@phdthesis{LiessneeEller2021, author = {Liess [n{\´e}e Eller], Anna Katharina Luise}, title = {Understanding the regulation of the ubiquitin-conjugating enzyme UBE2S}, doi = {10.25972/OPUS-20419}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The ubiquitination of proteins serves as molecular signal to control an enormous number of physiological processes and its dysregulation is connected to human diseases like cancer. The versatility of this signal stems from the diverse ways by which ubiquitin can be attached to its targets. Thus, specificity and tight regulation of the ubiquitination are pivotal requirements of ubiquitin signaling. Ubiquitin-conjugating enzymes (E2s) act at the heart of the ubiquitination cascade, transferring ubiquitin from a ubiquitin-activating enzyme (E1) to a ubiquitin ligase (E3) or substrate. When cooperating with a RING-type E3, ubiquitin-conjugating enzymes can determine linkage specificity in ubiquitin chain formation. Our understanding of the regulation of E2 activities is still limited at a structural level. The work described here identifies two regulation mechanisms in UBE2S, a cognate E2 of the human RING-type E3 anaphase-promoting complex/cyclosome (APC/C). UBE2S elongates ubiquitin chains on APC/C substrates in a Lys11 linkage-specific manner, thereby targeting these substrates for degradation and driving mitotic progression. In addition, UBE2S was found to have a role in DNA repair by enhancing non-homologous end-joining (NHEJ) and causing transcriptional arrest at DNA damage sites in homologous recombination (HR). Furthermore, UBE2S overexpression is a characteristic feature of many cancer types and is connected to poor prognosis and diminished response to therapy. The first regulatory mechanism uncovered in this thesis involves the intramolecular auto-ubiquitination of a particular lysine residue (Lys+5) close to the active site cysteine, presumably through conformational flexibility of the active site region. The Lys+5-linked ubiquitin molecule adopts a donor-like, 'closed' orientation towards UBE2S, thereby conferring auto-inhibition. Notably, Lys+5 is a major physiological ubiquitination site in ~25\% of the human E2 enzymes, thus providing regulatory opportunities beyond UBE2S. Besides the active, monomeric state and the auto-inhibited state caused by auto-ubiquitination, I discovered that UBE2S can adopt a dimeric state. The latter also provides an auto-inhibited state, in which ubiquitin transfer is blocked via the obstruction of donor binding. UBE2S dimerization is promoted by its unique C-terminal extension, suppresses auto-ubiquitination and thereby the proteasomal degradation of UBE2S. Taken together, the data provided in this thesis illustrate the intricate ways by which UBE2S activity is fine-tuned and the notion that structurally diverse mechanisms have evolved to restrict the first step in the catalytic cycle of E2 enzymes.}, subject = {E2}, language = {en} } @phdthesis{Spindler2020, author = {Spindler, Markus}, title = {The role of the adhesion and degranulation promoting adapter protein (ADAP) in platelet production}, doi = {10.25972/OPUS-20097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Although this process is fundamental to maintain normal platelet counts in circulation only little is known about the regulation of directed proplatelet formation. As revealed in this thesis, ADAP (adhesion and degranulation promoting adapter protein) deficiency (constitutive as well as MK and platelet-specific) resulted in a microthrombocytopenia in mice, recapitulating the clinical hallmark of patients with mutations in the ADAP gene. The thrombocytopenia was caused by a combination of an enhanced removal of platelets from the circulation by macrophages and a platelet production defect. This defect led to an ectopic release of (pro)platelet-like particles into the bone marrow compartment, with a massive accumulation of such fragments around sinusoids. In vitro studies of cultured BM cell-derived MKs revealed a polarization defect of the demarcation membrane system, which is dependent on F-actin dynamics. ADAP-deficient MKs spread on collagen and fibronectin displayed a reduced F-actin content and podosome density in the lowest confocal plane. In addition, ADAP-deficient MKs exhibited a reduced capacity to adhere on Horm collagen and in line with that the activation of beta1-integrins in the lowest confocal plane of spread MKs was diminished. These results point to ADAP as a novel regulator of terminal platelet formation. Beside ADAP-deficient mice, three other knockout mouse models (deficiency for profilin1 (PFN1), Wiskott-Aldrich-syndrome protein (WASP) and Actin-related protein 2/3 complex subunit 2 (ARPC2)) exist, which display ectopic release of (pro)platelet-like particles. As shown in the final part of the thesis, the pattern of the ectopic release of (pro)platelet-like particles in these genetically modified mice (PFN1 and WASP) was comparable to ADAP-deficient mice. Furthermore, all tested mutant MKs displayed an adhesion defect as well as a reduced podosome density on Horm collagen. These results indicate that similar mechanisms might apply for ectopic release.}, language = {en} } @phdthesis{Mueller2017, author = {M{\"u}ller, Stephanie}, title = {Plant thermotolerance: The role of heat stress-induced triacylglycerols in \(Arabidopsis\) \(thaliana\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152829}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Plants are exposed to high temperature, especially during hot summer days. Temperatures are typically lowest in the morning and reach a maximum in the afternoon. Plants can tolerate and survive short-term heat stress even on hot summer days. A. thaliana seedlings have been reported to tolerate higher temperatures for different time periods, a phenomenon that has been termed basal thermotolerance. In addition, plants have the inherent capacity to acclimate to otherwise lethal temperatures. Arabidopsis thaliana seedlings acclimate at moderately elevated temperatures between 32-38° C. During heat acclimation, a genetically programmed heat shock response (HSR) is triggered that is characterized by a rapid activation of heat shock transcription factors (HSFs), which trigger a massive accumulation of heat shock proteins that are chiefly involved in protein folding and protection. Although the HSF-triggered heat-shock response is well characterized, little is known about the metabolic adjustments during heat stress. The aim of this work was to get more insight into heat-responsive metabolism and its importance for thermotolerance. In order to identify the response of metabolites to elevated temperatures, global metabolite profiles of heat-acclimated and control seedlings were compared. Untargeted metabolite analyses revealed that levels of polyunsaturated triacylglycerols (TG) rapidly increase during heat acclimation. TG accumulation was found to be temperature-dependent in a temperature range from 32-50° C (optimum at 42° C). Heat-induced TG accumulation was localized in extra-chloroplastic compartments by chloroplast isolation as well as by fluorescence microscopy of A. thaliana cell cultures. Analysis of mutants deficient in all four HSFA1 master regulator genes or the HSFA2 gene revealed that TG accumulation occurred independently to HSF. Moreover, the TG response was not limited to heat stress since drought and salt stress (but not short-term osmotic, cold and high light stress) also triggered an accumulation of TGs. In order to reveal the origin of TG synthesis, lipid analysis was carried out. Heat-induced accumulation of TGs does not derive from massive de novo fatty acid (FA) synthesis. On the other hand, lipidomic analyses of A. thaliana seedlings indicated that polyunsaturated FA from thylakoid galactolipids are incorporated into cytosolic TGs during heat stress. This was verified by lipidomic analyses of A. thaliana fad7/8 transgenic seedlings, which displayed altered FA compositions of plastidic lipids. In addition, wild type A. thaliana seedlings displayed a rapid conversion of plastidic monogalactosyldiacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs and diacylglycerols (DGs). For TG synthesis, DG requires a FA from the acyl CoA pool or phosphatidylcholine (PC). Seedlings deficient in phospholipid:diacylglycerol acyltransferase1 (PDAT1) were unable to accumulate TGs following heat stress; thus PC appears to be the major FA donor for TGs during heat treatment. These results suggest that TG and oligogalactolipid accumulation during heat stress is driven by post-translationally regulated plastid lipid metabolism. TG accumulation following heat stress was found to increase basal thermotolerance. Pdat1 mutant seedlings were more sensitive to severe heat stress without prior acclimatization, as revealed by a more dramatic decline of the maximum efficiency of PSII and lower survival rate compared to wild type seedlings. In contrast, tgd1 mutants over-accumulating TGs and oligogalactolipids displayed a higher basal thermotolerance compared to wild type seedlings. These results therefore suggest that accumulation of TGs increases thermotolerance in addition to the genetically encoded heat shock response.