@article{LamatschAdolfssonSenioretal.2015, author = {Lamatsch, Dunja K. and Adolfsson, Sofia and Senior, Alistair M. and Christiansen, Guntram and Pichler, Maria and Ozaki, Yuichi and Smeds, Linnea and Schartl, Manfred and Nakagawa, Shinichi}, title = {A transcriptome derived female-specific marker from the invasive Western mosquitofish (Gambusia affinis)}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0118214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144004}, pages = {e0118214}, year = {2015}, abstract = {Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ), and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression). Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3' UTR of the aminomethyl transferase (amt) gene of the closely related platyfish (Xiphophorus maculatus). This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes.}, language = {en} } @phdthesis{Kollert2015, author = {Kollert, Sina}, title = {Kaliumkan{\"a}le der K2P-Familie kontrollieren die Aktivit{\"a}t neuronaler Zellen - TRESK als Regulator inflammatorischer Hyperalgesie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Das Empfinden von Schmerz ist f{\"u}r uns {\"u}berlebenswichtig. Chronischer Schmerz hingegen hat seine physiologische Bedeutung verloren und wird als eigenes Krankheitsbild angesehen. Schmerzempfindung beginnt mit der Nozizeption. Die Zellk{\"o}rper nozizeptiver Neurone befinden sich in den Spinalganglien (Hinterwurzelganglion, dorsal root ganglion DRG) und Trigeminalganglien (TG). In den DRG-Neuronen macht der Zwei-Poren-Kaliumkanal (K2P) TRESK die Hauptkomponente eines Kaliumstromes, des „standing outward currents" IKSO, aus. Die physiologische Hauptaufgabe der TRESK-Kan{\"a}le liegt in der Regulation der zellul{\"a}ren Erregbarkeit nozizeptiver Neurone. W{\"a}hrend einer Entz{\"u}ndungsreaktion werden Entz{\"u}ndungsmediatoren wie Histamin, Bradykinin, Serotonin und Lysophosphatids{\"a}ure (LPA) ausgesch{\"u}ttet und k{\"o}nnen durch die Aktivierung ihrer G-Protein gekoppelten Rezeptoren (GPCR) oder direkte Interaktion mit Ionenkan{\"a}len die nozizeptive Erregung beeinflussen. Durch Anwendung von RT-PCR und eines neu entwickelten Antik{\"o}rpers wurde die Ko-Expression von TRESK-Kan{\"a}len zusammen mit Kan{\"a}len der Transient-Receptor-Potential-Kationenkanalfamilie (TRP) und LPA-Rezeptoren in DRG-Neuronen nachgewiesen. Durch rekombinante Ko-Expression von TRESK-Kan{\"a}len und LPA2-Rezeptoren in Xenopus Oozyten konnte durch Zugabe von LPA eine fast 10-fache Aktivierung des basalen K+-Stromes erzielt werden. Die Auswertung der Dosis-Wirkungskurve ergab einen EC50-Wert von 0,2 µM LPA. Die LPA-induzierte TRESK-Stromaktivierung konnte durch die Verwendung des mutierten Kanals TRESK[PQAVAD] oder durch die Zugabe des Phospholipase C (PLC) Inhibitors U73122 verhindert werden. Dies zeigt die Beteiligung des PLC-Signalwegs und die Bindung von Calcineurin an den TRESK-Kanal bei der Stromaktivierung. TRESK ist das einzige Mitglied der K2P-Familie, das eine LPA-induzierte Aktivierung des Stromes zeigt. TREK- und TASK-1-Str{\"o}me werden durch LPA inhibiert. In DRG-Neuronen mit kleinem Durchmesser wird Nozizeption durch die Aktivierung von TRPV1-Kan{\"a}len durch Hitze oder Capsaicin, dem Inhaltsstoff des Chilis, und zus{\"a}tzlich durch die Substanz LPA verursacht. Ein weiteres Mitglied der TRP-Familie, der TRPA1-Kanal, ist bei der verst{\"a}rkten Nozizeption w{\"a}hrend einer Entz{\"u}ndung involviert. Werden TRESK- und TRP-Kan{\"a}le in Xenopus Oozyten ko-exprimiert, verursacht LPA gleichzeitig einen Kationeneinw{\"a}rts- wie auch -ausw{\"a}rtsstrom. Unter diesen Bedingungen verschob sich das Umkehrpotenzial in einen Bereich zwischen den Umkehrpotenzialen von Oozyten, die nur den K+-Kanal exprimieren und von Oozyten, die nur den unspezifischen Kationenkanal exprimieren. Durch diese Experimente konnte gezeigt werden, dass die LPA-induzierte Ko-Aktivierung von TRP-Kan{\"a}len und TRESK zu einer Begrenzung des exzitatorischen Effekts f{\"u}hren kann. Die DRG-{\"a}hnlichen F11-Zellen