@article{ReinersSobrinoKuenzer2023, author = {Reiners, Philipp and Sobrino, Jos{\´e} and Kuenzer, Claudia}, title = {Satellite-derived land surface temperature dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311120}, year = {2023}, abstract = {Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites.}, language = {en} } @article{KunzUllmannKneiseletal.2023, author = {Kunz, Julius and Ullmann, T. and Kneisel, C. and Baumhauer, R.}, title = {Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada}, series = {Arctic, Antarctic, and Alpine Research}, volume = {55}, journal = {Arctic, Antarctic, and Alpine Research}, number = {1}, issn = {1523-0430}, doi = {10.1080/15230430.2023.2167358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350147}, year = {2023}, abstract = {The development of retrogressive thaw slumps (RTS) is known to be strongly influenced by relief-related parameters, permafrost characteristics, and climatic triggers. To deepen the understanding of RTS, this study examines the subsurface characteristics in the vicinity of an active thaw slump, located in the Richardson Mountains (Western Canadian Arctic). The investigations aim to identify relationships between the spatiotemporal slump development and the influence of subsurface structures. Information on these were gained by means of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). The spatiotemporal development of the slump was revealed by high-resolution satellite imagery and unmanned aerial vehicle-based digital elevation models (DEMs). The analysis indicated an acceleration of slump expansion, especially since 2018. The comparison of the DEMs enabled the detailed balancing of erosion and accumulation within the slump area between August 2018 and August 2019. In addition, manual frost probing and GPR revealed a strong relationship between the active layer thickness, surface morphology, and hydrology. Detected furrows in permafrost table topography seem to affect the active layer hydrology and cause a canalization of runoff toward the slump. The three-dimensional ERT data revealed a partly unfrozen layer underlying a heterogeneous permafrost body. This may influence the local hydrology and affect the development of the RTS. The results highlight the complex relationships between slump development, subsurface structure, and hydrology and indicate a distinct research need for other RTSs.}, language = {en} } @article{MeistervonSuchodoletzZeeden2023, author = {Meister, Julia and von Suchodoletz, Hans and Zeeden, Christian}, title = {Preface: Quaternary research from and inspired by the first virtual DEUQUA conference}, series = {E\&G Quaternary Science Journal}, volume = {72}, journal = {E\&G Quaternary Science Journal}, number = {2}, doi = {10.5194/egqsj-72-185-2023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350157}, pages = {185-187}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{SchaeferFaethKneiseletal.2023, author = {Sch{\"a}fer, Christian and F{\"a}th, Julian and Kneisel, Christof and Baumhauer, Roland and Ullmann, Tobias}, title = {Multidimensional hydrological modeling of a forested catchment in a German low mountain range using a modular runoff and water balance model}, series = {Frontiers in Forests and Global Change}, volume = {6}, journal = {Frontiers in Forests and Global Change}, doi = {10.3389/ffgc.2023.1186304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357358}, year = {2023}, abstract = {Sufficient plant-available water is one of the most important requirements for vital, stable, and well-growing forest stands. In the face of climate change, there are various approaches to derive recommendations considering tree species selection based on plant-available water provided by measurements or simulations. Owing to the small-parcel management of Central European forests as well as small-spatial variation of soil and stand properties, in situ data collection for individual forest stands of large areas is not feasible, considering time and cost effort. This problem can be addressed using physically based modeling, aiming to numerically simulate the water balance. In this study, we parameterized, calibrated, and verified the hydrological multidimensional WaSiM-ETH model to assess the water balance at a spatial resolution of 30 m in a German forested catchment area (136.4 km2) for the period 2000-2021 using selected in situ data, remote sensing products, and total runoff. Based on the model output, drought-sensitive parameters, such as the difference between potential and effective stand transpiration (Tdiff) and the water balance, were deduced from the model, analyzed, and evaluated. Results show that the modeled evapotranspiration (ET) correlated significantly (R2 = 0.80) with the estimated ET using MODIS data (MOD16A2GFv006). Compared with observed daily, monthly, and annual runoff data, the model shows a good performance (R2: 0.70|0.77|0.73; Kling-Gupta efficiency: 0.59|0.62|0.83; volumetric efficiency: 0.52|0.60|0.83). The comparison with in situ data from a forest monitoring plot, established at the end of 2020, indicated good agreement between observed and simulated interception and soil water content. According to our results, WaSiM-ETH is a potential supplement for forest management, owing to its multidimensionality and the ability to model soil water balance for large areas at comparable high spatial resolution. The outputs offer, compared to non-distributed models (like LWF-Brook90), spatial differentiability, which is important for small-scale parceled forests, regarding stand structure and soil properties. Due to the spatial component offered, additional verification possibilities are feasible allowing a reliable and profound verification of the model and its parameterization.}, language = {en} } @phdthesis{Hein2022, author = {Hein, Niklas}, title = {Gesellschaftliche Implikationen nachhaltiger Nischenakteure - auf dem Weg in eine Postwachstumsgesellschaft?}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-178-5}, issn = {0510-9833}, doi = {10.25972/WUP-978-3-95826-179-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250737}, school = {W{\"u}rzburg University Press}, pages = {VIII, 222}, year = {2022}, abstract = {Die imperiale Lebensweise westlicher Industrienationen, die sich durch ein permanentes Streben nach Wirtschaftswachstum ausdr{\"u}ckt, bringt den Planeten an die Grenzen seiner Tragf{\"a}higkeit. In den letzten Jahren wurden jedoch - best{\"a}rkt durch die Weltwirtschaftskrise 2007/08 - Alternativen zum Modell des permanenten Wachstums immer popul{\"a}rer, die sich anstatt auf {\"o}konomischen Wohlstand vermehrt auf soziale und {\"o}kologische Belange des gesellschaftlichen Zusammenlebens fokussierten. Unter dem Begriff der Postwachstumsbewegung sammelten sich Ans{\"a}tze, Ideen und Akteure, die gemeinsam f{\"u}r eine Zukunft fernab jeglicher Wachstumszw{\"a}nge und innerhalb der planetaren Grenzen k{\"a}mpfen. Vor dem Hintergrund der zunehmenden sozialen und {\"o}kologischen Herausforderungen wurden nun erstmals sozial-{\"o}kologische Nischenakteure aus drei unterschiedlichen Bereichen der Postwachstumsbewegung gemeinsam in einem Forschungsvorhaben - unter besonderer Ber{\"u}cksichtigung gesellschaftlicher, organisatorischer und territorialer Einbettungsprozesse - untersucht. Eingebettet ist diese Untersuchung in den theoretisch-konzeptionellen Ansatz der sozial-{\"o}kologischen Transformation, deren inkrementeller Wandel mithilfe der Multi-Level-Perspektive beschrieben werden kann. Die Kombination dieses spezifischen theoretisch-konzeptionellen Ansatzes und der empirischen Erhebung ist das Alleinstellungsmerkmal der vorliegenden Untersuchung. Es zeigte sich, dass alle untersuchten Nischenakteure eine deutlich progressive Unternehmungsphilosophie vertreten, die h{\"a}ufig in einer Unternehmungsorganisation mit flachen Hierarchien und konsensbasierten Entscheidungsfindungen m{\"u}ndet. Besonders gesellschaftliche Einbettungsprozesse bedingen den Erfolg oder Misserfolg der Nischenentwicklung. Organisatorische Einbettung kommt derweil vor allem im Aufbau weitreichender Netzwerkstrukturen zum Tragen, die die Innovationsf{\"a}higkeit und Stabilit{\"a}t der Nische unterst{\"u}tzen. Eine starke territoriale Einbettung steigert den lokal-regionalen Einfluss der Nischeninnovationen und generiert R{\"u}ckhalt in der Bev{\"o}lkerung.}, subject = {Transformation}, language = {de} } @article{UereyenBachoferKuenzer2022, author = {Uereyen, Soner and Bachofer, Felix and Kuenzer, Claudia}, title = {A framework for multivariate analysis of land surface dynamics and driving variables — a case study for Indo-Gangetic river basins}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs14010197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255295}, year = {2022}, abstract = {The analysis of the Earth system and interactions among its spheres is increasingly important to improve the understanding of global environmental change. In this regard, Earth observation (EO) is a valuable tool for monitoring of long term changes over the land surface and its features. Although investigations commonly study environmental change by means of a single EO-based land surface variable, a joint exploitation of multivariate land surface variables covering several spheres is still rarely performed. In this regard, we present a novel methodological framework for both, the automated processing of multisource time series to generate a unified multivariate feature space, as well as the application of statistical time series analysis techniques to quantify land surface change and driving variables. In particular, we unify multivariate time series over the last two decades including vegetation greenness, surface water area, snow cover area, and climatic, as well as hydrological variables. Furthermore, the statistical time series analyses include quantification of trends, changes in seasonality, and evaluation of drivers using the recently proposed causal discovery algorithm Peter and Clark Momentary Conditional Independence (PCMCI). We demonstrate the functionality of our methodological framework using Indo-Gangetic river basins in South Asia as a case study. The time series analyses reveal increasing trends in vegetation greenness being largely dependent on water availability, decreasing trends in snow cover area being mostly negatively coupled to temperature, and trends of surface water area to be spatially heterogeneous and linked to various driving variables. Overall, the obtained results highlight the value and suitability of this methodological framework with respect to global climate change research, enabling multivariate time series preparation, derivation of detailed information on significant trends and seasonality, as well as detection of causal links with minimal user intervention. This study is the first to use multivariate time series including several EO-based variables to analyze land surface dynamics over the last two decades using the causal discovery algorithm PCMCI.}, language = {en} } @phdthesis{Kawohl2022, author = {Kawohl, Alexander}, title = {The Petrology and Geochemistry of Igneous Dykes above the Temagami Anomaly (Ontario, Canada) and their Relationship to the 1.85 Ga Sudbury Impact}, doi = {10.25972/OPUS-27961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The area northeast of Sudbury, Ontario, is known for one of the largest unexplained geophysical anomalies on the Canadian Shield, the 1,200 km2 Temagami Anomaly. The geological cause of this regional magnetic, conductive and gravity feature has previously been modelled to be a mafic-ultramafic body at relatively great depth (2-15 km) of unknown age and origin, which may or may not be related to the meteorite impact-generated Sudbury Igneous Complex in its immediate vicinity. However, with a profound lack of outcrops and drill holes, the geological cause of the anomaly remains elusive, a genetic link to the 1.85 Ga Sudbury impact event purely speculative. In search for any potential surface expression of the deep-seated cause of the Temagami Anomaly, this study provides a first, yet comprehensive petrological and geochemical assessment of exotic igneous dykes recently discovered in outcrops above, and drill cores into, the Temagami Anomaly. Based on cross-cutting field relations, petrographic studies, lithogeochemistry, whole-rock Nd-Sr-Pb isotope systematics, and U-Pb geochronology, it was possible to identify, and distinguish between, at least six different groups of igneous dykes: (i) Calc-alkaline quartz diorite dykes related to the 1.85 Ga Sudbury Igneous Complex (locally termed Offset Dykes); (ii) tholeiitic quartz diabase of the regional 2.22 Ga Nipissing Suite/Senneterre Dyke Swarm; (iii) calc-alkaline quartz diabase of the regional 2.17 Ga Biscotasing Dyke Swarm; (iv) alkaline ultrabasic dykes correlated with the 1.88-1.86 Ga Circum-Superior Large Igneous Province (LIP); and (v) aplitic dykes as well as (vi) a hornblende syenite, the latter two of more ambiguous age and stratigraphic position. The findings presented in this study - the discovery of three new Offset Dykes in particular - offer some unexpected insights into the geology and economic potential of one of the least explored areas of the world-class Sudbury Mining Camp as well as into the nature and distribution of both allochthonous and autochthonous impactites within one of the oldest and largest impact structures known on Earth. Not only do the geometric patterns of dyke (and breccia) distribution reaffirm previous notions of the existence of discrete ring structures in the sense of a ~200-km multi-ring basin, but they provide critical constraints as to the pre-erosional thickness and extent of the impact melt sheet, thus helping to identity new areas for Ni-Cu-PGE exploration. Furthermore, this study provides important insights into the pre-impact stratigraphy and the magmatic evolution of the region in general, which reveals to be much more complex, compositionally divers, and protracted than initially assumed. Of note is the discovery of rocks related to the 2.17 Ga Biscotasing and the 1.88-1.86 Ga Circum-Superior magmatic events, as these were not previously known to occur on the southeast margin of the Superior Craton. Shortly predating the Sudbury impact and being contemporaneous with ore-forming events at Thompson (Manitoba) and Raglan (Cape Smith), these magmatic rocks could provide the missing link between unusual mafic, pre-enriched, crustal target rocks, and the unique metal endowment of the Sudbury Impact Structure. The actual geological cause of the Temagami Anomaly remains open to debate and requires the downward extension of existing bore holes as well as more detailed geophysical investigations. The hypothesis of a genetic relationship between Sudbury impact event and Temagami Anomaly is neither borne out by any evidence nor particularly realistic, even in case of an oblique impact, and should thus be abandoned. It is instead proposed, based on circumstantial evidence, that the anomaly might be explained by an ultramafic complex of the 1.88-1.86 Ga Circum-Superior LIP.