@article{Hardaker2022, author = {Hardaker, Sina}, title = {More Than Infrastructure Providers - Digital Platforms' Role and Power in Retail Digitalisation in Germany}, series = {Tijdschrift voor Economische en Sociale Geografie}, volume = {113}, journal = {Tijdschrift voor Economische en Sociale Geografie}, number = {3}, doi = {10.1111/tesg.12511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287297}, pages = {310 -- 328}, year = {2022}, abstract = {Digital platforms, such as Amazon, represent the major beneficiaries of the Covid-19 crisis. This study examines the role of digital platforms and their engagement in digitalisation initiatives targeting (small) brick-and-mortar retailers in Germany, thereby contributing to a better understanding of how digital platforms augment, substitute or reorganise physical retail spaces. This study applies a mixed-method approach based on qualitative interviews, participant observation as well as media analysis. First, the study illustrates the controversial role of digital platforms by positioning themselves as supporting partners of the (offline) retailers, while simultaneously shifting power towards the platforms themselves. Second, digital platforms have established themselves not only as infrastructure providers but also as actors within these infrastructures, framing digital as well as physical retail spaces, inter alia due to their role as publicly legitimised retail advisers. Third, while institutions want to help retailers to survive, they simultaneously enhance retailers' dependency on digital platforms.}, language = {en} } @article{SchaeferFaethKneiseletal.2023, author = {Sch{\"a}fer, Christian and F{\"a}th, Julian and Kneisel, Christof and Baumhauer, Roland and Ullmann, Tobias}, title = {Multidimensional hydrological modeling of a forested catchment in a German low mountain range using a modular runoff and water balance model}, series = {Frontiers in Forests and Global Change}, volume = {6}, journal = {Frontiers in Forests and Global Change}, doi = {10.3389/ffgc.2023.1186304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357358}, year = {2023}, abstract = {Sufficient plant-available water is one of the most important requirements for vital, stable, and well-growing forest stands. In the face of climate change, there are various approaches to derive recommendations considering tree species selection based on plant-available water provided by measurements or simulations. Owing to the small-parcel management of Central European forests as well as small-spatial variation of soil and stand properties, in situ data collection for individual forest stands of large areas is not feasible, considering time and cost effort. This problem can be addressed using physically based modeling, aiming to numerically simulate the water balance. In this study, we parameterized, calibrated, and verified the hydrological multidimensional WaSiM-ETH model to assess the water balance at a spatial resolution of 30 m in a German forested catchment area (136.4 km2) for the period 2000-2021 using selected in situ data, remote sensing products, and total runoff. Based on the model output, drought-sensitive parameters, such as the difference between potential and effective stand transpiration (Tdiff) and the water balance, were deduced from the model, analyzed, and evaluated. Results show that the modeled evapotranspiration (ET) correlated significantly (R2 = 0.80) with the estimated ET using MODIS data (MOD16A2GFv006). Compared with observed daily, monthly, and annual runoff data, the model shows a good performance (R2: 0.70|0.77|0.73; Kling-Gupta efficiency: 0.59|0.62|0.83; volumetric efficiency: 0.52|0.60|0.83). The comparison with in situ data from a forest monitoring plot, established at the end of 2020, indicated good agreement between observed and simulated interception and soil water content. According to our results, WaSiM-ETH is a potential supplement for forest management, owing to its multidimensionality and the ability to model soil water balance for large areas at comparable high spatial resolution. The outputs offer, compared to non-distributed models (like LWF-Brook90), spatial differentiability, which is important for small-scale parceled forests, regarding stand structure and soil properties. Due to the spatial component offered, additional verification possibilities are feasible allowing a reliable and profound verification of the model and its parameterization.}, language = {en} } @article{Ibebuchi2021, author = {Ibebuchi, Chibuike Chiedozie}, title = {Revisiting the 1992 severe drought episode in South Africa: the role of El Ni{\~n}o in the anomalies of atmospheric circulation types in Africa south of the equator}, series = {Theoretical and Applied Climatology}, volume = {146}, journal = {Theoretical and Applied Climatology}, number = {1-2}, issn = {1434-4483}, doi = {10.1007/s00704-021-03741-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268569}, pages = {723-740}, year = {2021}, abstract = {During strong El Ni{\~n}o events, below-average rainfall is expected in large parts of southern Africa. The 1992 El Ni{\~n}o season was associated with one of the worst drought episodes in large parts of South Africa. Using reanalysis data set from NCEP-NCAR, this study examined circulation types (CTs) in