}, subject = {Triglyceride}, language = {en} } @phdthesis{Eltschkner2020, author = {Eltschkner, Sandra}, title = {Targeting the Bacterial Fatty-Acid Synthesis Pathway: Towards the Development of Slow-Onset Inhibitors and the Characterisation of Protein-Protein Interactions}, doi = {10.25972/OPUS-15664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156643}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {A continuous arms race between the development of novel antibiotics and the evolution of corresponding resistance mechanisms in bacteria has been observed, since antibiotic agents like arsphenamines (e.g. Salvarsan, developed by Paul Ehrlich [1]), sulphonamides (e.g. Prontosil, Gerhard Domagk [2]) and penicillin (Alexander Fleming [3]) were first applied to effectively cure bacterial infections in the early 20th century. The rapid emergence of resistances in contrast to the currently lagging discovery of antibiotics displays a severe threat to human health. Some serious infectious diseases, such as tuberculosis or melioidosis, which were either thought to be an issue only in Third-World countries in case of tuberculosis, or regionally restricted with respect to melioidosis, are now on the rise to expand to other areas. In contrast, methicillin-resistant Staphylococcus aureus (MRSA) is already present in clinical setups all over the world and causes severe infections in immunocompromised patients. Thus, there is an urgent need for new and effective antimicrobial agents, which impair vital functions of the pathogen's metabolism. One central metabolic pathway is represented by the bacterial fatty-acid synthesis pathway (FAS II), which is essential for the synthesis of long and branched-chain fatty acids, as well as mycolic acids. These substances play a major role as modulating components of the properties of the most important protective barrier - the cell envelope. The integrity of the bacterial cell wall and the associated membrane(s) is crucial for cell growth and for protection against physical strain, intrusion of antibiotic agents and regulation of uptake of ions and other small molecules. Thus, this central pathway represents a promising target for antibiotic action against pathogens to combat infectious diseases. The last and rate-limiting step is catalysed by the trans-2-enoyl-ACP reductase (ENR) FabI or InhA (in mycobacteria), which has been demonstrated to be a valuable target for drug design and can be addressed, amongst others, by diphenyl ether (DPE) compounds, derived from triclosan (TCL) - the first one of this class which was discovered to bind to ENR enzymes [4, 5]. Based on this scaffold, inhibitors containing different combinations of substituents at crucial positions, as well as a novel type of substituent at position five were investigated regarding their binding behaviour towards the Burkholderia pseudomallei and Mycobacterium tuberculosis ENR enzymes bpFabI and InhA, respectively, by structural, kinetic and in-vivo experiments. Generally, substitution patterns modulate the association and dissociation velocities of the different ENR inhibitors in the context of the two-step slow-onset binding mechanism, which is observed for both enzymes. These alterations in the rapidity of complex formation and decomposition have a crucial impact on the residence time of a compound and hence, on the pharmacokinetic properties of potential drug candidates. For example, the substituents at the 2'-position of the DPE scaffold influence the ground- and transition state stability during the binding process to bpFabI, whereas 4'-substituents primarily alter the transition state [6]. The novel triazole group attached to the 5-position of the scaffold, targeting the hydrophobic part of the substrate-binding pocket in InhA, significantly enhances the energy barrier of the transition state of inhibitor binding [7] and decelerates the association- as well as the dissociation processes. Combinations with different substituents at the 2'-position can enhance or diminish this effect, e.g. by ground-state stabilisation, which will result in an increased residence time of the respective inhibitor on InhA. Further structural investigations carried out in this work, confirm the proposed binding mode of a customised saFabI inhibitor [8], carrying a pyridone moiety on the DPE scaffold to expand interactions with the protein environment. Structural and preliminary kinetic data confirm the binding of the same inhibitor to InhA in a related fashion. Comparisons with structures of the ENR inhibitor AFN-1252 [9] bound to ENR enzymes from other organisms, addressing a similar region as the pyridone-moiety of the DPE inhibitor, suggest that also the DPE inhibitor bears the potential to display binding to homologues of saFabI and InhA and may be optimised accordingly. Both of the newly investigated substituents, the pyridone moiety at the 4'-position as well as the 5-triazole substituent, provide a good starting point to modify the DPE scaffold also towards improved kinetic properties against ENR enzymes other than the herein studied and combining both groups on the DPE scaffold may have beneficial effects. The understanding of the underlying binding mechanism is a crucial factor to promote the dedicated design of inhibitors with superior pharmacokinetic characteristics. A second target for a structure-based drug-design approach is the interaction surface between ENR enzymes and the acyl-carrier protein (ACP), which delivers the growing acyl chain to each distinct enzyme of the dissociated FAS-II system and presumably recognises its respective interaction partner via electrostatic contacts. The interface between saACP and saFabI was investigated using different approaches including crosslinking experiments and the design of fusion constructs connecting the ACP and the FabI subunits via a flexible linker region of varying lengths and compositions. The crosslinking studies confirmed a set of residues to be part of the contact interface of a previously proposed complex model [10] and displayed high crosslinking efficiency of saACP to saFabI when mutated to cysteine residues. However, crystals of the complex obtained from either the single components, or of the fusion constructs usually displayed weak diffraction, which supports the assumption that complex formation is highly transient. To obtain ordered crystals for structural characterisation of the complex it is necessary to trap the complex in a fixed state, e.g. by a high-affinity substrate attached to ACP [11], which abolishes rapid complex dissociation. For this purpose, acyl-coupled long-residence time inhibitors might be a valuable tool to elucidate the detailed architecture of the ACP-FabI interface. This may provide a novel basis for the development of inhibitors that specifically target the FAS-II biosynthesis pathway.}, subject = {Fetts{\"a}urestoffwechsel}, language = {en} } @phdthesis{Plank2019, author = {Plank, Christina}, title = {Untersuchung von Dihydroisochinolinonderivaten als m{\"o}gliche Inhibitoren von Hsc70}, doi = {10.25972/OPUS-16265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162655}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Einhergehend mit einer steigenden Lebenserwartung nimmt auch die Zahl der am Multiplen Myelom Erkrankten zu. Bis dato gibt es nur wenige Therapieans{\"a}tze dieser selten vorkommenden Blutkrebserkrankung. Im Zusammenhang mit der Entstehung des Multiplen Myeloms stehen vor allem zwei bedeutende Hitzeschockproteine: Hsp90 und Hsp70. Beide haben die Aufgabe, Zellen vor Apoptose zu sch{\"u}tzen. In proliferierenden Plasmazellen ist eine {\"U}berexpression an Hsp90 zu beobachten. Entwickelte Inhibitoren f{\"u}hrten zwar zu einer verminderten Hsp90-Aktivit{\"a}t, allerdings wurde diese durch eine vermehrte Expression von Hsp70 kompensiert, weshalb Myelomzellen weiterhin proliferierten. Aus diesem Grund bietet sich Hsp70 als weiterer Angriffspunkt in der Therapierung des Multiplen Myeloms an. Die bislang entwickelten Inhibitoren binden entweder an die Nukleotid- oder Substratbindedom{\"a}ne. Da beide Stellen unspezifisch sind, wurden durch virtuelles Screening potenzielle Inhibitoren f{\"u}r Hsp70 identifiziert, welche in vitro und in vivo tats{\"a}chlich Effekte hinsichtlich der Herunterregulierung von Hsp70 zeigten. Ob die entwickelten Substanzen jedoch direkt an Hsp70 binden, war die Fragestellung der vorliegenden Arbeit. In dieser Arbeit wurde untersucht, inwiefern die entwickelten Inhibitoren an Hsp70 binden und dieses inhibieren. Die humane Hsp70-Familie besitzt sechzehn Mitglieder, die alle {\"a}hnliche Aufgaben und Strukturmerkmale aufweisen. F{\"u}r die durchgef{\"u}hrten Versuche wurde die Hsp70-Isoform Hsc70 verwendet. In einem Protein-Ligand-Assay konnte gezeigt werden, dass die meisten Verbindungen durch Aggregatbildung zu einer Inhibition von Hsc70 f{\"u}hrten. Durch Zugabe von Detergenz konnten die gebildeten Aggregate aufgebrochen und so der Inhibitionseffekt aufgehoben bzw. deutlich reduziert werden. Damit konnte gezeigt werden, dass die in Zell- und Mausversuchen