}, subject = {Impaktstruktur}, language = {en} } @phdthesis{Wilde2022, author = {Wilde, Martina}, title = {Landslide susceptibility assessment in the Chiconquiaco Mountain Range area, Veracruz (Mexico)}, doi = {10.25972/OPUS-27608}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In Mexico, numerous landslides occur each year and Veracruz represents the state with the third highest number of events. Especially the Chiconquiaco Mountain Range, located in the central part of Veracruz, is highly affected by landslides and no detailed information on the spatial distribution of existing landslides or future occurrences is available. This leaves the local population exposed to an unknown threat and unable to react appropriately to this hazard or to consider the potential landslide occurrence in future planning processes. Thus, the overall objective of the present study is to provide a comprehensive assessment of the landslide situation in the Chiconquiaco Mountain Range area. Here, the combination of a site-specific and a regional approach enables to investigate the causes, triggers, and process types as well as to model the landslide susceptibility for the entire study area. For the site-specific approach, the focus lies on characterizing the Capul{\´i}n landslide, which represents one of the largest mass movements in the area. In this context, the task is to develop a multi-methodological concept, which concentrates on cost-effective, flexible and non-invasive methods. This approach shows that the applied methods complement each other very well and their combination allows for a detailed characterization of the landslide. The analyses revealed that the Capul{\´i}n landslide is a complex mass movement type. It comprises rotational movement in the upper parts and translational movement in the lower areas, as well as flow processes at the flank and foot area and therefore, is classified as a compound slide-flow according to Cruden and Varnes (1996). Furthermore, the investigations show that the Capul{\´i}n landslide represents a reactivation of a former process. This is an important new information, especially with regard to the other landslides identified in the study area. Both the road reconstructed after the landslide, which runs through the landslide mass, and the stream causing erosion processes at the foot of the landslide severely affect the stability of the landslide, making it highly susceptible to future reactivation processes. This is particularly important as the landslide is located only few hundred meters from the village El Capul{\´i}n and an extension of the landslide area could cause severe damage. The next step in the landslide assessment consists of integrating the data obtained in the site-specific approach into the regional analysis. Here, the focus lies on transferring the generated data to the entire study area. The developed methodological concept yields applicable results, which is supported by different validation approaches. The susceptibility modeling as well as the landslide inventory reveal that the highest probability of landslides occurrence is related to the areas with moderate slopes covered by slope deposits. These slope deposits comprise material from old mass movements and erosion processes and are highly susceptible to landslides. The results give new insights into the landslide situation in the Chiconquiaco Mountain Range area, since previously landslide occurrence was related to steep slopes of basalt and andesite. The susceptibility map is a contribution to a better assessment of the landslide situation in the study area and simultaneously proves that it is crucial to include specific characteristics of the respective area into the modeling process, otherwise it is possible that the local conditions will not be represented correctly.}, subject = {Naturgefahren}, language = {en} } @phdthesis{Uereyen2022, author = {{\"U}reyen, Soner}, title = {Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins}, doi = {10.25972/OPUS-29194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291941}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions.}, subject = {Multivariate Analyse}, language = {en} } @article{AppelHardaker2022, author = {Appel, Alexandra and Hardaker, Sina}, title = {Einzelhandel als Katalysator f{\"u}r nachhaltige urbane Radlogistik? - W{\"u}Livery, ein Fallbeispiel aus W{\"u}rzburg}, series = {Standort}, volume = {46}, journal = {Standort}, number = {1}, issn = {1432-220X}, doi = {10.1007/s00548-021-00758-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268437}, pages = {9-15}, year = {2022}, abstract = {Die Covid-19-Pandemie gilt in vielen gesellschaftlichen Teilbereichen als Beschleuniger f{\"u}r Transformationsprozesse. Auch im Bereich der Organisation urbaner Logistik und Einzelhandelslandschaften etablieren sich neue Akteur*innen und Funktionen. Logistiker*innen integrieren lokale Onlinemarktpl{\"a}tze in ihre Profile und der station{\"a}re Einzelhandel generiert Wettbewerbsf{\"a}higkeit gegen{\"u}ber großen Onlineh{\"a}ndler*innen {\"u}ber die Nutzung lokaler Radlogistiknetzwerke, mittels derer Lieferungen noch am Tag der Bestellung (Same-Day-Delivery) verteilt werden k{\"o}nnen. Damit leisten die involvierten Akteur*innen potenziell auch einen Beitrag zur Nachhaltigkeitstransformation im Bereich urbaner Logistiksysteme. Im Fokus steht das Fallbeispiel W{\"u}Livery, ein Kooperationsprojekt des Stadtmarketingvereins, der Wirtschaftsf{\"o}rderung, Radlogistiker*innen sowie Einzelh{\"a}ndler*innen in W{\"u}rzburg, welches w{\"a}hrend des zweiten coronabedingten Lockdowns im November 2020 umgesetzt wurde. Die entstehenden Dynamiken und Organisationsformen werden auf Basis von 11 Expert*inneninterviews dargestellt und analysiert. Es kann gezeigt werden, dass st{\"a}dtische Akteur*innen grundlegende Mediator*innen f{\"u}r Transformationsprozesse darstellen und Einzelh{\"a}ndler*innen und lokale Onlinemarktpl{\"a}tze als Katalysator*innen fungieren k{\"o}nnen. Das ist auch vor dem Hintergrund planerischer und politischer Kommunikationsprozesse zur Legitimation neuer Verkehrsinfrastrukturen nutzbar, da die einzelnen Akteur*innengruppen in Austausch kommen und ein gesteigertes Bewusstsein f{\"u}r die jeweiligen Bedarfe entsteht.}, language = {de} } @article{KleemannZamoraVillacisChiluisaetal.2022, author = {Kleemann, Janina and Zamora, Camilo and Villacis-Chiluisa, Alexandra Belen and Cuenca, Pablo and Koo, Hongmi and Noh, Jin Kyoung and F{\"u}rst, Christine and Thiel, Michael}, title = {Deforestation in continental Ecuador with a focus on protected areas}, series = {Land}, volume = {11}, journal = {Land}, number = {2}, issn = {2073-445X}, doi = {10.3390/land11020268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262078}, year = {2022}, abstract = {Forest conservation is of particular concern in tropical regions where a large refuge of biodiversity is still existing. These areas are threatened by deforestation, forest degradation and fragmentation. Especially, pressures of anthropogenic activities adjacent to these areas significantly influence conservation effectiveness. Ecuador was chosen as study area since it is a globally relevant center of forest ecosystems and biodiversity. We identified hotspots of deforestation on the national level of continental Ecuador between 1990 and 2018, analyzed the most significant drivers of deforestation on national and biome level (the Coast, the Andes, The Amazon) as well as inside protected areas in Ecuador by using multiple regression analysis. We separated the national system of protected areas (SNAP) into higher and lower protection levels. Besides SNAP, we also considered Biosphere Reserves (BRs) and Ramsar sites. In addition, we investigated the rates and spatial patterns of deforestation in protected areas and buffer zones (5 km and 10 km outwards the protected area boundaries) using landscape metrics. Between 1990 and 2018, approximately 4\% of the accumulated deforestation occurred within the boundaries of SNAP, and up to 25.5\% in buffer zones. The highest rates of deforestation have been found in the 5 km buffer zone around the protected areas with the highest protection level. Protected areas and their buffer zones with higher protection status were identified as the most deforested areas among SNAP. BRs had the highest deforestation rates among all protected areas but most of these areas just became BRs after the year 2000. The most important driver of deforestation is agriculture. Other relevant drivers differ between the biomes. The results suggest that the SNAP is generally effective to prevent deforestation within their protection boundaries. However, deforestation around protected areas can undermine conservation strategies to sustain biodiversity. Actions to address such dynamics and patterns of deforestation and forest fragmentation, and developing conservation strategies of their landscape context are urgently needed especially in the buffer zones of areas with the highest protection status.}, language = {en} } @phdthesis{Ziegler2022, author = {Ziegler, Katrin}, title = {Implementierung von verbesserten Landoberfl{\"a}chenparametern und -prozessen in das hochaufgel{\"o}ste Klimamodell REMO}, doi = {10.25972/OPUS-26128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261285}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Das Ziel dieser Arbeit war neue Eingangsdaten f{\"u}r die Landoberfl{\"a}chenbeschreibung des regionalen Klimamodells REMO zu finden und ins Modell zu integrieren, um die Vorhersagequalit{\"a}t des Modells zu verbessern. Die neuen Daten wurden so in das Modell eingebaut, dass die bisherigen Daten weiterhin als Option verf{\"u}gbar sind. Dadurch kann {\"u}berpr{\"u}ft werden, ob und in welchem Umfang sich die von jedem Klimamodell ben{\"o}tigten Rahmendaten auf Modellergebnisse auswirken. Im Zuge der Arbeit wurden viele unterschiedliche Daten und Methoden zur Generierung neuer Parameter miteinander verglichen, denn neben dem Ersetzen der konstanten Eingangswerte f{\"u}r verschiedene Oberfl{\"a}chenparameter und den damit verbundenen {\"A}nderungen wurden als zus{\"a}tzliche Verbesserung auch Ver{\"a}nderungen an der Parametrisierung des Bodens speziell in Hinblick auf die Bodentemperaturen in REMO vorgenommen. Im Rahmen dieser Arbeit wurden die durch die verschiedenen {\"A}nderungen ausgel{\"o}sten Auswirkungen f{\"u}r das CORDEX-Gebiet EUR-44 mit einer Aufl{\"o}sung von ca. 50km und f{\"u}r das in dem darin eingebetteten neu definierten Deutschlandgebiet GER-11 mit einer Aufl{\"o}sung von ca. 12km getestet sowie alle {\"A}nderungen anhand von verschiedenen Beobachtungsdatens{\"a}tzen validiert. Die vorgenommenen Arbeiten gliederten sich in drei Hauptteile. Der erste Teil bestand in dem vom eigentlichen Klimamodell unabh{\"a}ngigen Vergleich der verschiedenen Eingangsdaten auf unterschiedlichen Aufl{\"o}sungen und deren Performanz in allen Teilen der Erde, wobei ein besonderer Fokus auf der Qualit{\"a}t in den sp{\"a}teren Modellgebieten lag. Unter Ber{\"u}cksichtigung der Faktoren, wie einer globalen Verf{\"u}gbarkeit der Daten, einer verbesserten r{\"a}umlichen Aufl{\"o}sung und einer kostenlosen Nutzung der Daten sowie verschiedener Validationsergebnissen von anderen Studien, wurden in dieser Arbeit vier neue Topographiedatens{\"a}tze (SRTM, ALOS, TANDEM und ASTER) und drei neue Bodendatens{\"a}tze (FAOn, Soilgrid und HWSD) f{\"u}r die Verwendung im Pr{\"a}prozess von REMO aufbereitet und miteinander sowie mit den bisher in REMO verwendeten Daten verglichen. Auf Grundlage dieser Vergleichsstudien schieden bei den Topographiedaten die verwendeten Datensatz-Versionen von SRTM, ALOS und TANDEM f{\"u}r die in dieser Arbeit durchgef{\"u}hrten REMO-L{\"a}ufe aus. Bei den neuen Bodendatens{\"a}tzen