Africa south of the equator that are statistically related to the El Ni{\~n}o signal in the southwest Indian Ocean and the implication of this relationship during the 1992 drought episode in South Africa. A statistically significant correlation was found between the above-average Nino 3.4 index and a CT that features widespread cyclonic activity in the tropical southwest Indian Ocean, coupled with a weaker state of the south Indian Ocean high-pressure. During the analysis period, it was found that the El Ni{\~n}o signal enhanced the amplitude of the aforementioned CT. The impacts of the El Ni{\~n}o signal on CTs in southern Africa, which could have contributed to the 1992 severe drought episode in South Africa, were reflected in (i) robust decrease in the frequency of occurrence of the austral summer climatology pattern of atmospheric circulation that favors southeasterly moisture fluxes, advected by the South Indian Ocean high-pressure; (ii) modulation of easterly moisture fluxes, advected by the South Atlantic Ocean high-pressure, ridging south of South Africa; (iii) and enhancement of the amplitude of CTs that both enhances subsidence over South Africa, and associated with the dominance of westerlies across the Agulhas current. Under the ssp585 scenario, the analyzed climate models suggested that the impact of radiative heating on the CT significantly related to El Ni{\~n}o might result in an anomalous increase in surface pressure at the eastern parts of South Africa.}, language = {en} } @article{KacicKuenzer2022, author = {Kacic, Patrick and Kuenzer, Claudia}, title = {Forest biodiversity monitoring based on remotely sensed spectral diversity — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs14215363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290535}, year = {2022}, abstract = {Forests are essential for global environmental well-being because of their rich provision of ecosystem services and regulating factors. Global forests are under increasing pressure from climate change, resource extraction, and anthropologically-driven disturbances. The results are dramatic losses of habitats accompanied with the reduction of species diversity. There is the urgent need for forest biodiversity monitoring comprising analysis on α, β, and γ scale to identify hotspots of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal resolutions. Concepts of remotely sensed spectral diversity have been identified as promising methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review provides a first time focus on the three spectral diversity concepts "vegetation indices", "spectral information content", and "spectral species" for forest biodiversity monitoring based on airborne and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify multispectral sensors as primary data source which underlines the focus on optical diversity as a proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral information content. In recent years, the spectral species concept has raised attention and has been applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral communities. Novel remote sensing processing capacities and the provision of complementary remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future.}, language = {en} } @article{AyalaCarrilloFarfanCardenasNielsenetal.2022, author = {Ayala-Carrillo, Mariana and Farf{\´a}n, Michelle and C{\´a}rdenas-Nielsen, Anah{\´i} and Lemoine-Rodr{\´i}guez, Richard}, title = {Are wildfires in the wildland-urban interface increasing temperatures? A land surface temperature assessment in a semi-arid Mexican city}, series = {Land}, volume = {11}, journal = {Land}, number = {12}, issn = {2073-445X}, doi = {10.3390/land11122105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297308}, year = {2022}, abstract = {High rates of land conversion due to urbanization are causing fragmented and dispersed spatial patterns in the wildland-urban interface (WUI) worldwide. The occurrence of anthropogenic fires in the WUI represents an important environmental and social issue, threatening not only vegetated areas but also periurban inhabitants, as is the case in many Latin American cities. However, research has not focused on the dynamics of the local climate in the WUI. This study analyzes whether wildfires contribute to the increase in land surface temperature (LST) in the WUI of the metropolitan area of the city of Guanajuato (MACG), a semi-arid Mexican city. We estimated the pre- and post-fire LST for 2018-2021. Spatial clusters of high LST were detected using hot spot analysis and examined using ANOVA and Tukey's post-hoc statistical tests to assess whether LST is related to the spatial distribution of wildfires during our study period. Our results indicate that the areas where the wildfires occurred, and their surroundings, show higher LST. This has negative implications for the local ecosystem and human population, which lacks adequate infrastructure and services to cope with the effects of rising temperatures. This is the first study assessing the increase in LST caused by wildfires in a WUI zone in Mexico.