exprimieren keine TRESK-Kan{\"a}le. Sie sind in der Lage durch Strompulse Aktionspotenziale zu generieren. Mit TRESK transfizierte F11-Zellen zeigten eine Verschiebung des Umkehrpotenzials in negative Richtung, einen gr{\"o}ßeren Ausw{\"a}rtsstrom und den Verlust von spannungsgesteuerten Natriumkan{\"a}len. Auch hohe Strompulse konnten keine Aktionspotenziale mehr ausl{\"o}sen. Bei Spannungs-Klemme-Messungen von prim{\"a}ren DRG-Neuronen von TRESK[wt]-M{\"a}usen erh{\"o}hte sich der IKSO nach Zugabe von LPA um {\"u}ber 20 \%. Im Gegensatz dazu zeigten DRG-Neurone von TRESK[ko]-M{\"a}usen unter diesen Bedingungen eine leichte Hemmung des IKSO von etwa 10 \%. In Neuronen, die TRPV1 exprimieren, f{\"u}hrte LPA nicht nur zum Anstieg des IKSO, sondern auch zur Aktivierung eines Einw{\"a}rtsstromes (TRPV1). Im Vergleich dazu wurde in TRESK[ko]-Neuronen durch LPA nur der Einw{\"a}rtsstrom aktiviert. In Strom-Klemme-Experimenten f{\"u}hrte LPA-Applikation zur Entstehung von Aktionspotenzialen mit h{\"o}herer Frequenz in Zellen von TRESK[ko]-M{\"a}usen im Vergleich zu Zellen von TRESK[wt]-M{\"a}usen. Zus{\"a}tzlich wurde die Erregung, die durch Strompulse von 100 pA ausgel{\"o}st wurde, in den beiden Genotypen durch LPA unterschiedlich moduliert. Die Aktionspotenzialfrequenz in TRESK[wt]-Neuronen wurde gesenkt, in TRESK[ko]-Neuronen wurde sie erh{\"o}ht. Die vorliegende Arbeit zeigt, dass die Erregung nozizeptiver Neurone durch LPA aufgrund der Ko-Aktivierung der TRESK-Kan{\"a}le abgeschw{\"a}cht werden kann. Die Erregbarkeit von sensorischen Neuronen wird strak durch die Aktivit{\"a}t und Expression der TRESK-Kan{\"a}le kontrolliert. Deswegen sind TRESK-Kan{\"a}le gute Kandidaten f{\"u}r die pharmakologische Behandlung von Schmerzkrankheiten.}, subject = {Kaliumkanal}, language = {de} } @phdthesis{Ehmann2015, author = {Ehmann, Nadine}, title = {Linking the active zone ultrastructure to function in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Accurate information transfer between neurons governs proper brain function. At chemical synapses, communication is mediated via neurotransmitter release from specialized presynaptic intercellular contact sites, so called active zones. Their molecular composition constitutes a precisely arranged framework that sets the stage for synaptic communication. Active zones contain a variety of proteins that deliver the speed, accuracy and plasticity inherent to neurotransmission. Though, how the molecular arrangement of these proteins influences active zone output is still ambiguous. Elucidating the nanoscopic organization of AZs has been hindered by the diffraction-limited resolution of conventional light microscopy, which is insufficient to resolve the active zone architecture on the nanometer scale. Recently, super-resolution techniques entered the field of neuroscience, which yield the capacity to bridge the gap in resolution between light and electron microscopy without losing molecular specificity. Here, localization microscopy methods are of special interest, as they can potentially deliver quantitative information about molecular distributions, even giving absolute numbers of proteins present within cellular nanodomains. This thesis puts forward an approach based on conventional immunohistochemistry to quantify endogenous protein organizations in situ by employing direct stochastic optical reconstruction microscopy (dSTORM). Focussing on Bruchpilot (Brp) as a major component of Drosophila active zones, the results show that the cytomatrix at the active zone is composed of units, which comprise on average ~137 Brp molecules, most of which are arranged in approximately 15 heptameric clusters. To test for a quantitative relationship between active zone ultrastructure and synaptic output, Drosophila mutants and electrophysiology were employed. The findings indicate that the precise spatial arrangement of Brp reflects properties of short-term plasticity and distinguishes distinct mechanistic causes of synaptic depression. Moreover, functional diversification could be connected to a heretofore unrecognized ultrastructural gradient along a Drosophila motor neuron.