wurde ausgenutzt, dass diese verschiedenen Bodeneigenschaften f{\"u}r unterschiedliche Tiefen als Karten zur Verf{\"u}gung stellen. In REMO wurden bisher alle ben{\"o}tigten Bodenparameter abh{\"a}ngig von f{\"u}nf verschiedenen Bodentexturklassen und einer zus{\"a}tzlichen Torfklasse ausgewiesen und als konstant {\"u}ber die gesamte Modellbodens{\"a}ule (bis ca. 10m) angenommen. Im zweiten Teil wurden auf Basis der im ersten Teil ausgew{\"a}hlten neuen Datens{\"a}tze und den neu verf{\"u}gbaren Bodenvariablen verschiedene Sensitivit{\"a}tsstudien {\"u}ber das Beispieljahr 2000 durchgef{\"u}hrt. Dabei wurden verschiedene neue Parametrisierungen f{\"u}r die bisher aus der Textur abgeleiteten Bodenvariablen und die Parametrisierung von weiteren hydrologischen und thermalen Bodeneigenschaften verglichen. Ferner wurde aufgrund der neuen nicht {\"u}ber die Tiefe konstanten Bodeneigenschaften eine neue numerische Methode zur Berechnung der Bodentemperaturen der f{\"u}nf Schichten in REMO getestet, welche wiederum andere Anpassungen erforderte. Der Test und die Auswahl der verschiedenen Datensatz- und Parametrisierungsversionen auf die Modellperformanz wurde in drei Experimentpl{\"a}ne unterteilt. Im ersten Plan wurden die Auswirkungen der ausgew{\"a}hlten Topographie- und Bodendatens{\"a}tze {\"u}berpr{\"u}ft. Der zweite Plan behandelte die Unterschiede der verschiedenen Parametrisierungsarten der Bodenvariablen hinsichtlich der verwendeten Variablen zur Berechnung der Bodeneigenschaften, der {\"u}ber die Tiefe variablen oder konstanten Eigenschaften und der verwendeten Berechnungsmethode der Bodentemperatur{\"a}nderungen. Durch die Erkenntnisse aus diesen beiden Experimentpl{\"a}nen, die f{\"u}r beide Untersuchungsgebiete durchgef{\"u}hrt wurden, ergaben sich im dritten Plan weitere Parametrisierungs{\"a}nderungen. Alle {\"A}nderungen dieses dritten Experimentplans wurden sukzessiv getestet, sodass der paarweise Vergleich von zwei aufeinanderfolgenden Modelll{\"a}ufen die Auswirkungen der Neuerung im jeweils zweiten Lauf widerspiegelt. Der letzte Teil der Arbeit bestand aus der Analyse von f{\"u}nf l{\"a}ngeren Modelll{\"a}ufen (2000-2018), die zur {\"U}berpr{\"u}fung der Ergebnisse aus den Sensitivit{\"a}tsstudien sowie zur Einsch{\"a}tzung der Performanz in weiteren teilweise extremen atmosph{\"a}rischen Bedingungen durchgef{\"u}hrt wurden. Hierf{\"u}r wurden die bisherige Modellversion von REMO (id01) f{\"u}r die beiden Untersuchungsgebiete EUR-44 und GER-11 als Referenzl{\"a}ufe, zwei aufgrund der Vergleichsergebnisse von Experimentplan 3 selektierte Modellversionen (id06 und id15a f{\"u}r GER-11) sowie die finale Version (id18a f{\"u}r GER-11), die alle vorgenommenen {\"A}nderungen dieser Arbeit enth{\"a}lt, ausgew{\"a}hlt. Es stellte sich heraus, dass sowohl die neuen Topographiedaten als auch die neuen Bodendaten große Differenzen zu den bisherigen Daten in REMO haben. Zudem {\"a}nderten sich die von diesen konstanten Eingangsdaten abgeleiteten Hilfsvariablen je nach verwendeter Parametrisierung sehr deutlich. Dies war besonders gut anhand der Bodenparameter zu erkennen. Sowohl die r{\"a}umliche Verteilung als auch der Wertebereich der verschiedenen Modellversionen unterschieden sich stark. Eine Einsch{\"a}tzung der Qualit{\"a}t der resultierenden Parameter wurde jedoch dadurch erschwert, dass auch die verschiedenen zur Validierung herangezogenen Bodendatens{\"a}tze f{\"u}r diese Parameter deutlich voneinander abweichen. Die finale Modellversion id18a {\"a}hnelte trotz der umfassenden {\"A}nderungen in den meisten Variablen den Ergebnissen der bisherigen REMO-Version. Je nach zeitlicher und r{\"a}umlicher Aggregation sowie unterschiedlichen Regionen und Jahreszeiten wurden leichte Verbesserungen, aber auch leichte Verschlechterungen im Vergleich zu den klimatologischen Validationsdaten festgestellt. Gr{\"o}ßere Ver{\"a}nderungen im Vergleich zur bisherigen Modellversion konnten in den tieferen Bodenschichten aufgezeigt werden, welche allerdings aufgrund von fehlenden Validationsdaten nicht beurteilt werden konnten. F{\"u}r alle 2m-Temperaturen konnte eine tendenzielle leichte Erw{\"a}rmung im Vergleich zum bisherigen Modelllauf beobachtet werden, was sich einerseits negativ auf die ohnehin durchschnittlich zu hohe Minimumtemperatur, aber andererseits positiv auf die bisher zu niedrige Maximumtemperatur des Modells in den betrachteten Gebieten auswirkte. Im Niederschlagssignal und in den 10m-Windvariablen konnten keine signifikanten {\"A}nderungen nachgewiesen werden, obwohl die neue Topographie an manchen Stellen im Modellgebiet deutlich von der bisherigen abweicht. Des Weiteren variierte das Ranking der verschiedenen Modellversionen jeweils nach dem angewendeten Qualit{\"a}tsindex. Um diese Ergebnisse besser einordnen zu k{\"o}nnen, muss ber{\"u}cksichtigt werden, dass die neuen Daten f{\"u}r Modellgebiete mit 50 bzw. 12km r{\"a}umlicher Aufl{\"o}sung und der damit verbundenen hydrostatischen Modellversion getestet wurden. Zudem sind vor allem in Fall der Topographie die bisher enthaltenen GTOPO-Daten (1km Aufl{\"o}sung) f{\"u}r die Aggregation auf diese gr{\"o}bere Modellaufl{\"o}sung geeignet. Die bisherigen Bodendaten stoßen jedoch mit 50km Aufl{\"o}sung bereits an ihre Grenzen. Zus{\"a}tzlich ist zu beachten, dass nicht nur die Mittelwerte dieser Daten, sondern auch deren Subgrid-Variabilit{\"a}t als Variablen im Modell f{\"u}r verschiedene Parametrisierungen verwendet werden. Daher ist es essentiell, dass die Eingangsdaten eine deutlich h{\"o}here Aufl{\"o}sung bereitstellen als die zur Modellierung definierte Aufl{\"o}sung. F{\"u}r lokale Klimasimulationen mit Aufl{\"o}sungen im niedrigen Kilometerbereich spielen auch die Vertikalbewegungen (nicht-hydrostatische Modellversion) eine wichtige Rolle, die stark von der Topographie sowie deren horizontaler und vertikaler {\"A}nderungsrate beeinflusst werden, was die in dieser Arbeit eingebauten wesentlich h{\"o}her aufgel{\"o}sten Daten f{\"u}r die zuk{\"u}nftige Weiterentwicklung von REMO wertvoll machen kann.}, subject = {Klimamodell}, language = {de} } @article{RoeschPlank2022, author = {R{\"o}sch, Moritz and Plank, Simon}, title = {Detailed mapping of lava and ash deposits at Indonesian volcanoes by means of VHR PlanetScope change detection}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {5}, issn = {2072-4292}, doi = {10.3390/rs14051168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262232}, year = {2022}, abstract = {Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis).}, language = {en} } @phdthesis{Dirscherl2022, author = {Dirscherl, Mariel Christina}, title = {Remote Sensing of Supraglacial Lake Dynamics in Antarctica - Exploiting Methods from Artificial Intelligence for Derivation of Antarctic Supraglacial Lake Extents in Multi-Sensor Remote Sensing Data}, doi = {10.25972/OPUS-27950}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279505}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {With accelerating global climate change, the Antarctic Ice Sheet is exposed to increasing ice dynamic change. During 1992 and 2017, Antarctica contributed ~7.6 mm to global sea-level-rise mainly due to ocean thermal forcing along West Antarctica and atmospheric warming along the Antarctic Peninsula (API). Together, these processes caused the progressive retreat of glaciers and ice shelves and weakened their efficient buttressing force causing widespread ice flow accelerations. Holding ~91\% of the global ice mass and 57.3 m of sea-level-equivalent, the Antarctic Ice Sheet is by far the largest potential contributor to future sea-level-rise. Despite the improved understanding of Antarctic ice dynamics, the future of Antarctica remains difficult to predict with its contribution to global sea-level-rise representing the largest uncertainty in current projections. Given that recent studies point towards atmospheric warming and melt intensification to become a dominant driver for future Antarctic ice mass loss, the monitoring of supraglacial lakes and their impacts on ice dynamics is of utmost importance. In this regard, recent progress in Earth Observation provides an abundance of high-resolution optical and Synthetic Aperture Radar (SAR) satellite data at unprecedented spatial and temporal coverage and greatly supports the monitoring of the Antarctic continent where ground-based mapping efforts are difficult to perform. As an automated mapping technique for supraglacial lake extent delineation in optical and SAR satellite imagery as well as a pan-Antarctic inventory of Antarctic supraglacial lakes at high spatial and temporal resolution is entirely missing, this thesis aims to advance the understanding of Antarctic surface hydrology through exploitation of spaceborne remote sensing. In particular, a detailed literature review on spaceborne remote sensing of Antarctic supraglacial lakes identified several research gaps including the lack of (1) an automated mapping technique for optical or SAR satellite data that is transferable in space and time, (2) high-resolution supraglacial lake extent mappings at intra-annual and inter-annual temporal resolution and (3) large-scale mapping efforts across the entire Antarctic continent. In addition, past method developments were found to be restricted to purely visual, manual or semi-automated mapping techniques hindering their application to multi-temporal satellite imagery at large-scale. In this context, the development of automated mapping techniques was mainly limited by sensor-specific characteristics including the similar appearance of supraglacial lakes and other ice sheet surface features in optical or SAR data, the varying temporal signature of supraglacial lakes throughout the year as well as effects such as speckle noise and wind roughening in SAR data or cloud coverage in optical data. To overcome these limitations, this thesis exploits methods from artificial intelligence and big data processing for development of an automated processing chain for supraglacial lake extent delineation in Sentinel-1 SAR and optical Sentinel-2 satellite imagery. The combination of both sensor types enabled to capture both surface and subsurface lakes as well as to acquire data during cloud cover or wind roughening of lakes. For Sentinel-1, a deep convolutional neural network based on residual U-Net was trained on the basis of 21,200 labeled Sentinel-1 SAR image patches covering 13 Antarctic regions. Similarly, optical Sentinel-2 data were collected over 14 Antarctic regions and used for training of a Random Forest classifier. Optical and SAR classification products were combined through decision-level fusion at bi-weekly temporal scale and unprecedented 10 m spatial resolution. Finally, the method was implemented as part of DLR's High-Performance Computing infrastructure allowing for an automated processing of large amounts of data including all required pre- and postprocessing steps. The results of an accuracy assessment over independent test scenes highlighted the functionality of the classifiers returning accuracies of 93\% and 95\% for supraglacial lakes in Sentinel-1 and Sentinel-2 satellite imagery, respectively. Exploiting the full archive of Sentinel-1 and Sentinel-2, the developed framework for the first time enabled the monitoring of seasonal characteristics of Antarctic supraglacial lakes over six major ice shelves in 2015-2021. In particular, the results for API ice shelves revealed low lake coverage during 2015-2018 and particularly high lake coverage during the 2019-2020 and 2020-2021 melting seasons. On the contrary, East Antarctic ice shelves were characterized by high lake coverage during 2016-2019 and extremely low lake coverage during the 2020-2021 melting season. Over all six investigated ice shelves, the development of drainage systems was revealed highlighting an increased risk for ice shelf instability. Through statistical correlation analysis with climate data at varying time lags as well as annual data on Southern Hemisphere atmospheric modes, environmental drivers for meltwater ponding were revealed. In addition, the influence of the local glaciological setting was investigated through computation of annual recurrence times of lakes. Over both ice sheet regions, the complex interplay between local, regional and large-scale environmental drivers was found to control supraglacial lake formation despite local to regional discrepancies, as revealed through pixel-based correlation analysis. Local control factors included the ice surface topography, the ice shelf geometry, the presence of low-albedo features as well as a reduced firn air content and were found to exert strong control on lake distribution. On the other hand, regional controls on lake evolution were revealed to be the amount of incoming solar radiation, air temperature and wind occurrence. While foehn winds were found to dictate lake evolution over the API, katabatic winds influenced lake ponding in East Antarctica. Furthermore, the regional near-surface climate was shown to be driven by large-scale atmospheric modes and teleconnections with the tropics. Overall, the results highlight that similar driving factors control supraglacial lake formation on the API and EAIS pointing towards their transferability to other Antarctic regions.