beobachteten Effekte vermutlich nicht auf eine direkte Inhibition von Hsc70 zur{\"u}ckzuf{\"u}hren sind. Ob diese Effekte nun ebenfalls auf Aggregatbildung beruhen oder aber ein anderes Protein als das vermutete Hsc70 inhibiert wird, was {\"u}ber eine Signalkaskade zur Inhibition von Hsc70 f{\"u}hrt, w{\"a}re eine interessante Fragestellung f{\"u}r weitere Untersuchungen. Da sowohl in NMR-Versuchen als auch dem durchgef{\"u}hrten Protein-Ligand-Assay gezeigt werden konnte, dass die vormals als potenzielle Inhibitoren entwickelten Verbindungen nur schwach aktiv sind, wurde durch Fragment-basierte Ans{\"a}tze eine andere Bindestelle f{\"u}r m{\"o}gliche Inhibitoren identifiziert. Hierbei konnte N-Acetyl-D-Glucosamin in der Nukleotidbindedom{\"a}ne von Hsc70 detektiert werden. Hieraus k{\"o}nnten sich neue Ans{\"a}tze zur Entwicklung neuartiger in silico entwickelter Hsc70-Inhibitoren ergeben. Ausgangspunkt f{\"u}r die Docking-Studien zur Entwicklung neuer Hsp70-Inhibitoren war die Kristallstruktur von bHsc70 ED 1-554, einer trunkierten Doppelmutante des nativen Hsc70. Bis dato ist diese 554 Aminos{\"a}uren umfassende Mutante die einzige Hsc70-Variante von der die Zweidom{\"a}nenstruktur kristallisiert werden konnte. F{\"u}r dieses Konstrukt wurde zun{\"a}chst ein optimiertes Aufreinigungsprotokoll entwickelt, um dann Kristallisationsversuche mit ausgew{\"a}hlten AH-Verbindungen, die in den Docking-Studien entwickelt wurden, durchzuf{\"u}hren. Hierbei konnte jedoch keine Bindung festgestellt werden. Die Kristallisation mit Ver-155008, einem bekannten Hsc70-Inhibitor, f{\"u}hrte jedoch zur ersten Zweidom{\"a}nenstruktur von Hsc70 mit gebundenem Ver-155008. Neben der obigen Fragestellung wurde außerdem untersucht, wie funktional aktiv das trunkierte Hsc70-Konstrukts ist. Hier zeigte sich, dass aufgrund des fehlenden C-Terminus zwar eine geringe Aktivit{\"a}t von 30 \% im Vergleich zur Volll{\"a}nge zu beobachten war. F{\"u}r eine nahezu vollst{\"a}ndige R{\"u}ckfaltungsaktivit{\"a}t ist aber der C-Terminus essentiell. Weiterhin konnte in ITC-Versuchen der Kd-Wert von Ver-155008 an die verwendete Mutante ermittelt werden, der dem bereits bekannten Kd von Ver-155008 an das native Hsc70 {\"a}hnlich ist.}, subject = {Hitzeschockproteine}, language = {de} } @phdthesis{Goetz2018, author = {G{\"o}tz, Silvia}, title = {Zuo1 - ein neues G-Quadruplex-bindendes Protein in \(Saccharomyces\) \(cerevisiae\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G-Quadruplex (G4)-Strukturen sind sehr stabile und polymorphe DNA und RNA Sekund{\"a}rstrukturen mit einem konservierten Guanin-reichen Sequenzmotiv (G4-Motiv). Sie bestehen aus {\"u}bereinander gestapelten planaren G-Quartetts, in denen je vier Guanine durch Wasserstoffbr{\"u}ckenbindungen zusammengehalten werden. Da G4-Motive in Eukaryoten an bestimmten Stellen im Genom angereichert vorkommen, wird angenommen, dass die Funktion von G4-Strukturen darin besteht, biologische Prozesse positiv oder negativ zu regulieren. Aufgrund der hohen thermodynamischen Stabilit{\"a}t von G4 Strukturen ist davon auszugehen, dass Proteine in die Faltung, Stabilisierung und Entfaltung dieser Nukleins{\"a}ure-Strukturen regulatorisch involviert sind. Bis heute wurden viele Proteine in der Literatur beschrieben, die G4-Strukturen entwinden k{\"o}nnen. Jedoch konnten bisher nur wenige Proteine identifiziert werden, die in vivo die Faltung f{\"o}rdern oder G4-Strukturen stabilisieren. Durch Yeast One-Hybrid (Y1H)-Screenings habe ich Zuo1 als neues G4 bindendes Protein identifiziert. In vitro Analysen best{\"a}tigten diese Interaktion und es stellte sich heraus, dass Zuo1 G4-Strukturen stabilisiert. {\"U}bereinstimmend mit den in vitro Daten konnte gezeigt werden, dass Zuo1 signifikant an G4-Motive im Genom von Saccharomyces ceresivisiae bindet. Genomweit {\"u}berlappen G4-Motive, an die Zuo1 bindet, mit Stellen, an denen die DNA Replikation zum Stillstand kommt und vermehrt DNA Sch{\"a}den vorkommen. Diese Ergebnisse legen nahe, dass Zuo1 eine Funktion w{\"a}hrend der DNA Reparatur oder in Zusammenhang mit dem Vorankommen der DNA Replikationsgabel hat, indem G4-Strukturen stabilisiert werden. Diese Hypothese wird außerdem durch genetische Experimente gest{\"u}tzt, wonach in Abwesenheit von Zuo1 die Genominstabilit{\"a}t zunimmt. Aufgrund dieser Daten war es m{\"o}glich ein Model zu entwickeln, bei dem Zuo1 w{\"a}hrend der S-Phase G4-Strukturen bindet und stabilisiert wodurch die DNA Replikation blockiert wird. Diese Interaktion findet neben Stellen schadhafter DNA statt und unterst{\"u}tzt somit DNA Reparatur-Prozesse wie beispielsweise die Nukleotidexzisionsreparatur. Als weiteres potentielles G4-bindendes Protein wurde Slx9 in Y1H-Screenings identifiziert. In vitro Experimente zeigten zwar, dass Slx9 mit h{\"o}herer Affinit{\"a}t an G4-Strukturen bindet im Vergleich zu anderen getesteten DNA Konformationen, jedoch wurde in S. cerevisiae genomweit keine signifikante Bindung an G4-Motive festgestellt.}, subject = {Saccharomyces cerevisiae}, language = {de} } @article{FroehlichHanekePapenfortetal.2016, author = {Fr{\"o}hlich, Kathrin S. and Haneke, Katharina and Papenfort, Kai and Vogel, J{\"o}rg}, title = {The target spectrum of SdsR small RNA in Salmonella}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {21}, doi = {10.1093/nar/gkw632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175365}, pages = {10406-10422}, year = {2016}, abstract = {Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these 'core sRNAs' of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σ\(^{S}\) and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria.}, language = {en} } @misc{BleasdalegebGoesswein1976, type = {Master Thesis}, author = {Bleasdale [geb. G{\"o}ßwein], Liselotte}, title = {Versuche zum Mechanismus des Protonentransports in der Purpurmembran von Halobacterium Halobium. Tritium- und Deuteriumaustausch am Protein-gebundenen Retinal}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1976}, abstract = {No abstract available.}, subject = {Halobacterium halobium}, language = {de} } @phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} } @misc{Christoffel1976, type = {Master Thesis}, author = {Christoffel, Volker}, title = {Rekonstitution des Chromophors und der Funktion von Bakteriorhodopsin aus Halobacterium halobium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144908}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {68}, year = {1976}, abstract = {Ein Modell der lichtgetriebenen Protonenpumpe Bakteriorhodopsin postulierte die direkte Beteiligung der Wasserstoffe in der 4-Stellung des Cyclohexenringes des Retinalchromophors an dem Vorgang der Protonenverschiebung. Mittels Blockaden der Retroform-Bildung von Retinal durch chemische Modifizierungen des Cyclohexenringes (4-Hydroxy-Retinal, 5,6-Epoxy-Retinal) konnten nach Einbau der modifizierten Molek{\"u}le in die isolierte Purpurmembran und nach Zugabe zu Halobakterien mit unterdr{\"u}ckter Retinalsynthese die direkte Beteiligung des Cyclohexenringes an der Protonenpumpe mit großer Wahrscheinlichkeit ausgeschlossen werden.}, subject = {Bakteriorhodopsin}, language = {de} } @phdthesis{Wanzek2016, author = {Wanzek, Katharina}, title = {The investigation of the function of repair proteins at G-quadruplex structures in \(Saccharomyces\) \(cerevisiae\) revealed that Mms1 promotes genome stability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142547}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {G-quadruplex structures are highly stable alternative DNA structures that can, when not properly regulated, impede replication fork progression and cause genome instability (Castillo Bosch et al, 2014; Crabbe et al, 2004; Koole et al, 2014; Kruisselbrink et al, 2008; London et al, 2008; Lopes et al, 2011; Paeschke et al, 2013; Paeschke et al, 2011; Piazza et al, 2015; Piazza et al, 2010; Piazza et al, 2012; Ribeyre et al, 2009; Sabouri et al, 2014; Sarkies et al, 2012; Sarkies et al, 2010; Schiavone et al, 2014; Wu \& Spies, 2016; Zimmer et al, 2016). The aim of this thesis was to identify novel G-quadruplex interacting proteins in Saccharomyces cerevisiae and to unravel their regulatory function at these structures to maintain genome integrity. Mms1 and Rtt101 were identified as G-quadruplex binding proteins in vitro via a pull-down experiment with subsequent mass spectrometry analysis. Rtt101, Mms1 and Mms22, which are all components of an ubiquitin ligase (Rtt101Mms1/Mms22), are important for the progression of the replication fork following fork stalling (Luke et al, 2006; Vaisica et al, 2011; Zaidi et al, 2008). The in vivo binding of endogenously tagged Mms1 to its target regions was analyzed genome-wide using chromatin-immunoprecipitation followed by deep-sequencing. Interestingly, Mms1 bound independently of Mms22 and Rtt101 to G-rich regions that have the potential to form G-quadruplex structures. In vitro, formation of G-quadruplex structures could be shown for the G-rich regions Mms1 bound to. This binding was observed throughout the cell cycle. Furthermore, the deletion of MMS1 caused replication fork stalling as evidenced by increased association of DNA Polymerase 2 at Mms1 dependent sites. A gross chromosomal rearrangement assay revealed that deletion of MMS1 results in a significantly increased genome instability at G-quadruplex motifs compared to G-rich or non-G-rich regions. Additionally, binding of the helicase Pif1, which unwinds G4 structures in vitro (Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010; Wallgren et al, 2016), to Mms1 binding sites was reduced in mms1 cells. The data presented in this thesis, together with published data, suggests a novel mechanistic model in which Mms1 binds to G-quadruplex structures and enables Pif1 association. This allows for replication fork progression and genome integrity.