}, language = {en} } @article{AnsahAbuKleemannetal.2022, author = {Ansah, Christabel Edena and Abu, Itohan-Osa and Kleemann, Janina and Mahmoud, Mahmoud Ibrahim and Thiel, Michael}, title = {Environmental contamination of a biodiversity hotspot — action needed for nature conservation in the Niger Delta, Nigeria}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {21}, issn = {2071-1050}, doi = {10.3390/su142114256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297214}, year = {2022}, abstract = {The Niger Delta belongs to the largest swamp and mangrove forests in the world hosting many endemic and endangered species. Therefore, its conservation should be of highest priority. However, the Niger Delta is confronted with overexploitation, deforestation and pollution to a large extent. In particular, oil spills threaten the biodiversity, ecosystem services, and local people. Remote sensing can support the detection of spills and their potential impact when accessibility on site is difficult. We tested different vegetation indices to assess the impact of oil spills on the land cover as well as to detect accumulations (hotspots) of oil spills. We further identified which species, land cover types, and protected areas could be threatened in the Niger Delta due to oil spills. The results showed that the Enhanced Vegetation Index, the Normalized Difference Vegetation Index, and the Soil Adjusted Vegetation Index were more sensitive to the effects of oil spills on different vegetation cover than other tested vegetation indices. Forest cover was the most affected land-cover type and oil spills also occurred in protected areas. Threatened species are inhabiting the Niger Delta Swamp Forest and the Central African Mangroves that were mainly affected by oil spills and, therefore, strong conservation measures are needed even though security issues hamper the monitoring and control.}, language = {en} } @article{KunzUllmannKneiseletal.2023, author = {Kunz, Julius and Ullmann, T. and Kneisel, C. and Baumhauer, R.}, title = {Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada}, series = {Arctic, Antarctic, and Alpine Research}, volume = {55}, journal = {Arctic, Antarctic, and Alpine Research}, number = {1}, issn = {1523-0430}, doi = {10.1080/15230430.2023.2167358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350147}, year = {2023}, abstract = {The development of retrogressive thaw slumps (RTS) is known to be strongly influenced by relief-related parameters, permafrost characteristics, and climatic triggers. To deepen the understanding of RTS, this study examines the subsurface characteristics in the vicinity of an active thaw slump, located in the Richardson Mountains (Western Canadian Arctic). The investigations aim to identify relationships between the spatiotemporal slump development and the influence of subsurface structures. Information on these were gained by means of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). The spatiotemporal development of the slump was revealed by high-resolution satellite imagery and unmanned aerial vehicle-based digital elevation models (DEMs). The analysis indicated an acceleration of slump expansion, especially since 2018. The comparison of the DEMs enabled the detailed balancing of erosion and accumulation within the slump area between August 2018 and August 2019. In addition, manual frost probing and GPR revealed a strong relationship between the active layer thickness, surface morphology, and hydrology. Detected furrows in permafrost table topography seem to affect the active layer hydrology and cause a canalization of runoff toward the slump. The three-dimensional ERT data revealed a partly unfrozen layer underlying a heterogeneous permafrost body. This may influence the local hydrology and affect the development of the RTS. The results highlight the complex relationships between slump development, subsurface structure, and hydrology and indicate a distinct research need for other RTSs.}, language = {en} } @article{MeistervonSuchodoletzZeeden2023, author = {Meister, Julia and von Suchodoletz, Hans and Zeeden, Christian}, title = {Preface: Quaternary research from and inspired by the first virtual DEUQUA conference}, series = {E\&G Quaternary Science Journal}, volume = {72}, journal = {E\&G Quaternary Science Journal}, number = {2}, doi = {10.5194/egqsj-72-185-2023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350157}, pages = {185-187}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{LibandaPaeth2023, author = {Libanda, Brigadier and Paeth, Heiko}, title = {Modelling wind speed across Zambia: Implications for wind energy}, series = {International Journal of Climatology}, volume = {43}, journal = {International Journal of Climatology}, number = {2}, doi = {10.1002/joc.7826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312134}, pages = {772 -- 786}, year = {2023}, abstract = {Wind energy is a key option in global dialogues about climate change mitigation. Here, we combined observations from surface wind stations, reanalysis datasets, and state-of-the-art regional climate models from the Coordinated Regional Climate Downscaling Experiment (CORDEX Africa) to study the current and future wind energy potential in Zambia. We found that winds are dominated by southeasterlies and are rarely strong with an average speed of 2.8 m·s\(^{-1}\). When we converted the observed surface wind speed to a turbine hub height of 100 m, we found a ~38\% increase in mean wind speed for the period 1981-2000. Further, both