}, subject = {Optische Fernerkundung}, language = {en} } @article{SognoKleinKuenzer2022, author = {Sogno, Patrick and Klein, Igor and Kuenzer, Claudia}, title = {Remote sensing of surface water dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs14102475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275274}, year = {2022}, abstract = {Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution.}, language = {en} } @article{LappeUllmannBachofer2022, author = {Lappe, Ronja and Ullmann, Tobias and Bachofer, Felix}, title = {State of the Vietnamese coast — assessing three decades (1986 to 2021) of coastline dynamics using the Landsat archive}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs14102476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275281}, year = {2022}, abstract = {Vietnam's 3260 km coastline is densely populated, experiences rapid urban and economic growth, and faces at the same time a high risk of coastal hazards. Satellite archives provide a free and powerful opportunity for long-term area-wide monitoring of the coastal zone. This paper presents an automated analysis of coastline dynamics from 1986 to 2021 for Vietnam's entire coastal zone using the Landsat archive. The proposed method is implemented within the cloud-computing platform Google Earth Engine to only involve publicly and globally available datasets and tools. We generated annual coastline composites representing the mean-high water level and extracted sub-pixel coastlines. We further quantified coastline change rates along shore-perpendicular transects, revealing that half of Vietnam's coast did not experience significant change, while the remaining half is classified as erosional (27.7\%) and accretional (27.1\%). A hotspot analysis shows that coastal segments with the highest change rates are concentrated in the low-lying deltas of the Mekong River in the south and the Red River in the north. Hotspots with the highest accretion rates of up to +47 m/year are mainly associated with the construction of artificial coastlines, while hotspots with the highest erosion rates of -28 m/year may be related to natural sediment redistribution and human activity.}, language = {en} } @article{YangYaoLietal.2022, author = {Yang, Xuting and Yao, Wanqiang and Li, Pengfei and Hu, Jinfei and Latifi, Hooman and Kang, Li and Wang, Ningjing and Zhang, Dingming}, title = {Changes of SOC content in China's Shendong coal mining area during 1990-2020 investigated using remote sensing techniques}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {12}, issn = {2071-1050}, doi = {10.3390/su14127374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278939}, year = {2022}, abstract = {Coal mining, an important human activity, disturbs soil organic carbon (SOC) accumulation and decomposition, eventually affecting terrestrial carbon cycling and the sustainability of human society. However, changes of SOC content and their relation with influential factors in coal mining areas remained unclear. In the study, predictive models of SOC content were developed based on field sampling and Landsat images for different land-use types (grassland, forest, farmland, and bare land) of the largest coal mining area in China (i.e., Shendong). The established models were employed to estimate SOC content across the Shendong mining area during 1990-2020, followed by an investigation into the impacts of climate change and human disturbance on SOC content by a Geo-detector. Results showed that the models produced satisfactory results (R\(^2\) > 0.69, p < 0.05), demonstrating that SOC content over a large coal mining area can be effectively assessed using remote sensing techniques. Results revealed that average SOC content in the study area rose from 5.67 gC·kg\(^{-1}\) in 1990 to 9.23 gC·kg\(^{-1}\) in 2010 and then declined to 5.31 gC·Kg\(^{-1}\) in 2020. This could be attributed to the interaction between the disturbance of soil caused by coal mining and the improvement of eco-environment by land reclamation. Spatially, the SOC content of farmland was the highest, followed by grassland, and that of bare land was the lowest. SOC accumulation was inhibited by coal mining activities, with the effect of high-intensity mining being lower than that of moderate- and low-intensity mining activities. Land use was found to be the strongest individual influencing factor for SOC content changes, while the interaction between vegetation coverage and precipitation exerted the most significant influence on the variability of SOC content. Furthermore, the influence of mining intensity combined with precipitation was 10 times higher than that of mining intensity alone.}, language = {en} } @article{Hardaker2022, author = {Hardaker, Sina}, title = {More Than Infrastructure Providers - Digital Platforms' Role and Power in Retail Digitalisation in Germany}, series = {Tijdschrift voor Economische en Sociale Geografie}, volume = {113}, journal = {Tijdschrift voor Economische en Sociale Geografie}, number = {3}, doi = {10.1111/tesg.12511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287297}, pages = {310 -- 328}, year = {2022}, abstract = {Digital platforms, such as Amazon, represent the major beneficiaries of the Covid-19 crisis. This study examines the role of digital platforms and their engagement in digitalisation initiatives targeting (small) brick-and-mortar retailers in Germany, thereby contributing to a better understanding of how digital platforms augment, substitute or reorganise physical retail spaces. This study applies a mixed-method approach based on qualitative interviews, participant observation as well as media analysis. First, the study illustrates the controversial role of digital platforms by positioning themselves as supporting partners of the (offline) retailers, while simultaneously shifting power towards the platforms themselves. Second, digital platforms have established themselves not only as infrastructure providers but also as actors within these infrastructures, framing digital as well as physical retail spaces, inter alia due to their role as publicly legitimised retail advisers. Third, while institutions want to help retailers to survive, they simultaneously enhance retailers' dependency on digital platforms.}, language = {en} } @article{KacicKuenzer2022, author = {Kacic, Patrick and Kuenzer, Claudia}, title = {Forest biodiversity monitoring based on remotely sensed spectral diversity — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs14215363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290535}, year = {2022}, abstract = {Forests are essential for global environmental well-being because of their rich provision of ecosystem services and regulating factors. Global forests are under increasing pressure from climate change, resource extraction, and anthropologically-driven disturbances. The results are dramatic losses of habitats accompanied with the reduction of species diversity. There is the urgent need for forest biodiversity monitoring comprising analysis on α, β, and γ scale to identify hotspots of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal resolutions. Concepts of remotely sensed spectral diversity have been identified as promising methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review provides a first time focus on the three spectral diversity concepts "vegetation indices", "spectral information content", and "spectral species" for forest biodiversity monitoring based on airborne and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify multispectral sensors as primary data source which underlines the focus on optical diversity as a proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral information content. In recent years, the spectral species concept has raised attention and has been applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral communities. Novel remote sensing processing capacities and the provision of complementary remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future.}, language = {en} } @article{AyalaCarrilloFarfanCardenasNielsenetal.2022, author = {Ayala-Carrillo, Mariana and Farf{\´a}n, Michelle and C{\´a}rdenas-Nielsen, Anah{\´i} and Lemoine-Rodr{\´i}guez, Richard}, title = {Are wildfires in the wildland-urban interface increasing temperatures? A land surface temperature assessment in a semi-arid Mexican city}, series = {Land}, volume = {11}, journal = {Land}, number = {12}, issn = {2073-445X}, doi = {10.3390/land11122105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297308}, year = {2022}, abstract = {High rates of land conversion due to urbanization are causing fragmented and dispersed spatial patterns in the wildland-urban interface (WUI) worldwide. The occurrence of anthropogenic fires in the WUI represents an important environmental and social issue, threatening not only vegetated areas but also periurban inhabitants, as is the case in many Latin American cities. However, research has not focused on the dynamics of the local climate in the WUI. This study analyzes whether wildfires contribute to the increase in land surface temperature (LST) in the WUI of the metropolitan area of the city of Guanajuato (MACG), a semi-arid Mexican city. We estimated the pre- and post-fire LST for 2018-2021. Spatial clusters of high LST were detected using hot spot analysis and examined using ANOVA and Tukey's post-hoc statistical tests to assess whether LST is related to the spatial distribution of wildfires during our study period. Our results indicate that the areas where the wildfires occurred, and their surroundings, show higher LST. This has negative implications for the local ecosystem and human population, which lacks adequate infrastructure and services to cope with the effects of rising temperatures. This is the first study assessing the increase in LST caused by wildfires in a WUI zone in Mexico.}, language = {en} } @article{AnsahAbuKleemannetal.2022, author = {Ansah, Christabel Edena and Abu, Itohan-Osa and Kleemann, Janina and Mahmoud, Mahmoud Ibrahim and Thiel, Michael}, title = {Environmental contamination of a biodiversity hotspot — action needed for nature conservation in the Niger Delta, Nigeria}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {21}, issn = {2071-1050}, doi = {10.3390/su142114256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297214}, year = {2022}, abstract = {The Niger Delta belongs to the largest swamp and mangrove forests in the world hosting many endemic and endangered species. Therefore, its conservation should be of highest priority. However, the Niger Delta is confronted with overexploitation, deforestation and pollution to a large extent. In particular, oil spills threaten the biodiversity, ecosystem services, and local people. Remote sensing can support the detection of spills and their potential impact when accessibility on site is difficult. We tested different vegetation indices to assess the impact of oil spills on the land cover as well as to detect accumulations (hotspots) of oil spills. We further identified which species, land cover types, and protected areas could be threatened in the Niger Delta due to oil spills. The results showed that the Enhanced Vegetation Index, the Normalized Difference Vegetation Index, and the Soil Adjusted Vegetation Index were more sensitive to the effects of oil spills on different vegetation cover than other tested vegetation indices. Forest cover was the most affected land-cover type and oil spills also occurred in protected areas. Threatened species are inhabiting the Niger Delta Swamp Forest and the Central African Mangroves that were mainly affected by oil spills and, therefore, strong conservation measures are needed even though security issues hamper the monitoring and control.}, language = {en} } @article{HaHuthBachoferetal.2022, author = {Ha, Tuyen V. and Huth, Juliane and Bachofer, Felix and Kuenzer, Claudia}, title = {A review of Earth observation-based drought studies in Southeast Asia}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {15}, issn = {2072-4292}, doi = {10.3390/rs14153763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286258}, year = {2022}, abstract = {Drought is a recurring natural climatic hazard event over terrestrial land; it poses devastating threats to human health, the economy, and the environment. Given the increasing climate crisis, it is likely that extreme drought phenomena will become more frequent, and their impacts will probably be more devastating. Drought observations from space, therefore, play a key role in dissimilating timely and accurate information to support early warning drought management and mitigation planning, particularly in sparse in-situ data regions. In this paper, we reviewed drought-related studies based on Earth observation (EO) products in Southeast Asia between 2000 and 2021. The results of this review indicated that drought publications in the region are on the increase, with a majority (70\%) of the studies being undertaken in Vietnam, Thailand, Malaysia and Indonesia. These countries also accounted for nearly 97\% of the economic losses due to drought extremes. Vegetation indices from multispectral optical remote sensing sensors remained a primary source of data for drought monitoring in the region. Many studies (~21\%) did not provide accuracy assessment on drought mapping products, while precipitation was the main data source for validation. We observed a positive association between spatial extent and spatial resolution, suggesting that nearly 81\% of the articles focused on the local and national scales. Although there was an increase in drought research interest in the region, challenges remain regarding large-area and long time-series drought measurements, the combined drought approach, machine learning-based drought prediction, and the integration of multi-sensor remote sensing products (e.g., Landsat and Sentinel-2). Satellite EO data could be a substantial part of the future efforts that are necessary for mitigating drought-related challenges, ensuring food security, establishing a more sustainable economy, and the preservation of the natural environment in the region.