}, subject = {Quadruplex-DNS}, language = {en} } @article{WaldholmWangBrodinetal.2011, author = {Waldholm, Johan and Wang, Zhi and Brodin, David and Tyagi, Anu and Yu, Simei and Theopold, Ulrich and {\"O}stlund Farrants, Ann Kristin and Visa, Neus}, title = {SWI/SNF regulates the alternative processing of a specific subset of pre-mRNAs in \(Drosophila\) \(melanogaster\)}, series = {BMC Molecular Biology}, volume = {12}, journal = {BMC Molecular Biology}, number = {46}, doi = {10.1186/1471-2199-12-46}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142613}, pages = {1-12}, year = {2011}, abstract = {Background: The SWI/SNF chromatin remodeling factors have the ability to remodel nucleosomes and play essential roles in key developmental processes. SWI/SNF complexes contain one subunit with ATPase activity, which in Drosophila melanogaster is called Brahma (Brm). The regulatory activities of SWI/SNF have been attributed to its influence on chromatin structure and transcription regulation, but recent observations have revealed that the levels of Brm affect the relative abundances of transcripts that are formed by alternative splicing and/or polyadenylation of the same pre-mRNA. Results: We have investigated whether the function of Brm in pre-mRNA processing in Drosophila melanogaster is mediated by Brm alone or by the SWI/SNF complex. We have analyzed the effects of depleting individual SWI/SNF subunits on pre-mRNA processing throughout the genome, and we have identified a subset of transcripts that are affected by depletion of the SWI/SNF core subunits Brm, Snr1 or Mor. The fact that depletion of different subunits targets a subset of common transcripts suggests that the SWI/SNF complex is responsible for the effects observed on pre-mRNA processing when knocking down Brm. We have also depleted Brm in larvae and we have shown that the levels of SWI/SNF affect the pre-mRNA processing outcome in vivo. Conclusions: We have shown that SWI/SNF can modulate alternative pre-mRNA processing, not only in cultured cells but also in vivo. The effect is restricted to and specific for a subset of transcripts. Our results provide novel insights into the mechanisms by which SWI/SNF regulates transcript diversity and proteomic diversity in higher eukaryotes.}, language = {en} } @phdthesis{Meduri2017, author = {Meduri, Rajyalakshmi}, title = {Elucidation of an intricate surveillance network for cellular U snRNP homeostasis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143173}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Spliceosomal U-rich small ribonucleoprotein particles (U snRNPs) are the major building blocks of the nuclear pre-mRNA splicing machinery. The core composition of U snRNPs includes the name giving U snRNA and a set of seven common (Sm) proteins termed Sm B/B', D1, D2, D3, E, F and G. These Sm proteins are arranged in the form of a toroidal ring on the single stranded conserved sequence element in the snRNA to form the Sm core domain. Even though U snRNPs assemble spontaneously in vitro, their assembly in vivo requires an amazingly large number of trans-acting assembly factors united in the Protein Arginine Methyltransferase 5 (PRMT5) and the Survival Motor Neuron (SMN) complexes. The cytoplasmic assembly pathway of U snRNPs can be divided into the early and the late phase. The early phase is dominated by the assembly chaperone, pICln, a subunit of the PRMT5 complex. This factor binds to Sm proteins and delivers them in a pICln-bound form to the PRMT5 complex. The early assembly phase then segregates into two lines. In one assembly line, a stable hexameric ring intermediate (6S complex) composed of pICln and the five Sm proteins D1, D2, F, E and G, is formed. This intermediate forms at the PRMT5 complex but dissociates from the latter upon completion of its assembly. Within the 6S complex, these Sm proteins are pre-organized into respective spatial positions adopted in the assembled U snRNP. The other assembly line forms a protein trimer composed of pICln, Sm B/B' and D3, which unlike the 6S complex is not released from the PRMT5 complex. As a consequence of their association with pICln, Sm proteins are kinetically trapped and fail to proceed in the assembly pathway. The late phase of the U snRNP formation is dominated by the SMN complex, which resolves this kinetic trap by dissociating pICln from the pre-organized Sm proteins and, subsequently catalyzes the loading of the Sm proteins on the U snRNA. Even though basic principles of U snRNP assembly have been understood in some detail, the question arises as to why cells employ sophisticated assembly machinery for the assembly despite the reaction occurring spontaneously in vitro. A few studies have shown that the system works towards rendering specificity to the assembly reaction. However, Sm proteins in their free form expose hydrophobic surfaces to the cytosolic solvent. Hence, I reasoned that the assembly machinery of snRNPs might also prevent Sm protein aggregation. In this thesis, I describe the work that leads to the discovery of a multi-layered regulatory network for Sm proteins involving post-transcriptional and post-translational surveillance mechanisms. Here, I show that the reduced level of SMN (a key assembly factor of the late phase) leads to the initial tailback of Sm proteins over pICln followed by the transcriptional down regulation of Sm protein encoding mRNAs. In contrast, depletion of pICln, a key factor of the early phase, results in the retention of Sm proteins on the ribosomes followed by their degradation via autophagy. Furthermore, I show that exceeding levels of Sm proteins over pICln caused by overexpression results in aggregation and mis-localization of Sm proteins. Thus, my findings uncover a complex regulatory network that helps to maintain the cellular U snRNP homeostasis by either preventing or clearing the unassembled Sm protein aggregates when they are not faithfully incorporated into the U snRNPs.}, language = {en} } @article{YinBrocherFischeretal.2011, author = {Yin, Jun and Brocher, Jan and Fischer, Utz and Winkler, Christoph}, title = {Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa}, series = {Molecular neurodegeneration}, volume = {6}, journal = {Molecular neurodegeneration}, number = {56}, doi = {10.1186/1750-1326-6-56}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141090}, pages = {1-17}, year = {2011}, abstract = {Background: Retinitis pigmentosa (RP) is an inherited eye disease characterized by the progressive degeneration of rod photoreceptor cells. Mutations in pre-mRNA splicing factors including PRPF31 have been identified as cause for RP, raising the question how mutations in general factors lead to tissue specific defects. Results: We have recently shown that the zebrafish serves as an excellent model allowing the recapitulation of key events of RP. Here we use this model to investigate two pathogenic mutations in PRPF31, SP117 and AD5, causing the autosomal dominant form of RP. We show that SP117 leads to an unstable protein that is mislocalized to the rod cytoplasm. Importantly, its overexpression does not result in photoreceptor degeneration suggesting haploinsufficiency as the underlying cause in human RP patients carrying SP117. In contrast, overexpression of AD5 results in embryonic lethality, which can be rescued by wild-type Prpf31. Transgenic retina-specific expression of AD5 reveals that stable AD5 protein is initially localized in the nucleus but later found in the cytoplasm concurrent with progressing rod outer segment degeneration and apoptosis. Importantly, we show for the first time in vivo that retinal transcripts are wrongly spliced in adult transgenic retinas expressing AD5 and exhibiting increased apoptosis in rod photoreceptors. Conclusion: Our data suggest that distinct mutations in Prpf31 can lead to photoreceptor degeneration through different mechanisms, by haploinsufficiency or dominant-negative effects. Analyzing the AD5 effects in our animal model in vivo, our data imply that aberrant splicing of distinct retinal transcripts contributes to the observed retina defects.