simulated and observed wind speed data show statistically significant increments across much of the country. The only areas that divert from this upward trend of wind speeds are the low land terrains of the Eastern Province bordering Malawi. Examining projections of wind power density (WPD), we found that although wind speed is increasing, it is still generally too weak to support large-scale wind power generation. We found a meagre projected annual average WPD of 46.6 W·m\(^{-2}\). The highest WPDs of ~80 W·m\(^{-2}\) are projected in the northern and central parts of the country while the lowest are to be expected along the Luangwa valley in agreement with wind speed simulations. On average, Zambia is expected to experience minor WPD increments of 0.004 W·m\(^{-2}\) per year from 2031 to 2050. We conclude that small-scale wind turbines that accommodate cut-in wind speeds of 3.8 m·s\(^{-1}\) are the most suitable for power generation in Zambia. Further, given the limitations of small wind turbines, they are best suited for rural and suburban areas of the country where obstructions are few, thus making them ideal for complementing the government of the Republic of Zambia's rural electrification efforts.}, language = {en} } @article{IbebuchiPaeth2021, author = {Ibebuchi, Chibuike Chiedozie and Paeth, Heiko}, title = {The Imprint of the Southern Annular Mode on Black Carbon AOD in the Western Cape Province}, series = {Atmosphere}, volume = {12}, journal = {Atmosphere}, number = {10}, issn = {2073-4433}, doi = {10.3390/atmos12101287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248387}, year = {2021}, abstract = {This study examines the relationship between variations of the Southern Annular Mode (SAM) and black carbon (BC) at 550 nm aerosol optical depth (AOD) in the Western Cape province (WC). Variations of the positive (negative) phase of the SAM are found to be related to regional circulation types (CTs) in southern Africa, associated with suppressed (enhanced) westerly wind over the WC through the southward (northward) migration of Southern Hemisphere mid-latitude cyclones. The CTs related to positive (negative) SAM anomalies induce stable (unstable) atmospheric conditions over the southwestern regions of the WC, especially during the austral winter and autumn seasons. Through the control of CTs, positive (negative) SAM phases tend to contribute to the build-up (dispersion and dilution) of BC in the study region because they imply dry (wet) conditions which favor the build-up (washing out) of pollutant particles in the atmosphere. Indeed, recent years with an above-average frequency of CTs related to positive (negative) SAM anomalies are associated with a high (low) BC AOD over southwesternmost Africa.}, language = {en} } @article{MayrKleinRutzingeretal.2021, author = {Mayr, Stefan and Klein, Igor and Rutzinger, Martin and Kuenzer, Claudia}, title = {Determining temporal uncertainty of a global inland surface water time series}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {17}, issn = {2072-4292}, doi = {10.3390/rs13173454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245234}, year = {2021}, abstract = {Earth observation time series are well suited to monitor global surface dynamics. However, data products that are aimed at assessing large-area dynamics with a high temporal resolution often face various error sources (e.g., retrieval errors, sampling errors) in their acquisition chain. Addressing uncertainties in a spatiotemporal consistent manner is challenging, as extensive high-quality validation data is typically scarce. Here we propose a new method that utilizes time series inherent information to assess the temporal interpolation uncertainty of time series datasets. For this, we utilized data from the DLR-DFD Global WaterPack (GWP), which provides daily information on global inland surface water. As the time series is primarily based on optical MODIS (Moderate Resolution Imaging Spectroradiometer) images, the requirement of data gap interpolation due to clouds constitutes the main uncertainty source of the product. With a focus on different temporal and spatial characteristics of surface water dynamics, seven auxiliary layers were derived. Each layer provides probability and reliability estimates regarding water observations at pixel-level. This enables the quantification of uncertainty corresponding to the full spatiotemporal range of the product. Furthermore, the ability of temporal layers to approximate unknown pixel states was evaluated for stratified artificial gaps, which were introduced into the original time series of four climatologic diverse test regions. Results show that uncertainty is quantified accurately (>90\%), consequently enhancing the product's quality with respect to its use for modeling and the geoscientific community.}, language = {en} } @article{SognoKleinKuenzer2022, author = {Sogno, Patrick and Klein, Igor and Kuenzer, Claudia}, title = {Remote sensing of surface water dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs14102475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275274}, year = {2022}, abstract = {Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution.}, language = {en} } @article{LappeUllmannBachofer2022, author = {Lappe, Ronja and Ullmann, Tobias and Bachofer, Felix}, title = {State of the Vietnamese coast — assessing three decades (1986 to 2021) of coastline dynamics using the Landsat archive}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs14102476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275281}, year = {2022}, abstract = {Vietnam's 3260 km coastline is densely populated, experiences rapid urban and economic growth, and faces at the same time a high risk of coastal hazards. Satellite archives provide a free and powerful opportunity for long-term area-wide monitoring of the coastal zone. This paper presents an automated analysis of coastline dynamics from 1986 to 2021 for Vietnam's entire coastal zone using the Landsat archive. The proposed method is implemented within the cloud-computing platform Google Earth Engine to only involve publicly and globally available datasets and tools. We generated annual coastline composites representing the mean-high water level and extracted sub-pixel coastlines. We further quantified coastline change rates along shore-perpendicular transects, revealing that half of Vietnam's coast did not experience significant change, while the remaining half is classified as erosional (27.7\%) and accretional (27.1\%). A hotspot analysis shows that coastal segments with the highest change rates are concentrated in the low-lying deltas of the Mekong River in the south and the Red River in the north. Hotspots with the highest accretion rates of up to +47 m/year are mainly associated with the construction of artificial coastlines, while hotspots with the highest erosion rates of -28 m/year may be related to natural sediment redistribution and human activity.}, language = {en} } @article{YangYaoLietal.2022, author = {Yang, Xuting and Yao, Wanqiang and Li, Pengfei and Hu, Jinfei and Latifi, Hooman and Kang, Li and Wang, Ningjing and Zhang, Dingming}, title = {Changes of SOC content in China's Shendong coal mining area during 1990-2020 investigated using remote sensing techniques}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {12}, issn = {2071-1050}, doi = {10.3390/su14127374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278939}, year = {2022}, abstract = {Coal mining, an important human activity, disturbs soil organic carbon (SOC) accumulation and decomposition, eventually affecting terrestrial carbon cycling and the sustainability of human society. However, changes of SOC content and their relation with influential factors in coal mining areas remained unclear. In the study, predictive models of SOC content were developed based on field sampling and Landsat images for different land-use types (grassland, forest, farmland, and bare land) of the largest coal mining area in China (i.e., Shendong). The established models were employed to estimate SOC content across the Shendong mining area during 1990-2020, followed by an investigation into the impacts of climate change and human disturbance on SOC content by a Geo-detector. Results showed that the models produced satisfactory results (R\(^2\) > 0.69, p < 0.05), demonstrating that SOC content over a large coal mining area can be effectively assessed using remote sensing techniques. Results revealed that average SOC content in the study area rose from 5.67 gC·kg\(^{-1}\) in 1990 to 9.23 gC·kg\(^{-1}\) in 2010 and then declined to 5.31 gC·Kg\(^{-1}\) in 2020. This could be attributed to the interaction between the disturbance of soil caused by coal mining and the improvement of eco-environment by land reclamation. Spatially, the SOC content of farmland was the highest, followed by grassland, and that of bare land was the lowest. SOC accumulation was inhibited by coal mining activities, with the effect of high-intensity mining being lower than that of moderate- and low-intensity mining activities. Land use was found to be the strongest individual influencing factor for SOC content changes, while the interaction between vegetation coverage and precipitation exerted the most significant influence on the variability of SOC content. Furthermore, the influence of mining intensity combined with precipitation was 10 times higher than that of mining intensity alone.}, language = {en} } @article{EmmertKneisel2021, author = {Emmert, Adrian and Kneisel, Christof}, title = {Internal structure and palsa development at Orravatnsr{\´u}stir Palsa Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {3}, doi = {10.1002/ppp.2106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238933}, pages = {503 -- 519}, year = {2021}, abstract = {The natural cyclical development of palsas makes it difficult to use visible signs of decay as reference points for environmental change. Thus, to determine the actual development stage of a palsa, investigations of the internal structure are crucial. Our study presents 2-D and 3-D electrical resistivity imaging (ERI) and 2-D ground-penetrating radar (GPR) results, measurements of surface and subsurface temperatures, and of the soil matric potential from Orravatnsr{\´u}stir Palsa Site in Central Iceland. By a joint interpretation of the results, we deduce the internal structure (i.e., thickness of thaw zone and permafrost, ice/water content) of five palsas of different size and shape. The results differentiate between initial and mature development stages and show that palsas of different development stages can exist in close proximity. While internal characteristics indicate undisturbed development of four palsas, one palsa shows indications of environmental change. Our study shows the value of the multimethod geophysical approach and introduces measurements of the soil matric potential as a promising method to assess the current state of the subsurface.