}, subject = {Taufliege}, language = {en} } @phdthesis{Guhn2015, author = {Guhn, Anne}, title = {Modulating the Fear Network: Preclinical Studies on Prefrontal Cortex Stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133403}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Pavlovian fear conditioning describes a form of associative learning in which a previously neutral stimulus elicits a conditioned fear response after it has been temporally paired with an aversive consequence. Once acquired, the fear response can be extinguished by repeatedly presenting the former neutral stimulus in the absence of the aversive consequence. Although most patients suffering from anxiety disorders cannot recall a specific conditioned association between a formerly neutral stimulus and the feeling of anxiety, the produced behavioral symptoms, such as avoidance or safety behavior to prevent the anticipated aversive consequence are commonly exhibited in all anxiety disorders. Moreover, there is considerable similarity between the neural structures involved in fear and extinction in the rodent and in the human. Translational research thus contributes to the understanding of neural circuitries involved in the development and maintenance of anxiety disorders, and further provides hypotheses for improvements in treatment strategies aiming at inhibiting the fear response. Since the failure to appropriately inhibit or extinguish a fear response is a key feature of pathological anxiety, the present preclinical research focuses on the interplay between the amygdala and the medial prefrontal cortex (mPFC) during fear learning with particular regard to the prefrontal recruitment during fear extinction and its recall. By firstly demonstrating an increased mPFC activity over the time course of extinction learning with functional near-infrared spectroscopy, the main study of this dissertation focused on repetitive transcranial magnetic stimulation (rTMS) as brain stimulation technique suitable to enhance extinction learning. Since hypofrontality is assumed to underlie the maintenance of pathological anxiety, rTMS application revealed an increased mPFC activity, which resulted in a decreased fear response on the behavioral level both during extinction learning as well as during the recall of extinction 24 hours later and in the absence of another stimulation. The following attempt to improve the generalization of extinction with rTMS from an extinguished stimulus to a second stimulus which was reinforced but not extinguished was at least partially evidenced. By revealing an increased prefrontal activity to the non-extinguished stimulus, the active and the placebo rTMS condition, however, did not differ on behavioral parameters. These preclinical findings were discussed in the light of genetic and environmental risk factors with special regard to the combination of a risk variant of the neuropeptide S receptor 1 gene polymorphism (NPSR1 rs324981) and anxiety sensitivity. While the protective homozygous AA genotype group showed no correlation with anxiety sensitivity, the NPSR1 T genotype group exhibited an inverse correlation with anxiety sensitivity in the presence of emotionally negative stimuli. In light of other findings assuming a role of the NPSR1 T allele in panic disorder, the revealed hypofrontality was discussed to define a risk group of patients who might particularly benefit from an augmentation of exposure therapy with rTMS. Taken together, the presented studies support the central role of the prefrontal cortex in fear extinction and suggest the usefulness of rTMS as an augmentation strategy to exposure therapy in order to decrease therapy relapse rates. The combination of rTMS and extinction has been herein evidenced to modulate fear processes in a preclinical approach thereby establishing important implications for the design of future clinical studies.}, subject = {Angstst{\"o}rung}, language = {en} }