}, language = {en} } @phdthesis{Carstensen2018, author = {Carstensen, Anne Carola}, title = {Identification of novel N-MYC interacting proteins reveals N-MYC interaction with TFIIIC}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143658}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {N-MYC is a member of the human MYC proto-oncogene family, which comprises three transcription factors (C-, N- and L-MYC) that function in multiple biological processes. Deregulated expression of MYC proteins is linked to tumour initiation, maintenance and progression. For example, a large fraction of neuroblastoma displays high N-MYC levels due to an amplification of the N-MYC encoding gene. MYCN-amplified neuroblastoma depend on high N-MYC protein levels, which are maintained by Aurora-A kinase. Aurora-A interaction with N-MYC interferes with degradation of N-MYC via the E3 ubiquitin ligase SCFFBXW7. However, the underlying mechanism of Aurora-A-mediated stabilisation of N-MYC remains to be elucidated. To identify novel N-MYC interacting proteins, which could be involved in N-MYC stabilisation by Aurora-A, a proteomic analysis of purified N-MYC protein complexes was conducted. Since two alanine mutations in MBI of N-MYC, T58A and S62A (N-MYC mut), disable Aurora-A-mediated stabilisation of N-MYC, N-MYC protein complexes from cells expressing either N-MYC wt or mut were analysed. Proteomic analysis revealed that N-MYC interacts with two deubiquitinating enzymes, USP7 and USP11, which catalyse the removal of ubiquitin chains from target proteins, preventing recognition by the proteasome and subsequent degradation. Although N-MYC interaction with USP7 and USP11 was confirmed in subsequent immunoprecipitation experiments, neither USP7, nor USP11 was shown to be involved in the regulation of N-MYC stability. Besides USP7/11, proteomic analyses identified numerous additional N-MYC interacting proteins that were not described to interact with MYC transcription factors previously. Interestingly, many of the identified N-MYC interaction partners displayed a preference for the interaction with N-MYC wt, suggesting a MBI-dependent interaction. Among these were several proteins, which are involved in three-dimensional organisation of chromatin domains and transcriptional elongation by POL II. Not only the interaction of N-MYC with proteins functioning in elongation, such as the DSIF component SPT5 and the PAF1C components CDC73 and CTR9, was validated in immunoprecipitation experiments, but also with the POL III transcription factor TFIIIC and topoisomerases TOP2A/B. ChIP-sequencing analysis of N-MYC and TFIIIC subunit 5 (TFIIIC5) revealed a large number of joint binding sites in POL II promoters and intergenic regions, which are characterised by the presence of a specific motif that is highly similar to the CTCF motif. Additionally, N-MYC was shown to interact with the ring-shaped cohesin complex that is known to bind to CTCF motifs and to assist the insulator protein CTCF. Importantly, individual ChIP experiments demonstrated that N-MYC, TFIIIC5 and cohesin subunit RAD21 occupy joint binding sites comprising a CTCF motif. Collectively, the results indicate that N-MYC functions in two biological processes that have not been linked to MYC biology previously. Furthermore, the identification of joint binding sites of N-MYC, TFIIIC and cohesin and the confirmation of their interaction with each other suggests a novel function of MYC transcription factors in three-dimensional organisation of chromatin.}, subject = {Biologie}, language = {en} } @article{HaddadChenZhangetal.2011, author = {Haddad, Dana and Chen, Nanhai G. and Zhang, Qian and Chen, Chun-Hao and Yu, Yong A. and Gonzalez, Lorena and Carpenter, Susanne G. and Carson, Joshua and Au, Joyce and Mittra, Arjun and Gonen, Mithat and Zanzonico, Pat B. and Fong, Yuman and Szalay, Aladar A.}, title = {Insertion of the human sodium iodide symporter to facilitate deep tissue imaging does not alter oncolytic or replication capability of a novel vaccinia virus}, series = {Journal of Translational Medicine}, volume = {9}, journal = {Journal of Translational Medicine}, number = {36}, doi = {10.1186/1479-5876-9-36}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140847}, pages = {1-14}, year = {2011}, abstract = {Introduction: Oncolytic viruses show promise for treating cancer. However, to assess therapeutic efficacy and potential toxicity, a noninvasive imaging modality is needed. This study aimed to determine if insertion of the human sodium iodide symporter (hNIS) cDNA as a marker for non-invasive imaging of virotherapy alters the replication and oncolytic capability of a novel vaccinia virus, GLV-1h153. Methods: GLV-1h153 was modified from parental vaccinia virus GLV-1h68 to carry hNIS via homologous recombination. GLV-1h153 was tested against human pancreatic cancer cell line PANC-1 for replication via viral plaque assays and flow cytometry. Expression and transportation of hNIS in infected cells was evaluated using Westernblot and immunofluorescence. Intracellular uptake of radioiodide was assessed using radiouptake assays. Viral cytotoxicity and tumor regression of treated PANC-1tumor xenografts in nude mice was also determined. Finally, tumor radiouptake in xenografts was assessed via positron emission tomography (PET) utilizing carrier-free (124)I radiotracer. Results: GLV-1h153 infected, replicated within, and killed PANC-1 cells as efficiently as GLV-1h68. GLV-1h153 provided dose-dependent levels of hNIS expression in infected cells. Immunofluorescence detected transport of the protein to the cell membrane prior to cell lysis, enhancing hNIS-specific radiouptake (P < 0.001). In vivo, GLV-1h153 was as safe and effective as GLV-1h68 in regressing pancreatic cancer xenografts (P < 0.001). Finally, intratumoral injection of GLV-1h153 facilitated imaging of virus replication in tumors via (124)I-PET. Conclusion: Insertion of the hNIS gene does not hinder replication or oncolytic capability of GLV-1h153, rendering this novel virus a promising new candidate for the noninvasive imaging and tracking of oncolytic viral therapy.}, language = {en} } @phdthesis{Klemm2020, author = {Klemm, Theresa Antonia}, title = {Minor differences cause major effects: How differential oligomerization regulates the activities of USP25 and USP28}, doi = {10.25972/OPUS-19108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Deubiquitinases are regulators of the ubiquitin proteasome system that counteract the ubiquitination cascade by removing ubiquitin from substrates and cleaving ubiquitin chains. Due to their involvment in various important pathways, they are associated with several diseases and may thus present promising drug targets. The two related ubiquitin specific proteases USP25 and USP28 share a highly conserved amino acid sequence but perform distinct biological functions. USP28 plays roles in cell cycle regulation and was also linked to several types of cancer. It adopts oncogenic functions by rescuing the oncoproteins MYC and JUN from proteasomal degradation, which is induced by the E3-ligase SCF (FBW7). Opposingly, USP28 also regulates the stability of the tumor suppressor FBW7 itself. USP25 contributes to a balanced innate immune system by stabilizing TRAF3 and TRAF6 and lately was found to promote Wnt-signaling by deubiquitinating TNKS. Due to the high level of identity of both proteases, a recent attempt to inhibit USP28 led to cross reactivity against USP25. In our study, we characterized both USP25 and USP28 structurally and functionally using x-ray crystallography, biochemical as well as biophysical approaches to determine similarities and differences that can be exploited for the development of specific inhibitors. The crystal structure of the USP28 catalytic domain revealed a cherry-couple like dimer that mediates self-association by an inserted helical subdomain, the USP25/28 catalytic domain inserted domain (UCID). In USP25, the UCID leads to formation of a tetramer composed of two interlinked USP28-like dimers. Structural and functional analysis revealed that the dimeric USP28 is active, whereas the tetrameric USP25 is auto inhibited. Disruption of the tetramer by a cancer-associated mutation or a deletion-variant activates USP25 through dimer formation in in vitro assays and leads to an increased stability of TNKS in cell studies. Furthermore, in vitro data showed that neither ubiquitin nor substrate binding led to the activation of the USP25 tetramer construct. With the structure of the C-terminal domain of USP25, we determined the last unknown region in the enzyme as a separately folded domain that mediates substrate interactions. Combined the structures of the USP25 and USP28 catalytic domains and the functional characterization of both enzymes provide novel insights into the regulation of USPs by oligomerization. Furthermore, we identified individual features of each protease that might be explored for the development of specific small molecule inhibitors.}, subject = {Oligomerisation}, language = {en} } @article{KilincEhrigPessianetal.2016, author = {Kilinc, Mehmet Okyay and Ehrig, Klaas and Pessian, Maysam and Minev, Boris R. and Szalay, Aladar A.