}, language = {en} } @article{Ibebuchi2023, author = {Ibebuchi, Chibuike Chiedozie}, title = {On the representation of atmospheric circulation modes in regional climate models over Western Europe}, series = {International Journal of Climatology}, volume = {43}, journal = {International Journal of Climatology}, number = {1}, doi = {10.1002/joc.7807}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312424}, pages = {668 -- 682}, year = {2023}, abstract = {Atmospheric circulation is a key driver of climate variability, and the representation of atmospheric circulation modes in regional climate models (RCMs) can enhance the credibility of regional climate projections. This study examines the representation of large-scale atmospheric circulation modes in Coupled Model Inter-comparison Project phase 5 RCMs once driven by ERA-Interim, and by two general circulation models (GCMs). The study region is Western Europe and the circulation modes are classified using the Promax rotated T-mode principal component analysis. The results indicate that the RCMs can replicate the classified atmospheric modes as obtained from ERA5 reanalysis, though with biases dependent on the data providing the lateral boundary condition and the choice of RCM. When the boundary condition is provided by ERA-Interim that is more consistent with observations, the simulated map types and the associating time series match well with their counterparts from ERA5. Further, on average, the multi-model ensemble mean of the analysed RCMs, driven by ERA-Interim, indicated a slight improvement in the representation of the modes obtained from ERA5. Conversely, when the RCMs are driven by the GCMs that are models without assimilation of observational data, the representation of the atmospheric modes, as obtained from ERA5, is relatively less accurate compared to when the RCMs are driven by ERA-Interim. This suggests that the biases stem from the GCMs. On average, the representation of the modes was not improved in the multi-model ensemble mean of the five analysed RCMs driven by either of the GCMs. However, when the best-performed RCMs were selected on average the ensemble mean indicated a slight improvement. Moreover, the presence of the North Atlantic Oscillation (NAO) in the simulated modes depends also on the lateral boundary conditions. The relationship between the modes and the NAO was replicated only when the RCMs were driven by reanalysis. The results indicate that the forcing model is the main factor in reproducing the atmospheric circulation.}, language = {en} } @article{GeyerLanding2021, author = {Geyer, Gerd and Landing, Ed}, title = {The Souss lagerstatte of the Anti-Atlas, Morocco: discovery of the first Cambrian fossil lagerstatte from Africa}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-82546-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259236}, pages = {3107}, year = {2021}, abstract = {Episodic low oxygenated conditions on the sea-floor are likely responsible for exceptional preservation of animal remains in the upper Amouslek Formation (lower Cambrian, Stage 3) on the northern slope of the western Anti-Atlas, Morocco. This stratigraphic interval has yielded trilobite, brachiopod, and hyolith fossils with preserved soft parts, including some of the oldest known trilobite guts. The "Souss fossil lagerstatte" (newly proposed designation) represents the first Cambrian fossil lagerstatte in Cambrian strata known from Africa and is one of the oldest trilobite-bearing fossil lagerstatten on Earth. Inter-regional correlation of the Souss fossil lagerstatte in West Gondwana suggests its development during an interval of high eustatic levels recorded by dark shales that occur in informal upper Cambrian Series 2 in Siberia, South China, and East Gondwana.}, language = {en} } @article{QamarAzmatAbbasetal.2018, author = {Qamar, Muhammad Uzair and Azmat, Muhammad and Abbas, Azhar and Usman, Muhammad and Shahid, Muhammad Adnan and Khan, Zahid Mahmood}, title = {Water Pricing and Implementation Strategies for the Sustainability of an Irrigation System: A Case Study within the Command Area of the Rakh Branch Canal}, series = {Water}, volume = {10}, journal = {Water}, number = {4, 509}, doi = {10.3390/w10040509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224711}, pages = {1-24}, year = {2018}, abstract = {The command area of the Rakh branch canal grows wheat, sugarcane, and rice crops in abundance. The canal water, which is trivial for irrigating these crops, is conveyed to the farms through the network of canals and distributaries. For the maintenance of this vast infrastructure; the end users are charged on a seasonal basis. The present water charges are severely criticized for not being adequate to properly manage the entire infrastructure. We use the residual value to determine the value of the irrigation water and then based on the quantity of irrigation water supplied to farm land coupled with the infrastructure maintenance cost, full cost recovery figures are executed for the study area, and policy recommendations are made for the implementation of the full cost recovery system. The approach is unique in the sense that the pricings are based on the actual quantity of water conveyed to the field for irrigating crops. The results of our analysis showed that the canal water is severely under charged in the culturable command area of selected distributaries, thus negating the plan of having a self-sustainable irrigation system.}, language = {en} } @article{ReinermannGessnerAsametal.2019, author = {Reinermann, Sophie and Gessner, Ursula and Asam, Sarah and Kuenzer, Claudia and Dech, Stefan}, title = {The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {15}, doi = {10.3390/rs11151783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225165}, pages = {1783, 1-21}, year = {2019}, abstract = {Central Europe experienced several droughts in the recent past, such as in the year 2018, which was characterized by extremely low rainfall rates and high temperatures, resulting in substantial agricultural yield losses. Time series of satellite earth observation data enable the characterization of past drought events over large temporal and spatial scales. Within this study, Moderate Resolution Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) (MOD13Q1) 250 m time series were investigated for the vegetation periods of 2000 to 2018. The spatial and temporal development of vegetation in 2018 was compared to other dry and hot years in Europe, like the drought year 2003. Temporal and spatial inter- and intra-annual patterns of EVI anomalies were analyzed for all of Germany and for its cropland, forest, and grassland areas individually. While vegetation development in spring 2018 was above average, the summer months of 2018 showed negative anomalies in a similar magnitude as in 2003, which was particularly apparent within grassland and cropland areas in Germany. In contrast, the year 2003 showed negative anomalies during the entire growing season. The spatial pattern of vegetation status in 2018 showed high regional variation, with north-eastern Germany mainly affected in June, north-western parts in July, and western Germany in August. The temporal pattern of satellite-derived EVI deviances within the study period 2000-2018 were in good agreement with crop yield statistics for Germany. The study shows that the EVI deviation of the summer months of 2018 were among the most extreme in the study period compared to other years. The spatial pattern and temporal development of vegetation condition between the drought years differ.}, language = {en} } @article{ThonfeldSteinbachMuroetal.2020, author = {Thonfeld, Frank and Steinbach, Stefanie and Muro, Javier and Kirimi, Fridah}, title = {Long-term land use/land cover change assessment of the Kilombero catchment in Tanzania using random forest classification and robust change vector analysis}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203513}, year = {2020}, abstract = {Information about land use/land cover (LULC) and their changes is useful for different stakeholders to assess future pathways of sustainable land use for food production as well as for nature conservation. In this study, we assess LULC changes in the Kilombero catchment in Tanzania, an important area of recent development in East Africa. LULC change is assessed in two ways: first, post-classification comparison (PCC) which allows us to directly assess changes from one LULC class to another, and second, spectral change detection. We perform LULC classification by applying random forests (RF) on sets of multitemporal metrics that account for seasonal within-class dynamics. For the spectral change detection, we make use of the robust change vector analysis (RCVA) and determine those changes that do not necessarily lead to another class. The combination of the two approaches enables us to distinguish areas that show (a) only PCC changes, (b) only spectral changes that do not affect the classification of a pixel, (c) both types of change, or (d) no changes at all. Our results reveal that only one-quarter of the catchment has not experienced any change. One-third shows both, spectral changes and LULC conversion. Changes detected with both methods predominantly occur in two major regions, one in the West of the catchment, one in the Kilombero floodplain. Both regions are important areas of food production and economic development in Tanzania. The Kilombero floodplain is a Ramsar protected area, half of which was converted to agricultural land in the past decades. Therefore, LULC monitoring is required to support sustainable land management. Relatively poor classification performances revealed several challenges during the classification process. The combined approach of PCC and RCVA allows us to detect spatial patterns of LULC change at distinct dimensions and intensities. With the assessment of additional classifier output, namely class-specific per-pixel classification probabilities and derived parameters, we account for classification uncertainty across space. We overlay the LULC change results and the spatial assessment of classification reliability to provide a thorough picture of the LULC changes taking place in the Kilombero catchment.}, language = {en} }