}, language = {en} } @article{KoehlerBauerDietzetal.2022, author = {Koehler, Jonas and Bauer, Andr{\´e} and Dietz, Andreas J. and Kuenzer, Claudia}, title = {Towards forecasting future snow cover dynamics in the European Alps — the potential of long optical remote-sensing time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {18}, issn = {2072-4292}, doi = {10.3390/rs14184461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288338}, year = {2022}, abstract = {Snow is a vital environmental parameter and dynamically responsive to climate change, particularly in mountainous regions. Snow cover can be monitored at variable spatial scales using Earth Observation (EO) data. Long-lasting remote sensing missions enable the generation of multi-decadal time series and thus the detection of long-term trends. However, there have been few attempts to use these to model future snow cover dynamics. In this study, we, therefore, explore the potential of such time series to forecast the Snow Line Elevation (SLE) in the European Alps. We generate monthly SLE time series from the entire Landsat archive (1985-2021) in 43 Alpine catchments. Positive long-term SLE change rates are detected, with the highest rates (5-8 m/y) in the Western and Central Alps. We utilize this SLE dataset to implement and evaluate seven uni-variate time series modeling and forecasting approaches. The best results were achieved by Random Forests, with a Nash-Sutcliffe efficiency (NSE) of 0.79 and a Mean Absolute Error (MAE) of 258 m, Telescope (0.76, 268 m), and seasonal ARIMA (0.75, 270 m). Since the model performance varies strongly with the input data, we developed a combined forecast based on the best-performing methods in each catchment. This approach was then used to forecast the SLE for the years 2022-2029. In the majority of the catchments, the shift of the forecast median SLE level retained the sign of the long-term trend. In cases where a deviating SLE dynamic is forecast, a discussion based on the unique properties of the catchment and past SLE dynamics is required. In the future, we expect major improvements in our SLE forecasting efforts by including external predictor variables in a multi-variate modeling approach.}, language = {en} } @article{DongWurmTaubenboeck2022, author = {Dong, Ruirui and Wurm, Michael and Taubenb{\"o}ck, Hannes}, title = {Seasonal and diurnal variation of land surface temperature distribution and its relation to land use/land cover patterns}, series = {International Journal of Environmental Research and Public Health}, volume = {19}, journal = {International Journal of Environmental Research and Public Health}, number = {19}, issn = {1660-4601}, doi = {10.3390/ijerph191912738}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290393}, year = {2022}, abstract = {The surface urban heat island (SUHI) affects the quality of urban life. Because varying urban structures have varying impacts on SUHI, it is crucial to understand the impact of land use/land cover characteristics for improving the quality of life in cities and urban health. Satellite-based data on land surface temperatures (LST) and derived land use/cover pattern (LUCP) indicators provide an efficient opportunity to derive the required data at a large scale. This study explores the seasonal and diurnal variation of spatial associations from LUCP and LST employing Pearson correlation and ordinary least squares regression analysis. Specifically, Landsat-8 images were utilized to derive LSTs in four seasons, taking Berlin as a case study. The results indicate that: (1) in terms of land cover, hot spots are mainly distributed over transportation, commercial and industrial land in the daytime, while wetlands were identified as hot spots during nighttime; (2) from the land composition indicators, the normalized difference built-up index (NDBI) showed the strongest influence in summer, while the normalized difference vegetation index (NDVI) exhibited the biggest impact in winter; (3) from urban morphological parameters, the building density showed an especially significant positive association with LST and the strongest effect during daytime.}, language = {en} } @article{DechHolzwarthAsametal.2021, author = {Dech, Stefan and Holzwarth, Stefanie and Asam, Sarah and Andresen, Thorsten and Bachmann, Martin and Boettcher, Martin and Dietz, Andreas and Eisfelder, Christina and Frey, Corinne and Gesell, Gerhard and Gessner, Ursula and Hirner, Andreas and Hofmann, Matthias and Kirches, Grit and Klein, Doris and Klein, Igor and Kraus, Tanja and Krause, Detmar and Plank, Simon and Popp, Thomas and Reinermann, Sophie and Reiners, Philipp and Roessler, Sebastian and Ruppert, Thomas and Scherbachenko, Alexander and Vignesh, Ranjitha and Wolfmueller, Meinhard and Zwenzner, Hendrik and Kuenzer, Claudia}, title = {Potential and challenges of harmonizing 40 years of AVHRR data: the TIMELINE experience}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {18}, issn = {2072-4292}, doi = {10.3390/rs13183618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246134}, year = {2021}, abstract = {Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.}, language = {en} } @article{KumarKhamzinaKnoefeletal.2021, author = {Kumar, Navneet and Khamzina, Asia and Kn{\"o}fel, Patrick and Lamers, John P. A. and Tischbein, Bernhard}, title = {Afforestation of degraded croplands as a water-saving option in irrigated region of the Aral Sea Basin}, series = {Water}, volume = {13}, journal = {Water}, number = {10}, issn = {2073-4441}, doi = {10.3390/w13101433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239626}, year = {2021}, abstract = {Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land's productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62\% and 100\% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km\(^2\)) in the study region with an average water availability would save 1037 mln m\(^3\) of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m\(^3\). These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.}, language = {en} } @article{RiyasSyedKumaretal.2021, author = {Riyas, Moidu Jameela and Syed, Tajdarul Hassan and Kumar, Hrishikesh and Kuenzer, Claudia}, title = {Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield, India using Sentinel-1 SAR data}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {8}, issn = {2072-4292}, doi = {10.3390/rs13081521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236703}, year = {2021}, abstract = {Public safety and socio-economic development of the Jharia coalfield (JCF) in India is critically dependent on precise monitoring and comprehensive understanding of coal fires, which have been burning underneath for more than a century. This study utilizes New-Small BAseline Subset (N-SBAS) technique to compute surface deformation time series for 2017-2020 to characterize the spatiotemporal dynamics of coal fires in JCF. The line-of-sight (LOS) surface deformation estimated from ascending and descending Sentinel-1 SAR data are subsequently decomposed to derive precise vertical subsidence estimates. The most prominent subsidence (~22 cm) is observed in Kusunda colliery. The subsidence regions also correspond well with the Landsat-8 based thermal anomaly map and field evidence. Subsequently, the vertical surface deformation time-series is analyzed to characterize temporal variations within the 9.5 km\(^2\) area of coal fires. Results reveal that nearly 10\% of the coal fire area is newly formed, while 73\% persisted throughout the study period. Vulnerability analyses performed in terms of the susceptibility of the population to land surface collapse demonstrate that Tisra, Chhatatanr, and Sijua are the most vulnerable towns. Our results provide critical information for developing early warning systems and remediation strategies.}, language = {en} } @article{GhazaryanRienowOldenburgetal.2021, author = {Ghazaryan, Gohar and Rienow, Andreas and Oldenburg, Carsten and Thonfeld, Frank and Trampnau, Birte and Sticksel, Sarah and J{\"u}rgens, Carsten}, title = {Monitoring of urban sprawl and densification processes in Western Germany in the light of SDG indicator 11.3.1 based on an automated retrospective classification approach}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {9}, issn = {2072-4292}, doi = {10.3390/rs13091694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236671}, year = {2021}, abstract = {By 2050, two-third of the world's population will live in cities. In this study, we develop a framework for analyzing urban growth-related imperviousness in North Rhine-Westphalia (NRW) from the 1980s to date using Landsat data. For the baseline 2017-time step, official geodata was extracted to generate labelled data for ten classes, including three classes representing low, middle, and high level of imperviousness. We used the output of the 2017 classification and information based on radiometric bi-temporal change detection for retrospective classification. Besides spectral bands, we calculated several indices and various temporal composites, which were used as an input for Random Forest classification. The results provide information on three imperviousness classes with accuracies exceeding 75\%. According to our results, the imperviousness areas grew continuously from 1985 to 2017, with a high imperviousness area growth of more than 167,000 ha, comprising around 30\% increase. The information on the expansion of urban areas was integrated with population dynamics data to estimate the progress towards SDG 11. With the intensity analysis and the integration of population data, the spatial heterogeneity of urban expansion and population growth was analysed, showing that the urban expansion rates considerably excelled population growth rates in some regions in NRW. The study highlights the applicability of earth observation data for accurately quantifying spatio-temporal urban dynamics for sustainable urbanization and targeted planning.}, language = {en} } @article{FekriLatifiAmanietal.2021, author = {Fekri, Erfan and Latifi, Hooman and Amani, Meisam and Zobeidinezhad, Abdolkarim}, title = {A training sample migration method for wetland mapping and monitoring using Sentinel data in Google Earth Engine}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {20}, issn = {2072-4292}, doi = {10.3390/rs13204169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248542}, year = {2021}, abstract = {Wetlands are one of the most important ecosystems due to their critical services to both humans and the environment. Therefore, wetland mapping and monitoring are essential for their conservation. In this regard, remote sensing offers efficient solutions due to the availability of cost-efficient archived images over different spatial scales. However, a lack of sufficient consistent training samples at different times is a significant limitation of multi-temporal wetland monitoring. In this study, a new training sample migration method was developed to identify unchanged training samples to be used in wetland classification and change analyses over the International Shadegan Wetland (ISW) areas of southwestern Iran. To this end, we first produced the wetland map of a reference year (2020), for which we had training samples, by combining Sentinel-1 and Sentinel-2 images and the Random Forest (RF) classifier in Google Earth Engine (GEE). The Overall Accuracy (OA) and Kappa coefficient (KC) of this reference map were 97.93\% and 0.97, respectively. Then, an automatic change detection method was developed to migrate unchanged training samples from the reference year to the target years of 2018, 2019, and 2021. Within the proposed method, three indices of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and the mean Standard Deviation (SD) of the spectral bands, along with two similarity measures of the Euclidean Distance (ED) and Spectral Angle Distance (SAD), were computed for each pair of reference-target years. The optimum threshold for unchanged samples was also derived using a histogram thresholding approach, which led to selecting the samples that were most likely unchanged based on the highest OA and KC for classifying the test dataset. The proposed migration sample method resulted in high OAs of 95.89\%, 96.83\%, and 97.06\% and KCs of 0.95, 0.96, and 0.96 for the target years of 2018, 2019, and 2021, respectively. Finally, the migrated samples were used to generate the wetland map for the target years. Overall, our proposed method showed high potential for wetland mapping and monitoring when no training samples existed for a target year.}, language = {en} } @article{MayrKleinRutzingeretal.2021, author = {Mayr, Stefan and Klein, Igor and Rutzinger, Martin and Kuenzer, Claudia}, title = {Systematic water fraction estimation for a global and daily surface water time-series}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {14}, issn = {2072-4292}, doi = {10.3390/rs13142675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242586}, year = {2021}, abstract = {Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product's performance regarding mixed water/non-water pixels by an average of 11.6\% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.