}, title = {Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells}, series = {Journal of Translational Medicine}, volume = {14}, journal = {Journal of Translational Medicine}, number = {340}, doi = {10.1186/s12967-016-1096-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168914}, year = {2016}, abstract = {Background The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. Methods Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS\(^{+}\) myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student's t test was used for comparison between groups in all of the experiments. Results Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b\(^{+}\) ly6G\(^{+}\) myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS\(^{+}\) MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7-10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. Conclusions We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.}, language = {en} } @phdthesis{Schoenwetter2021, author = {Sch{\"o}nwetter, Elisabeth Sofie}, title = {Towards an understanding of the intricate interaction network of TFIIH}, doi = {10.25972/OPUS-16892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Several DNA repair mechanisms ensure the repair of DNA lesions and thus maintain DNA integrity. One of these DNA repair mechanisms is nucleotide excision repair (NER), which is famous for its ability to address a large variety of structurally unrelated DNA lesions. A key component of eukaryotic NER is the transcription factor II H (TFIIH) complex, which is not only essential for DNA repair but also for transcription. The TFIIH complex is composed of ten subunits. How these subunits work together during NER to unwind the DNA around the lesion is, however, not yet fully understood. High-resolution structural data and biochemical insights into the function of every subunit are thus indispensable to understand the functional networks within TFIIH. The importance of an intact TFIIH complex is reflected in the severe consequences of patient mutations in the TFIIH subunits XPB, XPD or p8 leading to the hallmark diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Defects in the NER pathway are further associated with several types of cancer including skin cancer. The herein described work focused on five TFIIH subunits derived from the thermophilic fungus Chaetomium thermophilum, the p34/p44 pair and the ternary XPB/p52/p8 complex. The interaction between p34 and p44 was characterized based on a high-resolution structure of the p34_vWA/p44_RING minimal complex. Biochemical studies of the p34/p44 interaction led to the disclosure of an additional interaction between the p34 and p44 subunits, which had not been characterized so far. The p34/p44 interaction was shown to be central to TFIIH, which justifies the presence of several redundant interfaces to safeguard the interaction between the two proteins and might explain why so far, no patient mutations in these subunits have been identified. The p52 subunit of TFIIH was known to be crucial to stimulate the ATPase activity of XPB, which is required during NER. This work presents the first entire atomic resolution structural characterization of p52, which was derived of several crystal structures of p52 variants and a p52/p8 variant thereby demonstrating the interaction between p52 and p8. The precise structural model of p52 offered the possibility to investigate interactions with other TFIIH subunits in more detail. The middle domain 2 of p52 and the N-terminal domain of XPB were shown to mediate the main interaction between the two subunits. An analysis of the p52 crystal structures within recently published cryo-electron microscopy structures of TFIIH provides a model of how p52 and p8 stimulate the ATPase activity of XPB, which is essential for NER and transcription. The structural and biochemical findings of this work provide an additional building block towards the uncovering of the architecture and function of this essential transcription factor.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Brosi2021, author = {Brosi, Cornelia}, title = {Functional characterization of the TTF complex and its role in neurodevelopmental disorders}, doi = {10.25972/OPUS-15778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157783}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The eukaryotic gene expression requires extensive regulations to enable the homeostasis of the cell and to allow dynamic responses due to external stimuli. Although many regulatory mechanisms involve the transcription as the first step of the gene expression, intensive regulation occurs also in the post-transcriptional mRNA metabolism. Thereby, the particular composition of the mRNPs plays a central role as the components associated with the mRNA form a specific "mRNP code" which determines the fate of the mRNA. Many proteins which are involved in this regulation and the mRNA metabolism are affected in diseases and especially neurological disorders often result from an aberrant mRNP code which leads to changes in the regulation and expression of mRNPs. The focus of this work was on a trimeric protein complex which is termed TTF complex based on its subunits TDRD3, TOP3β and FMRP. Biochemical investigations revealed that the three components of the TTF complex are nucleo-cytosolic shuttle proteins which localize in the cytoplasm at the steady-state, associate with mRNPs and are presumably connected to the translation. Upon cellular stress conditions, the TTF components concentrate in stress granules. Thus, the TTF complex is part of the mRNP code, however its target RNAs and function are still completely unknown. Since the loss of functional FMRP results in the fragile X syndrome and TOP3β is associated with schizophrenia and intellectual disability, the TTF complex connects these phenotypically related neuro-psychiatric disorders with each other on a molecular level. Therefore, the aim of this work was to biochemically characterize the TTF complex and to define its function in the mRNA metabolism. In this work, evidence was provided that TDRD3 acts as the central unit of the TTF complex and directly binds to FMRP as well as to TOP3β. Thereby, the interaction of TDRD3 and TOP3β is very stable, whereas FMRP is a dynamic component. Interestingly, the TTF complex is not bound directly to mRNA, but is recruited via the exon junction complex (EJC) to mRNPs. This interaction is mediated by a specific binding motif of TDRD3, the EBM. Upon biochemical and biological investigations, it was possible to identify the interactome of the TTF complex and to define the role in the mRNA metabolism. The data revealed that the TTF complex is mainly associated with "early" mRNPs and is probably involved in the pioneer round of translation. Furthermore, TOP3β was found to bind directly to the ribosome and thus, establishes a connection between the EJC and the translation machinery. A reduction of the TTF components resulted in selective changes in the proteome in cultured cells, whereby individual protein subsets seem to be regulated rather than the global protein expression. Moreover, the enzymatic analysis of TOP3β indicated that TOP3β is a type IA topoisomerase which can catalytically attack not only DNA but also RNA. This aspect is particularly interesting with regard to the connection between early mRNPs and the translation which has been revealed in this work. The data obtained in this work suggest that the TTF complex plays a role in regulating the metabolism of an early mRNP subset possibly in the course of the pioneer round of translation. Until now, the link between an RNA topoisomerase and the mRNA metabolism is thereby unique and thus provides a completely new perspective on the steps in the post-transcriptional gene expression and its regulation.}, subject = {Messenger-RNP}, language = {en} } @unpublished{LoefflerMayerTrujilloVieraetal.2018, author = {L{\"o}ffler, Mona C. and Mayer, Alexander E. and Trujillo Viera, Jonathan and Loza Valdes, Angel and El-Merahib, Rabih and Ade, Carsten P. and Karwen, Till and Schmitz, Werner and Slotta, Anja and Erk, Manuela and Janaki-Raman, Sudha and Matesanz, Nuria and Torres, Jorge L. and Marcos, Miguel and Sabio, Guadalupe and Eilers, Martin and Schulze, Almut and Sumara, Grzegorz}, title = {Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity}, series = {The EMBO Journal}, journal = {The EMBO Journal}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176093}, year = {2018}, abstract = {Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others, activates G-protein coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancerbinding protein (C/EBP)-α and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, loss of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.}, language = {en} } @phdthesis{Spieler2021, author = {Spieler, Valerie}, title = {Bioinspired drug delivery of interleukin-4}, doi = {10.25972/OPUS-19359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chronic inflammatory diseases such as rheumatoid arthritis, type 2 diabetes and cardiovascular diseases, are associated with the homeostatic imbalance of one of several physiological systems combined with the lack of spontaneous remission, which causes the disease to persevere throughout patients' lives. The inflammatory response relies mainly on tissue-resident, pro-inflammatory M1 type macrophages and, consequently, a chance for therapeutic intervention lies in driving macrophage polarization towards the anti-inflammatory M2 phenotype. Therefore, anti-inflammatory cytokines that promote M2 polarization, including interleukin-4 (IL4), have promising therapeutic potential. Unfortunately, their systemic use is hampered by a short serum half-life and dose-limiting toxicity. On the way towards cytokine therapies with superior safety and efficacy, this thesis is focused on designing bioresponsive delivery systems for the anti-inflammatory cytokine IL4. Chapter 1 describes how anti-inflammatory cytokines are tightly regulated in chronic, systemic inflammation as in rheumatoid arthritis but also in acute, local inflammation as in myocardial infarction. Both diseases show a characteristic progression during which anti-inflammatory cytokine delivery is of variable benefit. A conventional, passive drug delivery system is unlikely to release the cytokines such that the delivery matches the dynamic course of the (patho-)physiological progress. This chapter presents a blueprint for active drug delivery systems equipped with a 24/7 inflammation detector that continuously senses for matrix metalloproteinases (MMP) as surrogate markers of the disease progress and responds by releasing cytokines into the affected tissues at the right time and place. Because they are silent during phases of low disease activity, bioresponsive depots could be used to treat patients in asymptomatic states, as a preventive measure. The drug delivery system only gets activated during flares of inflammation, which are then immediately suppressed by the released cytokine drug and could prevent the steady damage of subclinical chronic inflammation, and therefore reduce hospitalization rates. In a first proof of concept study on controlled cytokine delivery (chapter 2), we developed IL4-decorated particles aiming at sustained and localized cytokine activity. Genetic code expansion was deployed to generate muteins with the IL4's lysine 42 replaced by two different unnatural amino acids bearing a side chain suitable for click chemistry modification. The new IL4 muteins were thoroughly characterized to ensure proper folding and full bioactivity. Both muteins showed cell-stimulating ability and binding affinity to IL4 receptor alpha similar to those of wild type IL4. Copper-catalyzed (CuAAC) and strain-promoted (SPAAC) azide-alkyne cycloadditions were used to site-selectively anchor IL4 to agarose particles. These particles had sustained IL4 activity, as demonstrated by the induction of TF-1 cell proliferation and anti-inflammatory M2 polarization of M-CSF-generated human macrophages. This approach of site-directed IL4 anchoring on particles demonstrates that cytokine-functionalized particles can provide sustained and spatially controlled immune-modulating stimuli. The idea of a 24/7 sensing, MMP driven cytokine delivery system, as described in the introductory chapter, was applied in chapter 3. There, we simulated the natural process of cytokine storage in the extracellular matrix (ECM) by using an injectable solution of IL4 for depot formation by enzyme-catalyzed covalent attachment to ECM components such as fibronectin. The immobilized construct is meant to be cleaved from the ECM by matrix-metalloproteinases (MMPs) which are upregulated during flares of inflammation. These two functionalities are facilitated by a peptide containing two sequences: a protease-sensitive peptide linker (PSL) for MMP cleavage and a sequence for covalent attachment by activated human transglutaminase FXIIIa (TGase) included in the injection mix for co-administration. This peptide was site-selectively conjugated to the unnatural amino acid at IL4 position 42 allowing to preserve wild type bioactivity of IL4. In vitro experiments confirmed the anticipated MMP response towards the PSL and TGase-mediated construct attachment to fibronectin of the ECM. Furthermore, the IL4-peptide conjugates were able to reduce inflammation and protect non-load bearing cartilage along with the anterior cruciate ligament from degradation in an osteoarthritis model in rabbits. This represents the first step towards a minimally invasive treatment option using bioresponsive cytokine depots with potential clinical value for inflammatory conditions. One of the challenges with this approach was the production of the cytokine conjugate, with incorporation of the unnatural amino acid into IL4 being the main bottleneck. Therefore, in chapter 4, we designed a simplified version of this depot system by genetically fusing the bifunctional peptide via a flexible peptide spacer to murine IL4. While human IL4 loses its activity upon C-terminal elongation, murine IL4 is not affected by this modification. The produced murine IL4 fusion protein could be effectively bound to in vitro grown extracellular matrix in presence of TGase. Moreover, the protease-sensitive linker was selectively recognized and cleaved by MMPs, liberating intact and active IL4, although at a slower rate than expected. Murine IL4 offers the advantage to evaluate the bioresponsive cytokine depot in many available mouse models, which was so far not possible with human IL4 due to species selectivity. For murine IL4, the approach was further extended to systemic delivery in chapter 5. To increase the half-life and specifically target disease sites, we engineered a murine IL4 variant conjugated with a folate-bearing PEG chain for targeting of activated macrophages. The bioactive IL4 conjugate had a high serum stability and the PEGylation increased the half-life to 4 h in vivo. Surprisingly, the folate moiety did not improve targeting in an antigen-induced arthritis (AIA) mouse model. IL4-PEG performed better in targeting the inflamed joint, while IL4-PEG-folate showed stronger accumulation in the liver. Fortunately, the modular nature of the IL4 conjugate facilitates convenient adaption of PEG chain length and the targeting moiety to further improve the half-life and localization of the cytokine. In summary, this thesis describes a platform technology for the controlled release of cytokines in response to inflammation. By restricting the release of the therapeutic to the site of inflammation, the benefit-risk ratio of this potent class of biologics can be positively influenced. Future research will help to deepen our understanding of how to perfectly combine cytokine, protease-sensitive linker and immobilization tag or targeting moiety to tackle different diseases.}, subject = {Targeted drug delivery}, language = {en} } @phdthesis{Fackler2014, author = {Fackler, Marc}, title = {Biochemical characterization of GAS2L3, a target gene of the DREAM complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Sowik2014, author = {Sowik, Thomas}, title = {Assessment of the surface functionalization of SPION and DND nanomaterials for cellular uptake and fluorescence imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103709}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The aim of this work was to synthesize and functionalize different bio-relevant nanomaterials like silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for T2 magnetic resonance imaging (MRI) and detonation nanodiamond (DND) with the neurohormone peptide allatostatin 1 (ALST1) and a fluorescent dye. Analytical techniques for the determination and quantification of surface functional groups like amines, azides, and peptides were also developed and established. Thus, in the first part of the work, a TGF-1 binding peptide and allatostatin 1 (ALST1), both supposed to act as active tumour targeting vectors, were synthesized by solid-phase peptide synthesis (SPPS) and characterized by high pressure liquid chromatography (HPLC) and mass spectrometry. Then, azide-functionalized silica nanoparticles were synthesized by the St{\"o}ber process and characterized by transmission electron microscopy (TEM) and infrared spectroscopy (IR). The surface loading of amine and azide groups was determined by a new protocol. The azide groups were reduced with sodium boronhydride to amine and then functionalized with Fmoc-Rink Amide linker according to a standard SPPS protocol. Upon cleavage of Fmoc by piperidine, the resulting dibenzofulvene and its piperidine adduct were quantified by UV/Vis spectroscopy and used to determine the amount of amine groups on the nanoparticle surface. Then, ALST1 and related tyrosine- and phenylalanine substituted model peptides were conjugated to the azide-functionalized silica nanoparticles by copper(I)-catalyzed azide-alkyne dipolar cycloaddition (CuAAC). The successful peptide conjugation was demonstrated by the Pauly reaction, which however is only sensitive to histidine- and tyrosine-containing peptides. As a more general alternative, the acid hydrolysis of the peptides to their individual amino acid building blocks followed by derivatization with phenyl isothiocyanate (PITC) allowed the separation, determination, and quantification of the constituent amino acids by HPLC. In the second part of the work, amine- and azide-functionalized silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by co-precipitation and subsequent silica-coated based on the St{\"o}ber process and characterized by TEM and IR. The amine surface loading was determined by the method already established for the pure silica systems. The azide surface loading could also be quantified by reduction with sodium boronhydride to amine groups and then conjugation to Fmoc-Rink amide linker. Upon cleavage of Fmoc with piperidine, the total amine surface loading was obtained. The amount of azide surface groups was then determined from the difference of the total amine surface loading and the amine surface loading. Thus, it was possible to quantify both amine and azide surface groups on a single nanoparticle system. Superparamagnetic iron oxide nanoparticles (SPIONs) are potent T2 contrast agents for magnetic resonance imaging (MRI). Due to their natural metabolism after injection into the blood stream, SPIONs mostly end up inside macrophages, liver, spleen or kidneys. To generate a potential target-specific SPION-based T2 contrast agent for MRI, the neurohormone peptide ALST1 was conjugated by CuAAC to the azide- and amine functionalized superparamagnetic iron oxide nanoparticles, since ALST1 is supposed to target difficult-to-treat neuroendocrinic tumours due to its analogy to galanin and somastatin receptor ligands. The organic fluorescent dye cyanine 5 (Cy5) was also conjugated to the silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) via a NHS-ester to the amines to enable cell uptake studies by fluorescence microscopy. These constructs were characterized by TEM, dynamic light scattering (DLS), and IR. The amino acids of the conjugated ALST1 were determined by the HPLC method as described before for peptide-modified silica nanoparticle surfaces. Then, the relaxivity r2 was measured at 7 T. However, a r2 value of 27 L/mmolFe·s for the dual ALST1-/Cy5-functionalized silica-coated SPIONs was not comparable to T2 contrast agents in clinical use, since their relaxivity is commonly determined at 1.5 T, and no such instrument was available. However, it can be assumed that the synthesized dual ALST1-/Cy5-functionalized silica-coated SPION would show a lower r2 at 1.5 T than at 7T. Commercial T2 MRI contrast agents like VSOP-C184 from Ferropharm show at r2 values of about 30 L/mmolFe·s at 1.5 T. Still, the relaxivity of the new material has some potential for application as a T2 contrast agent. Then, the material was used in cell uptake studies by fluorescence microscopy with the conjugated Cy5 dye as a probe. The dual ALST1-/Cy5-functionalized silica-coated SPION showed a high degree of agglomeration with no cellular uptake unlike described for ALST1-functionalized nanoparticles in literature. It is assumed that upon agglomeration of the particles, constructs form which are unable to be internalized by the cellular endocytotic pathways anymore. As a future perspective, the tendency of the particle to agglomerate should be reduced by changing the coating material to polyethylene glycol (PEG) or chitosan, which are known to be bio-compatible, bio-degradable and prevent agglomeration. In the third part of the work, the rhenium compound [ReBr(CO)3(L)] with L = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline and its manganese analogue were synthesized by heating the ligand and rhenium pentacarbonyl bromide or and manganese pentacarbonyl bromide respectively, in toluene. However, [MnBr(CO)3(L)] was unstable upon illumination by UV light at 365 nm. Thus, it was dismissed for further application. The photophysical properties of [ReBr(CO)3(L)] were explored, by determination of the excited-state life time by the time-correlated single-photon counting (TCSPC) method and the quantum yield by a fluorescence spectrometer equipped with an integration sphere. A value of  = 455 ns, a Stokes shift of 197 nm and a rather low quantum yield =were found. Metal complexes are supposed to have superior properties compared to organic dyes due to their large Stokes shifts, long excited-state life times, and high quantum yields. Thus, amine- and azide-functionalized detonation nanodiamond (DND) as an alternative biological inert carrier system was functionalized with ALST1 to enhance its cell uptake properties. A luminescent probe for cell uptake studies using fluorescence microscopy was also attached, either based on the new rhenium complex or the commercially available organic dye Cy5, respectively. The aldehyde-functionalized rhenium complex was conjugated to the DND via oxime ligation, which is known to be a mild and catalyst-free conjugation method. The amount of peptide ALST1 on the DND was analyzed and quantified after acid hydrolysis and PITC derivatization by HPLC as described before. Then, the ALST1-/luminescent probe-functionalized DND was investigated for its photophysical properties by fluorescence spectroscopy. The Cy5-functionalized material showed a slightly lower fluorescence performance in aqueous solution than reported in literature and commercial suppliers with a life time  < 0.4 ns and quantum yields not determinable by integration sphere due to the week signal intensity. The rhenium complex-functionalized material had a very low signal intensity in only aqueous medium, and thus determination of life times and quantum yield by fluorescence spectroscopy was not possible. After incubation with MDA-MB 231 cells, the Cy5-functionalized DND could easily be detected due to its red fluorescence. However, it was not possible to visualize the rhenium complex-functionalized DND with fluorescence microscopy due to the low fluorescence intensity of the complex in aqueous medium and the lack of proper filters for the fluorescence microscope. Cy5-functionalized DND did not show any cellular uptake in fluorescence microscopy after conjugation with ALST1. Since the nanodiamond surface is known to strongly adsorb peptides and proteins, it is assumed that the peptide chain is oriented perpendicular to the nanoparticle surface and thus not able to interact with cell membrane receptors to promote cell uptake of the particles. As a future perspective, the ALST1-promoted cellular uptake of the DND should be improved by using different linker systems for peptide conjugation to prevent adsorption of the peptide chain on the particle surface. The new analytical methods for amino-, azide-, and peptide-functionalized nanoparticles have great potential to assist in the quantification of nanoparticle surface modifications by UV/Vis spectroscopy and HPLC. The determination of surface amine and azide groups based on the cleavage of conjugated Fmoc-Rink amide linker and detected by UV/Vis spectroscopy is applicable to all amine-/azide-functionalized nanomaterials. However, particles which form very stable suspension with the cleavage mixture can cause quantification problems due to scattering, making an accurate quantification of dibenzofulvene and its piperidine adduct impossible. The detection of tyrosine- and histidine-containing peptides based on the Pauly reaction is well-suited as a fast and easy-to-perform qualitative demonstration of successful peptide surface conjugation. However, its major drawback as a colourimetric approach is that coloured particles cannot be evaluated by this method. The amino acid analysis based on HPLC after acid hydrolysis of peptides conjugated to nanoparticle surfaces to its individual building blocks and subsequent derivatization with PITC, can be used on all nanomaterials with peptide or protein surface modification. It allows detection of amino acids down to picomolar concentrations and even enables analysis of very small peptide surface loadings. However, the resulting HPLC traces are difficult to analyze. Three new analytical methods based on UV/Vis and HPLC techniques have been developed and established. They assisted in the characterization of the synthesized DND and SPIONs with dual functionalization by ALST1 and Cy5 or [ReBr(CO)3(L)], respectively. However, the nanomaterials showed no cellular uptake due to a high tendency to agglomerate. The cellular uptake should be improved and the tendency to agglomerate of the SPIONs should be reduced by changing the surface coating from silica to either PEG or chitosan. Furthermore, different linker systems for connecting peptides to DND surfaces should be synthesized and evaluated to reduce potential peptide chain adsorption.}, subject = {Nanopartikel}, language = {en} } @article{MuellerWindhofMaximovetal.2013, author = {M{\"u}ller, Sara and Windhof, Indra M. and Maximov, Vladimir and Jurkowski, Tomasz and Jeltsch, Albert and F{\"o}rstner, Konrad U. and Sharma, Cynthia M. and Gr{\"a}f, Ralph and Nellen, Wolfgang}, title = {Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA)}, series = {Nucleic Acids Research}, volume = {41}, journal = {Nucleic Acids Research}, number = {18}, issn = {1362-4962}, doi = {10.1093/nar/gkt634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123149}, pages = {8615-8627}, year = {2013}, abstract = {Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in \(tRNA^{Asp(GUC)}\) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified \(tRNA^{Glu(CUC/UUC)}\) and \(tRNA^{Gly(GCC)}\) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.}, language = {en} } @article{BonnSchmittAsan2012, author = {Bonn, Maria and Schmitt, