify unchanged training samples to be used in wetland classification and change analyses over the International Shadegan Wetland (ISW) areas of southwestern Iran. To this end, we first produced the wetland map of a reference year (2020), for which we had training samples, by combining Sentinel-1 and Sentinel-2 images and the Random Forest (RF) classifier in Google Earth Engine (GEE). The Overall Accuracy (OA) and Kappa coefficient (KC) of this reference map were 97.93\% and 0.97, respectively. Then, an automatic change detection method was developed to migrate unchanged training samples from the reference year to the target years of 2018, 2019, and 2021. Within the proposed method, three indices of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and the mean Standard Deviation (SD) of the spectral bands, along with two similarity measures of the Euclidean Distance (ED) and Spectral Angle Distance (SAD), were computed for each pair of reference-target years. The optimum threshold for unchanged samples was also derived using a histogram thresholding approach, which led to selecting the samples that were most likely unchanged based on the highest OA and KC for classifying the test dataset. The proposed migration sample method resulted in high OAs of 95.89\%, 96.83\%, and 97.06\% and KCs of 0.95, 0.96, and 0.96 for the target years of 2018, 2019, and 2021, respectively. Finally, the migrated samples were used to generate the wetland map for the target years. Overall, our proposed method showed high potential for wetland mapping and monitoring when no training samples existed for a target year.}, language = {en} } @article{EmmertKneisel2021, author = {Emmert, Adrian and Kneisel, Christof}, title = {Internal structure and palsa development at Orravatnsr{\´u}stir Palsa Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {3}, doi = {10.1002/ppp.2106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238933}, pages = {503 -- 519}, year = {2021}, abstract = {The natural cyclical development of palsas makes it difficult to use visible signs of decay as reference points for environmental change. Thus, to determine the actual development stage of a palsa, investigations of the internal structure are crucial. Our study presents 2-D and 3-D electrical resistivity imaging (ERI) and 2-D ground-penetrating radar (GPR) results, measurements of surface and subsurface temperatures, and of the soil matric potential from Orravatnsr{\´u}stir Palsa Site in Central Iceland. By a joint interpretation of the results, we deduce the internal structure (i.e., thickness of thaw zone and permafrost, ice/water content) of five palsas of different size and shape. The results differentiate between initial and mature development stages and show that palsas of different development stages can exist in close proximity. While internal characteristics indicate undisturbed development of four palsas, one palsa shows indications of environmental change. Our study shows the value of the multimethod geophysical approach and introduces measurements of the soil matric potential as a promising method to assess the current state of the subsurface.}, language = {en} }