}, language = {en} } @phdthesis{Karama2021, author = {Karama, Alphonse}, title = {East African Seasonal Rainfall prediction using multiple linear regression and regression with ARIMA errors models}, doi = {10.25972/OPUS-25183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The detrimental impacts of climate variability on water, agriculture, and food resources in East Africa underscore the importance of reliable seasonal climate prediction. To overcome this difficulty RARIMAE method were evolved. Applications RARIMAE in the literature shows that amalgamating different methods can be an efficient and effective way to improve the forecasts of time series under consideration. With these motivations, attempt have been made to develop a multiple linear regression model (MLR) and a RARIMAE models for forecasting seasonal rainfall in east Africa under the following objectives: 1. To develop MLR model for seasonal rainfall prediction in East Africa. 2. To develop a RARIMAE model for seasonal rainfall prediction in East Africa. 3. Comparison of model's efficiency under consideration In order to achieve the above objectives, the monthly precipitation data covering the period from 1949 to 2000 was obtained from Climate Research Unit (CRU). Next to that, the first differenced climate indices were used as predictors. In the first part of this study, the analyses of the rainfall fluctuation in whole Central- East Africa region which span over a longitude of 15 degrees East to 55 degrees East and a latitude of 15 degrees South to 15 degrees North was done by the help of maps. For models' comparison, the R-squared values for the MLR model are subtracted from the R-squared values of RARIMAE model. The results show positive values which indicates that R-squared is improved by RARIMAE model. On the other side, the root mean square errors (RMSE) values of the RARIMAE model are subtracted from the RMSE values of the MLR model and the results show negative value which indicates that RMSE is reduced by RARIMAE model for training and testing datasets. For the second part of this study, the area which is considered covers a longitude of 31.5 degrees East to 41 degrees East and a latitude of 3.5 degrees South to 0.5 degrees South. This region covers Central-East of the Democratic Republic of Congo (DRC), north of Burundi, south of Uganda, Rwanda, north of Tanzania and south of Kenya. Considering a model constructed based on the average rainfall time series in this region, the long rainfall season counts the nine months lead of the first principal component of Indian sea level pressure (SLP_PC19) and the nine months lead of Dipole Mode Index (DMI_LR9) as selected predictors for both statistical and predictive model. On the other side, the short rainfall season counts the three months lead of the first principal component of Indian sea surface temperature (SST_PC13) and the three months lead of Southern Oscillation Index (SOI_SR3) as predictors for predictive model. For short rainfall season statistical model SAOD current time series (SAOD_SR0) was added on the two predictors in predictive model. By applying a MLR model it is shown that the forecast can explain 27.4\% of the total variation and has a RMSE of 74.2mm/season for long rainfall season while for the RARIMAE the forecast explains 53.6\% of the total variation and has a RMSE of 59.4mm/season. By applying a MLR model it is shown that the forecast can explain 22.8\% of the total variation and has a RMSE of 106.1 mm/season for short rainfall season predictive model while for the RARIMAE the forecast explains 55.1\% of the total variation and has a RMSE of 81.1 mm/season. From such comparison, a significant rise in R-squared, a decrease of RMSE values were observed in RARIMAE models for both short rainfall and long rainfall season averaged time series. In terms of reliability, RARIMAE outperformed its MLR counterparts with better efficiency and accuracy. Therefore, whenever the data suffer from autocorrelation, we can go for MLR with ARIMA error, the ARIMA error part is more to correct the autocorrelation thereby improving the variance and productiveness of the model.}, subject = {Regression}, language = {en} } @techreport{RossiMaurelliUnnithanetal.2021, author = {Rossi, Angelo Pio and Maurelli, Francesco and Unnithan, Vikram and Dreger, Hendrik and Mathewos, Kedus and Pradhan, Nayan and Corbeanu, Dan-Andrei and Pozzobon, Riccardo and Massironi, Matteo and Ferrari, Sabrina and Pernechele, Claudia and Paoletti, Lorenzo and Simioni, Emanuele and Maurizio, Pajola and Santagata, Tommaso and Borrmann, Dorit and N{\"u}chter, Andreas and Bredenbeck, Anton and Zevering, Jasper and Arzberger, Fabian and Reyes Mantilla, Camilo Andr{\´e}s}, title = {DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures}, isbn = {978-3-945459-33-1}, issn = {1868-7466}, doi = {10.25972/OPUS-22791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227911}, pages = {188}, year = {2021}, abstract = {The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission.}, subject = {Mond}, language = {en} } @article{DirscherlDietzKneiseletal.2021, author = {Dirscherl, Mariel and Dietz, Andreas J. and Kneisel, Christof and Kuenzer, Claudia}, title = {A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {2}, issn = {2072-4292}, doi = {10.3390/rs13020197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222998}, year = {2021}, abstract = {Supraglacial meltwater accumulation on ice sheets can be a main driver for accelerated ice discharge, mass loss, and global sea-level-rise. With further increasing surface air temperatures, meltwater-induced hydrofracturing, basal sliding, or surface thinning will cumulate and most likely trigger unprecedented ice mass loss on the Greenland and Antarctic ice sheets. While the Greenland surface hydrological network as well as its impacts on ice dynamics and mass balance has been studied in much detail, Antarctic supraglacial lakes remain understudied with a circum-Antarctic record of their spatio-temporal development entirely lacking. This study provides the first automated supraglacial lake extent mapping method using Sentinel-1 synthetic aperture radar (SAR) imagery over Antarctica and complements the developed optical Sentinel-2 supraglacial lake detection algorithm presented in our companion paper. In detail, we propose the use of a modified U-Net for semantic segmentation of supraglacial lakes in single-polarized Sentinel-1 imagery. The convolutional neural network (CNN) is implemented with residual connections for optimized performance as well as an Atrous Spatial Pyramid Pooling (ASPP) module for multiscale feature extraction. The algorithm is trained on 21,200 Sentinel-1 image patches and evaluated in ten spatially or temporally independent test acquisitions. In addition, George VI Ice Shelf is analyzed for intra-annual lake dynamics throughout austral summer 2019/2020 and a decision-level fused Sentinel-1 and Sentinel-2 maximum lake extent mapping product is presented for January 2020 revealing a more complete supraglacial lake coverage (~770 km\(^2\)) than the individual single-sensor products. Classification results confirm the reliability of the proposed workflow with an average Kappa coefficient of 0.925 and a F\(_1\)-score of 93.0\% for the supraglacial water class across all test regions. Furthermore, the algorithm is applied in an additional test region covering supraglacial lakes on the Greenland ice sheet which further highlights the potential for spatio-temporal transferability. Future work involves the integration of more training data as well as intra-annual analyses of supraglacial lake occurrence across the whole continent and with focus on supraglacial lake development throughout a summer melt season and into Antarctic winter.}, language = {en} } @article{OttingerBachoferHuthetal.2021, author = {Ottinger, Marco and Bachofer, Felix and Huth, Juliane and Kuenzer, Claudia}, title = {Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs14010153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252207}, year = {2021}, abstract = {Asia dominates the world's aquaculture sector, generating almost 90 percent of its total annual global production. Fish, shrimp, and mollusks are mainly farmed in land-based pond aquaculture systems and serve as a primary protein source for millions of people. The total production and area occupied for pond aquaculture has expanded rapidly in coastal regions in Asia since the early 1990s. The growth of aquaculture was mainly boosted by an increasing demand for fish and seafood from a growing world population. The aquaculture sector generates income and employment, contributes to food security, and has become a billion-dollar industry with high socio-economic value, but has also led to severe environmental degradation. In this regard, geospatial information on aquaculture can support the management of this growing food sector for the sustainable development of coastal ecosystems, resources, and human health. With free and open access to the rapidly growing volume of data from the Copernicus Sentinel missions as well as machine learning algorithms and cloud computing services, we extracted coastal aquaculture at a continental scale. We present a multi-sensor approach that utilizes Earth observation time series data for the mapping of pond aquaculture within the entire Asian coastal zone, defined as the onshore area up to 200 km from the coastline. In this research, we developed an object-based framework to detect and extract aquaculture at a single-pond level based on temporal features derived from high-spatial-resolution SAR and optical satellite data acquired from the Sentinel-1 and Sentinel-2 satellites. In a second step, we performed spatial and statistical data analyses of the Earth-observation-derived aquaculture dataset to investigate spatial distribution and identify production hotspots at various administrative units at regional, national, and sub-national scale.}, language = {en} } @article{RoesslerWittIkonenetal.2021, author = {R{\"o}ßler, Sebastian and Witt, Marius S. and Ikonen, Jaakko and Brown, Ian A. and Dietz, Andreas J.}, title = {Remote sensing of snow cover variability and its influence on the runoff of S{\´a}pmi's rivers}, series = {Geosciences}, volume = {11}, journal = {Geosciences}, number = {3}, issn = {2076-3263}, doi = {10.3390/geosciences11030130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234261}, year = {2021}, abstract = {The boreal winter 2019/2020 was very irregular in Europe. While there was very little snow in Central Europe, the opposite was the case in northern Fenno-Scandia, particularly in the Arctic. The snow cover was more persistent here and its rapid melting led to flooding in many places. Since the last severe spring floods occurred in the region in 2018, this raises the question of whether more frequent occurrences can be expected in the future. To assess the variability of snowmelt related flooding we used snow cover maps (derived from the DLR's Global SnowPack MODIS snow product) and freely available data on runoff, precipitation, and air temperature in eight unregulated river catchment areas. A trend analysis (Mann-Kendall test) was carried out to assess the development of the parameters, and the interdependencies of the parameters were examined with a correlation analysis. Finally, a simple snowmelt runoff model was tested for its applicability to this region. We noticed an extraordinary variability in the duration of snow cover. If this extends well into spring, rapid air temperature increases leads to enhanced thawing. According to the last flood years 2005, 2010, 2018, and 2020, we were able to differentiate between four synoptic flood types based on their special hydrometeorological and snow situation and simulate them with the snowmelt runoff model (SRM).}, language = {en} } @article{DobińskiKneisel2021, author = {Dobiński, Wojciech and Kneisel, Christof}, title = {Permafrost and glaciers: perspectives for the Earth and planetary sciences — another step forward}, series = {Geosciences}, volume = {11}, journal = {Geosciences}, number = {2}, issn = {2076-3263}, doi = {10.3390/geosciences11020068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228766}, year = {2021}, abstract = {No abstract available}, language = {en} } @article{ArendtReinhardtImjelaSchulteetal.2021, author = {Arendt, Robert and Reinhardt-Imjela, Christian and Schulte, Achim and Faulstich, Leona and Ullmann, Tobias and Beck, Lorenz and Martinis, Sandro and Johannes, Petrina and Lengricht, Joachim}, title = {Natural pans as an important surface water resource in the Cuvelai Basin — Metrics for storage volume calculations and identification of potential augmentation sites}, series = {Water}, volume = {13}, journal = {Water}, number = {2}, issn = {2073-4441}, doi = {10.3390/w13020177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223019}, year = {2021}, abstract = {Numerous ephemeral rivers and thousands of natural pans characterize the transboundary Iishana-System of the Cuvelai Basin between Namibia and Angola. After the rainy season, surface water stored in pans is often the only affordable water source for many people in rural areas. High inter- and intra-annual rainfall variations in this semiarid environment provoke years of extreme flood events and long periods of droughts. Thus, the issue of water availability is playing an increasingly important role in one of the most densely populated and fastest growing regions in southwestern Africa. Currently, there is no transnational approach to quantifying the potential storage and supply functions of the Iishana-System. To bridge these knowledge gaps and to increase the resilience of the local people's livelihood, suitable pans for expansion as intermediate storage were identified and their metrics determined. Therefore, a modified Blue Spot Analysis was performed, based on the high-resolution TanDEM-X digital elevation model. Further, surface area-volume ratio calculations were accomplished for finding suitable augmentation sites in a first step. The potential water storage volume of more than 190,000 pans was calculated at 1.9 km\(^3\). Over 2200 pans were identified for potential expansion to facilitate increased water supply and flood protection in the future.}, language = {en} } @article{MeisterGarbeTrappeetal.2021, author = {Meister, Julia and Garbe, Philipp and Trappe, Julian and Ullmann, Tobias and Es-Senussi, Ashraf and Baumhauer, Roland and Lange-Athinodorou, Eva and El-Raouf, Amr Abd}, title = {The Sacred Waterscape of the Temple of Bastet at Ancient Bubastis, Nile Delta (Egypt)}, series = {Geosciences}, volume = {11}, journal = {Geosciences}, number = {9}, issn = {2076-3263}, doi = {10.3390/geosciences11090385}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246129}, year = {2021}, abstract = {Sacred water canals or lakes, which provided water for all kinds of purification rites and other activities, were very specific and important features of temples in ancient Egypt. In addition to the longer-known textual record, preliminary geoarchaeological surveys have recently provided evidence of a sacred canal at the Temple of Bastet at Bubastis. In order to further explore the location, shape, and course of this canal and to find evidence of the existence of a second waterway, also described by Herodotus, 34 drillings and five 2D geoelectrical measurements were carried out in 2019 and 2020 near the temple. The drillings and 2D ERT surveying revealed loamy to clayey deposits with a thickness of up to five meters, most likely deposited in a very low energy fluvial system (i.e., a canal), allowing the reconstruction of two separate sacred canals both north and south of the Temple of Bastet. In addition to the course of the canals, the width of about 30 m fits Herodotus' description of the sacred waterways. The presence of numerous artefacts proved the anthropogenic use of the ancient canals, which were presumably connected to the Nile via a tributary or canal located west or northwest of Bubastis.}, language = {en} } @article{IbebuchiPaeth2021, author = {Ibebuchi, Chibuike Chiedozie and Paeth, Heiko}, title = {The Imprint of the Southern Annular Mode on Black Carbon AOD in the Western Cape Province}, series = {Atmosphere}, volume = {12}, journal = {Atmosphere}, number = {10}, issn = {2073-4433}, doi = {10.3390/atmos12101287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248387}, year = {2021}, abstract = {This study examines the relationship between variations of the Southern Annular Mode (SAM) and black carbon (BC) at 550 nm aerosol optical depth (AOD) in the Western Cape province (WC). Variations of the positive (negative) phase of the SAM are found to be related to regional circulation types (CTs) in southern Africa, associated with suppressed (enhanced) westerly wind over the WC through the southward (northward) migration of Southern Hemisphere mid-latitude cyclones. The CTs related to positive (negative) SAM anomalies induce stable (unstable) atmospheric conditions over the southwestern regions of the WC, especially during the austral winter and autumn seasons. Through the control of CTs, positive (negative) SAM phases tend to contribute to the build-up (dispersion and dilution) of BC in the study region because they imply dry (wet) conditions which favor the build-up (washing out) of pollutant particles in the atmosphere. Indeed, recent years with an above-average frequency of CTs related to positive (negative) SAM anomalies are associated with a high (low) BC AOD over southwesternmost Africa.}, language = {en} } @article{MayrKleinRutzingeretal.2021, author = {Mayr, Stefan and Klein, Igor and Rutzinger, Martin and Kuenzer, Claudia}, title = {Determining temporal uncertainty of a global inland surface water time series}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {17}, issn = {2072-4292}, doi = {10.3390/rs13173454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245234}, year = {2021}, abstract = {Earth observation time series are well suited to monitor global surface dynamics. However, data products that are aimed at assessing large-area dynamics with a high temporal resolution often face various error sources (e.g., retrieval errors, sampling errors) in their acquisition chain. Addressing uncertainties in a spatiotemporal consistent manner is challenging, as extensive high-quality validation data is typically scarce. Here we propose a new method that utilizes time series inherent information to assess the temporal interpolation uncertainty of time series datasets. For this, we utilized data from the DLR-DFD Global WaterPack (GWP), which provides daily information on global inland surface water. As the time series is primarily based on optical MODIS (Moderate Resolution Imaging Spectroradiometer) images, the requirement of data gap interpolation due to clouds constitutes the main uncertainty source of the product. With a focus on different temporal and spatial characteristics of surface water dynamics, seven auxiliary layers were derived. Each layer provides probability and reliability estimates regarding water observations at pixel-level. This enables the quantification of uncertainty corresponding to the full spatiotemporal range of the product. Furthermore, the ability of temporal layers to approximate unknown pixel states was evaluated for stratified artificial gaps, which were introduced into the original time series of four climatologic diverse test regions. Results show that uncertainty is quantified accurately (>90\%), consequently enhancing the product's quality with respect to its use for modeling and the geoscientific community.}, language = {en} } @article{EmmertKneisel2021, author = {Emmert, Adrian and Kneisel, Christof}, title = {Internal structure and palsa development at Orravatnsr{\´u}stir Palsa Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {3}, doi = {10.1002/ppp.2106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238933}, pages = {503 -- 519}, year = {2021}, abstract = {The natural cyclical development of palsas makes it difficult to use visible signs of decay as reference points for environmental change. Thus, to determine the actual development stage of a palsa, investigations of the internal structure are crucial. Our study presents 2-D and 3-D electrical resistivity imaging (ERI) and 2-D ground-penetrating radar (GPR) results, measurements of surface and subsurface temperatures, and of the soil matric potential from Orravatnsr{\´u}stir Palsa Site in Central Iceland. By a joint interpretation of the results, we deduce the internal structure (i.e., thickness of thaw zone and permafrost, ice/water content) of five palsas of different size and shape. The results differentiate between initial and mature development stages and show that palsas of different development stages can exist in close proximity. While internal characteristics indicate undisturbed development of four palsas, one palsa shows indications of environmental change. Our study shows the value of the multimethod geophysical approach and introduces measurements of the soil matric potential as a promising method to assess the current state of the subsurface.}, language = {en} } @article{GeyerLanding2021, author = {Geyer, Gerd and Landing, Ed}, title = {The Souss lagerstatte of the Anti-Atlas, Morocco: discovery of the first Cambrian fossil lagerstatte from Africa}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-82546-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259236}, pages = {3107}, year = {2021}, abstract = {Episodic low oxygenated conditions on the sea-floor are likely responsible for exceptional preservation of animal remains in the upper Amouslek Formation (lower Cambrian, Stage 3) on the northern slope of the western Anti-Atlas, Morocco. This stratigraphic interval has yielded trilobite, brachiopod, and hyolith fossils with preserved soft parts, including some of the oldest known trilobite guts. The "Souss fossil lagerstatte" (newly proposed designation) represents the first Cambrian fossil lagerstatte in Cambrian strata known from Africa and is one of the oldest trilobite-bearing fossil lagerstatten on Earth. Inter-regional correlation of the Souss fossil lagerstatte in West Gondwana suggests its development during an interval of high eustatic levels recorded by dark shales that occur in informal upper Cambrian Series 2 in Siberia, South China, and East Gondwana.}, language = {en} } @article{StanleyUllmannLangeAthinodorou2021, author = {Stanley, Jean-Daniel and Ullmann, Tobias and Lange-Athinodorou, Eva}, title = {Holocene aridity-induced interruptions of human activity along a fluvial channel in Egypt's northern delta}, series = {Quaternary}, volume = {4}, journal = {Quaternary}, number = {4}, issn = {2571-550X}, doi = {10.3390/quat4040039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250285}, year = {2021}, abstract = {Geoarchaeological information presented here pertains to a subsidiary Nile channel that once flowed west of the main Sebennitic distributary and discharged its water and sediments at Egypt's then north-central deltaic coast. Periodical paleoclimatic episodes during the later Middle and Upper Holocene included decreased rainfall and increased aridity that reduced the Nile's flow levels and thus likely disrupted nautical transport and anthropogenic activity along this channel. Such changes in this deltaic sector, positioned adjacent to the Levantine Basin in the Eastern Mediterranean, can be attributed to climatic shifts triggered as far as the North Atlantic to the west, and African highland source areas of the Egyptian Nile to the south. Of special interest in a study core recovered along the channel are several sediment sequences without anthropogenic material that are interbedded between strata comprising numerous potsherds. The former are interpreted here as markers of increased regional aridity and reduced Nile flow which could have periodically disrupted the regional distribution of goods and nautical activities. Such times occurred ~5000 years B.P., ~4200-4000 years B.P., ~3200-2800 years B.P., ~2300-2200 years B.P., and more recently. Periods comparable to these are also identified by altered proportions of pollen, isotopic and compositional components in different radiocarbon-dated Holocene cores recovered elsewhere in the Nile delta, the Levantine region to the east and north of Egypt, and in the Faiyum depression south of the delta.}, language = {en} } @article{HoehnFrimmelDebailleetal.2021, author = {H{\"o}hn, Stefan and Frimmel, Hartwig E. and Debaille, Vinciane and Price, Westley}, title = {Pre-Klondikean oxidation prepared the ground for Broken Hill-type mineralization in South Africa}, series = {Terra Nova}, volume = {33}, journal = {Terra Nova}, number = {2}, doi = {10.1111/ter.12502}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218545}, pages = {168 -- 173}, year = {2021}, abstract = {New Cu isotope data obtained on chalcopyrite from the Black Mountain and the Broken Hill deposits in the medium- to high-grade metamorphic Aggeneys-Gamsberg ore district (South Africa) require a revision of our understanding of the genesis of metamorphic Broken Hill-type massive sulphide deposits. Chalcopyrite from both deposits revealed unusually wide ranges in δ\(^{65}\)Cu (-2.41 to 2.84 per mille NIST 976 standard) in combination with distinctly positive mean values (0.27 and 0.94 per mille, respectively). This is interpreted to reflect derivation from various silicate and oxide precursor minerals in which Cu occurred in higher oxidation states. Together with the observation of a typical supergene base metal distribution within the deposits and their spatial association with an unconformity only meters above the ore horizon, our new data are best explained by supergene oxidation of originally possibly SEDEX deposits prior to metamorphic sulphide formation, between the Okiepian (1,210-1,180 Ma) and Klondikean (1,040-1,020 Ma) orogenic events.}, language = {en} } @article{Ibebuchi2021, author = {Ibebuchi, Chibuike Chiedozie}, title = {Revisiting the 1992 severe drought episode in South Africa: the role of El Ni{\~n}o in the anomalies of atmospheric circulation types in Africa south of the equator}, series = {Theoretical and Applied Climatology}, volume = {146}, journal = {Theoretical and Applied Climatology}, number = {1-2}, issn = {1434-4483}, doi = {10.1007/s00704-021-03741-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268569}, pages = {723-740}, year = {2021}, abstract = {During strong El Ni{\~n}o events, below-average rainfall is expected in large parts of southern Africa. The 1992 El Ni{\~n}o season was associated with one of the worst drought episodes in large parts of South Africa. Using reanalysis data set from NCEP-NCAR, this study examined circulation types (CTs) in Africa south of the equator that are statistically related to the El Ni{\~n}o signal in the southwest Indian Ocean and the implication of this relationship during the 1992 drought episode in South Africa. A statistically significant correlation was found between the above-average Nino 3.4 index and a CT that features widespread cyclonic activity in the tropical southwest Indian Ocean, coupled with a weaker state of the south Indian Ocean high-pressure. During the analysis period, it was found that the El Ni{\~n}o signal enhanced the amplitude of the aforementioned CT. The impacts of the El Ni{\~n}o signal on CTs in southern Africa, which could have contributed to the 1992 severe drought episode in South Africa, were reflected in (i) robust decrease in the frequency of occurrence of the austral summer climatology pattern of atmospheric circulation that favors southeasterly moisture fluxes, advected by the South Indian Ocean high-pressure; (ii) modulation of easterly moisture fluxes, advected by the South Atlantic Ocean high-pressure, ridging south of South Africa; (iii) and enhancement of the amplitude of CTs that both enhances subsidence over South Africa, and associated with the dominance of westerlies across the Agulhas current. Under the ssp585 scenario, the analyzed climate models suggested that the impact of radiative heating on the CT significantly related to El Ni{\~n}o might result in an anomalous increase in surface pressure at the eastern parts of South Africa.}, language = {en} } @article{HoehnFrimmelPrince2021, author = {H{\"o}hn, Stefan and Frimmel, Hartwig E. and Prince, Westley}, title = {Syn-metamorphic sulfidation of the Gamsberg zinc deposit, South Africa}, series = {Mineralogy and Petrology}, volume = {115}, journal = {Mineralogy and Petrology}, number = {6}, issn = {1438-1168}, doi = {10.1007/s00710-021-00764-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268574}, pages = {709-728}, year = {2021}, abstract = {The Mesoproterozoic Aggeneys-Gamsberg ore district, South Africa, is one of the world´s largest sulfidic base metal concentrations and well-known as a prime example of Broken Hill-type base metal deposits, traditionally interpreted as metamorphosed SEDEX deposits. Within this district, the Gamsberg deposit stands out for its huge size and strongly Zn-dominated ore ( >14 Mt contained Zn). New electron microprobe analyses and element abundance maps of sulfides and silicates point to fluid-driven sulfidation during retrograde metamorphism. Differences in the chemistry of sulfide inclusions within zoned garnet grains reflect different degrees of interaction of sulfides with high metal/sulfur-ratio with a sulfur-rich metamorphic fluid. Independent evidence of sulfidation during retrograde metamorphism comes from graphic-textured sulfide aggregates that previously have been interpreted as quenched sulfidic melts, replacement of pyrrhotite by pyrite along micro-fractures, and sulfides in phyllic alteration zones. Limited availability of fluid under retrograde conditions caused locally different degrees of segregation of Fe-rich sphalerite into Zn-rich sphalerite and pyrite, and thus considerable heterogeneity in sphalerite chemistry. The invoked sulfur-rich metamorphic fluids would have been able to sulfidize base metal-rich zones in the whole deposit and thus camouflage a potential pre-metamorphic oxidation. These findings support the recently established hypothesis of a pre-Klondikean weathering-induced oxidation event and challenge the traditional explanation of Broken Hill-type deposits as merely metamorphosed SEDEX deposits. Instead, we suggest that the massive sulfide deposits experienced a complex history, starting with initial SEDEX-type mineralization, followed by near-surface oxidation with spatial metal separation, and then sulfidation of this oxidized ore during medium- to high-grade metamorphism.}, language = {en} } @article{Ibebuchi2021, author = {Ibebuchi, Chibuike Chiedozie}, title = {Circulation pattern controls of wet days and dry days in Free State, South Africa}, series = {Meteorology and Atmospheric Physics}, volume = {133}, journal = {Meteorology and Atmospheric Physics}, number = {5}, issn = {1436-5065}, doi = {10.1007/s00703-021-00822-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268552}, pages = {1469-1480}, year = {2021}, abstract = {Atmospheric circulation is a vital process in the transport of heat, moisture, and pollutants around the globe. The variability of rainfall depends to some extent on the atmospheric circulation. This paper investigates synoptic situations in southern Africa that can be associated with wet days and dry days in Free State, South Africa, in addition to the underlying dynamics. Principal component analysis was applied to the T-mode matrix (variable is time series and observation is grid points at which the field was observed) of daily mean sea level pressure field from 1979 to 2018 in classifying the circulation patterns in southern Africa. 18 circulation types (CTs) were classified in the study region. From the linkage of the CTs to the observed rainfall data, from 11 stations in Free State, it was found that dominant austral winter and late austral autumn CTs have a higher probability of being associated with dry days in Free State. Dominant austral summer and late austral spring CTs were found to have a higher probability of being associated with wet days in Free State. Cyclonic/anti-cyclonic activity over the southwest Indian Ocean, explained to a good extent, the inter-seasonal variability of rainfall in Free State. The synoptic state associated with a stronger anti-cyclonic circulation at the western branch of the South Indian Ocean high-pressure, during austral summer, leading to enhanced low-level moisture transport by southeast winds was found to have the highest probability of being associated with above-average rainfall in most regions in Free State. On the other hand, the synoptic state associated with enhanced transport of cold dry air, by the extratropical westerlies, was found to have the highest probability of being associated with (winter) dryness in Free State.}, language = {en} } @article{KoehlerKuenzer2020, author = {Koehler, Jonas and Kuenzer, Claudia}, title = {Forecasting spatio-temporal dynamics on the land surface using Earth Observation data — a review}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs12213513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216285}, year = {2020}, abstract = {Reliable forecasts on the impacts of global change on the land surface are vital to inform the actions of policy and decision makers to mitigate consequences and secure livelihoods. Geospatial Earth Observation (EO) data from remote sensing satellites has been collected continuously for 40 years and has the potential to facilitate the spatio-temporal forecasting of land surface dynamics. In this review we compiled 143 papers on EO-based forecasting of all aspects of the land surface published in 16 high-ranking remote sensing journals within the past decade. We analyzed the literature regarding research focus, the spatial scope of the study, the forecasting method applied, as well as the temporal and technical properties of the input data. We categorized the identified forecasting methods according to their temporal forecasting mechanism and the type of input data. Time-lagged regressions which are predominantly used for crop yield forecasting and approaches based on Markov Chains for future land use and land cover simulation are the most established methods. The use of external climate projections allows the forecasting of numerical land surface parameters up to one hundred years into the future, while auto-regressive time series modeling can account for intra-annual variances. Machine learning methods have been increasingly used in all categories and multivariate modeling that integrates multiple data sources appears to be more popular than univariate auto-regressive modeling despite the availability of continuously expanding time series data. Regardless of the method, reliable EO-based forecasting requires high-level remote sensing data products and the resulting computational demand appears to be the main reason that most forecasts are conducted only on a local scale. In the upcoming years, however, we expect this to change with further advances in the field of machine learning, the publication of new global datasets, and the further establishment of cloud computing for data processing.}, language = {en} } @article{ThonfeldSteinbachMuroetal.2020, author = {Thonfeld, Frank and Steinbach, Stefanie and Muro, Javier and Kirimi, Fridah}, title = {Long-term land use/land cover change assessment of the Kilombero catchment in Tanzania using random forest classification and robust change vector analysis}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203513}, year = {2020}, abstract = {Information about land use/land cover (LULC) and their changes is useful for different stakeholders to assess future pathways of sustainable land use for food production as well as for nature conservation. In this study, we assess LULC changes in the Kilombero catchment in Tanzania, an important area of recent development in East Africa. LULC change is assessed in two ways: first, post-classification comparison (PCC) which allows us to directly assess changes from one LULC class to another, and second, spectral change detection. We perform LULC classification by applying random forests (RF) on sets of multitemporal metrics that account for seasonal within-class dynamics. For the spectral change detection, we make use of the robust change vector analysis (RCVA) and determine those changes that do not necessarily lead to another class. The combination of the two approaches enables us to distinguish areas that show (a) only PCC changes, (b) only spectral changes that do not affect the classification of a pixel, (c) both types of change, or (d) no changes at all. Our results reveal that only one-quarter of the catchment has not experienced any change. One-third shows both, spectral changes and LULC conversion. Changes detected with both methods predominantly occur in two major regions, one in the West of the catchment, one in the Kilombero floodplain. Both regions are important areas of food production and economic development in Tanzania. The Kilombero floodplain is a Ramsar protected area, half of which was converted to agricultural land in the past decades. Therefore, LULC monitoring is required to support sustainable land management. Relatively poor classification performances revealed several challenges during the classification process. The combined approach of PCC and RCVA allows us to detect spatial patterns of LULC change at distinct dimensions and intensities. With the assessment of additional classifier output, namely class-specific per-pixel classification probabilities and derived parameters, we account for classification uncertainty across space. We overlay the LULC change results and the spatial assessment of classification reliability to provide a thorough picture of the LULC changes taking place in the Kilombero catchment.}, language = {en} } @article{AkhundzadahSoltaniAich2020, author = {Akhundzadah, Noor Ahmad and Soltani, Salim and Aich, Valentin}, title = {Impacts of climate change on the water resources of the Kunduz River Basin, Afghanistan}, series = {Climate}, volume = {8}, journal = {Climate}, number = {10}, issn = {2225-1154}, doi = {10.3390/cli8100102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213199}, year = {2020}, abstract = {The Kunduz River is one of the main tributaries of the Amu Darya Basin in North Afghanistan. Many communities live in the Kunduz River Basin (KRB), and its water resources have been the basis of their livelihoods for many generations. This study investigates climate change impacts on the KRB catchment. Rare station data are, for the first time, used to analyze systematic trends in temperature, precipitation, and river discharge over the past few decades, while using Mann-Kendall and Theil-Sen trend statistics. The trends show that the hydrology of the basin changed significantly over the last decades. A comparison of landcover data of the river basin from 1992 and 2019 shows significant changes that have additional impact on the basin hydrology, which are used to interpret the trend analysis. There is considerable uncertainty due to the data scarcity and gaps in the data, but all results indicate a strong tendency towards drier conditions. An extreme warming trend, partly above 2 °C since the 1960s in combination with a dramatic precipitation decrease by more than -30\% lead to a strong decrease in river discharge. The increasing glacier melt compensates the decreases and leads to an increase in runoff only in the highland parts of the upper catchment. The reduction of water availability and the additional stress on the land leads to a strong increase of barren land and a reduction of vegetation cover. The detected trends and changes in the basin hydrology demand an active management of the already scarce water resources in order to sustain water supply for agriculture and ecosystems in the KRB.}, language = {en} }