@article{LibandaPaeth2023, author = {Libanda, Brigadier and Paeth, Heiko}, title = {Modelling wind speed across Zambia: Implications for wind energy}, series = {International Journal of Climatology}, volume = {43}, journal = {International Journal of Climatology}, number = {2}, doi = {10.1002/joc.7826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312134}, pages = {772 -- 786}, year = {2023}, abstract = {Wind energy is a key option in global dialogues about climate change mitigation. Here, we combined observations from surface wind stations, reanalysis datasets, and state-of-the-art regional climate models from the Coordinated Regional Climate Downscaling Experiment (CORDEX Africa) to study the current and future wind energy potential in Zambia. We found that winds are dominated by southeasterlies and are rarely strong with an average speed of 2.8 m·s\(^{-1}\). When we converted the observed surface wind speed to a turbine hub height of 100 m, we found a ~38\% increase in mean wind speed for the period 1981-2000. Further, both simulated and observed wind speed data show statistically significant increments across much of the country. The only areas that divert from this upward trend of wind speeds are the low land terrains of the Eastern Province bordering Malawi. Examining projections of wind power density (WPD), we found that although wind speed is increasing, it is still generally too weak to support large-scale wind power generation. We found a meagre projected annual average WPD of 46.6 W·m\(^{-2}\). The highest WPDs of ~80 W·m\(^{-2}\) are projected in the northern and central parts of the country while the lowest are to be expected along the Luangwa valley in agreement with wind speed simulations. On average, Zambia is expected to experience minor WPD increments of 0.004 W·m\(^{-2}\) per year from 2031 to 2050. We conclude that small-scale wind turbines that accommodate cut-in wind speeds of 3.8 m·s\(^{-1}\) are the most suitable for power generation in Zambia. Further, given the limitations of small wind turbines, they are best suited for rural and suburban areas of the country where obstructions are few, thus making them ideal for complementing the government of the Republic of Zambia's rural electrification efforts.}, language = {en} } @article{Ibebuchi2023, author = {Ibebuchi, Chibuike Chiedozie}, title = {On the representation of atmospheric circulation modes in regional climate models over Western Europe}, series = {International Journal of Climatology}, volume = {43}, journal = {International Journal of Climatology}, number = {1}, doi = {10.1002/joc.7807}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312424}, pages = {668 -- 682}, year = {2023}, abstract = {Atmospheric circulation is a key driver of climate variability, and the representation of atmospheric circulation modes in regional climate models (RCMs) can enhance the credibility of regional climate projections. This study examines the representation of large-scale atmospheric circulation modes in Coupled Model Inter-comparison Project phase 5 RCMs once driven by ERA-Interim, and by two general circulation models (GCMs). The study region is Western Europe and the circulation modes are classified using the Promax rotated T-mode principal component analysis. The results indicate that the RCMs can replicate the classified atmospheric modes as obtained from ERA5 reanalysis, though with biases dependent on the data providing the lateral boundary condition and the choice of RCM. When the boundary condition is provided by ERA-Interim that is more consistent with observations, the simulated map types and the associating time series match well with their counterparts from ERA5. Further, on average, the multi-model ensemble mean of the analysed RCMs, driven by ERA-Interim, indicated a slight improvement in the representation of the modes obtained from ERA5. Conversely, when the RCMs are driven by the GCMs that are models without assimilation of observational data, the representation of the atmospheric modes, as obtained from ERA5, is relatively less accurate compared to when the RCMs are driven by ERA-Interim. This suggests that the biases stem from the GCMs. On average, the representation of the modes was not improved in the multi-model ensemble mean of the five analysed RCMs driven by either of the GCMs. However, when the best-performed RCMs were selected on average the ensemble mean indicated a slight improvement. Moreover, the presence of the North Atlantic Oscillation (NAO) in the simulated modes depends also on the lateral boundary conditions. The relationship between the modes and the NAO was replicated only when the RCMs were driven by reanalysis. The results indicate that the forcing model is the main factor in reproducing the atmospheric circulation.}, language = {en} } @article{PhilippDietzUllmannetal.2023, author = {Philipp, Marius and Dietz, Andreas and Ullmann, Tobias and Kuenzer, Claudia}, title = {A circum-Arctic monitoring framework for quantifying annual erosion rates of permafrost coasts}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs15030818}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304447}, year = {2023}, abstract = {This study demonstrates a circum-Arctic monitoring framework for quantifying annual change of permafrost-affected coasts at a spatial resolution of 10 m. Frequent cloud coverage and challenging lighting conditions, including polar night, limit the usability of optical data in Arctic regions. For this reason, Synthetic Aperture RADAR (SAR) data in the form of annual median and standard deviation (sd) Sentinel-1 (S1) backscatter images covering the months June-September for the years 2017-2021 were computed. Annual composites for the year 2020 were hereby utilized as input for the generation of a high-quality coastline product via a Deep Learning (DL) workflow, covering 161,600 km of the Arctic coastline. The previously computed annual S1 composites for the years 2017 and 2021 were employed as input data for the Change Vector Analysis (CVA)-based coastal change investigation. The generated DL coastline product served hereby as a reference. Maximum erosion rates of up to 67 m per year could be observed based on 400 m coastline segments. Overall highest average annual erosion can be reported for the United States (Alaska) with 0.75 m per year, followed by Russia with 0.62 m per year. Out of all seas covered in this study, the Beaufort Sea featured the overall strongest average annual coastal erosion of 1.12 m. Several quality layers are provided for both the DL coastline product and the CVA-based coastal change analysis to assess the applicability and accuracy of the output products. The predicted coastal change rates show good agreement with findings published in previous literature. The proposed methods and data may act as a valuable tool for future analysis of permafrost loss and carbon emissions in Arctic coastal environments.}, language = {en} } @article{KacicThonfeldGessneretal.2023, author = {Kacic, Patrick and Thonfeld, Frank and Gessner, Ursula and Kuenzer, Claudia}, title = {Forest structure characterization in Germany: novel products and analysis based on GEDI, Sentinel-1 and Sentinel-2 data}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {8}, issn = {2072-4292}, doi = {10.3390/rs15081969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313727}, year = {2023}, abstract = {Monitoring forest conditions is an essential task in the context of global climate change to preserve biodiversity, protect carbon sinks and foster future forest resilience. Severe impacts of heatwaves and droughts triggering cascading effects such as insect infestation are challenging the semi-natural forests in Germany. As a consequence of repeated drought years since 2018, large-scale canopy cover loss has occurred calling for an improved disturbance monitoring and assessment of forest structure conditions. The present study demonstrates the potential of complementary remote sensing sensors to generate wall-to-wall products of forest structure for Germany. The combination of high spatial and temporal resolution imagery from Sentinel-1 (Synthetic Aperture Radar, SAR) and Sentinel-2 (multispectral) with novel samples on forest structure from the Global Ecosystem Dynamics Investigation (GEDI, LiDAR, Light detection and ranging) enables the analysis of forest structure dynamics. Modeling the three-dimensional structure of forests from GEDI samples in machine learning models reveals the recent changes in German forests due to disturbances (e.g., canopy cover degradation, salvage logging). This first consistent data set on forest structure for Germany from 2017 to 2022 provides information of forest canopy height, forest canopy cover and forest biomass and allows estimating recent forest conditions at 10 m spatial resolution. The wall-to-wall maps of the forest structure support a better understanding of post-disturbance forest structure and forest resilience.}, language = {en} } @article{ReinersSobrinoKuenzer2023, author = {Reiners, Philipp and Sobrino, Jos{\´e} and Kuenzer, Claudia}, title = {Satellite-derived land surface temperature dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311120}, year = {2023}, abstract = {Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites.}, language = {en} } @article{KunzUllmannKneiseletal.2023, author = {Kunz, Julius and Ullmann, T. and Kneisel, C. and Baumhauer, R.}, title = {Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada}, series = {Arctic, Antarctic, and Alpine Research}, volume = {55}, journal = {Arctic, Antarctic, and Alpine Research}, number = {1}, issn = {1523-0430}, doi = {10.1080/15230430.2023.2167358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350147}, year = {2023}, abstract = {The development of retrogressive thaw slumps (RTS) is known to be strongly influenced by relief-related parameters, permafrost characteristics, and climatic triggers. To deepen the understanding of RTS, this study examines the subsurface characteristics in the vicinity of an active thaw slump, located in the Richardson Mountains (Western Canadian Arctic). The investigations aim to identify relationships between the spatiotemporal slump development and the influence of subsurface structures. Information on these were gained by means of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). The spatiotemporal development of the slump was revealed by high-resolution satellite imagery and unmanned aerial vehicle-based digital elevation models (DEMs). The analysis indicated an acceleration of slump expansion, especially since 2018. The comparison of the DEMs enabled the detailed balancing of erosion and accumulation within the slump area between August 2018 and August 2019. In addition, manual frost probing and GPR revealed a strong relationship between the active layer thickness, surface morphology, and hydrology. Detected furrows in permafrost table topography seem to affect the active layer hydrology and cause a canalization of runoff toward the slump. The three-dimensional ERT data revealed a partly unfrozen layer underlying a heterogeneous permafrost body. This may influence the local hydrology and affect the development of the RTS. The results highlight the complex relationships between slump development, subsurface structure, and hydrology and indicate a distinct research need for other RTSs.}, language = {en} } @article{MeistervonSuchodoletzZeeden2023, author = {Meister, Julia and von Suchodoletz, Hans and Zeeden, Christian}, title = {Preface: Quaternary research from and inspired by the first virtual DEUQUA conference}, series = {E\&G Quaternary Science Journal}, volume = {72}, journal = {E\&G Quaternary Science Journal}, number = {2}, doi = {10.5194/egqsj-72-185-2023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350157}, pages = {185-187}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{SchaeferFaethKneiseletal.2023, author = {Sch{\"a}fer, Christian and F{\"a}th, Julian and Kneisel, Christof and Baumhauer, Roland and Ullmann, Tobias}, title = {Multidimensional hydrological modeling of a forested catchment in a German low mountain range using a modular runoff and water balance model}, series = {Frontiers in Forests and Global Change}, volume = {6}, journal = {Frontiers in Forests and Global Change}, doi = {10.3389/ffgc.2023.1186304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357358}, year = {2023}, abstract = {Sufficient plant-available water is one of the most important requirements for vital, stable, and well-growing forest stands. In the face of climate change, there are various approaches to derive recommendations considering tree species selection based on plant-available water provided by measurements or simulations. Owing to the small-parcel management of Central European forests as well as small-spatial variation of soil and stand properties, in situ data collection for individual forest stands of large areas is not feasible, considering time and cost effort. This problem can be addressed using physically based modeling, aiming to numerically simulate the water balance. In this study, we parameterized, calibrated, and verified the hydrological multidimensional WaSiM-ETH model to assess the water balance at a spatial resolution of 30 m in a German forested catchment area (136.4 km2) for the period 2000-2021 using selected in situ data, remote sensing products, and total runoff. Based on the model output, drought-sensitive parameters, such as the difference between potential and effective stand transpiration (Tdiff) and the water balance, were deduced from the model, analyzed, and evaluated. Results show that the modeled evapotranspiration (ET) correlated significantly (R2 = 0.80) with the estimated ET using MODIS data (MOD16A2GFv006). Compared with observed daily, monthly, and annual runoff data, the model shows a good performance (R2: 0.70|0.77|0.73; Kling-Gupta efficiency: 0.59|0.62|0.83; volumetric efficiency: 0.52|0.60|0.83). The comparison with in situ data from a forest monitoring plot, established at the end of 2020, indicated good agreement between observed and simulated interception and soil water content. According to our results, WaSiM-ETH is a potential supplement for forest management, owing to its multidimensionality and the ability to model soil water balance for large areas at comparable high spatial resolution. The outputs offer, compared to non-distributed models (like LWF-Brook90), spatial differentiability, which is important for small-scale parceled forests, regarding stand structure and soil properties. Due to the spatial component offered, additional verification possibilities are feasible allowing a reliable and profound verification of the model and its parameterization.}, language = {en} }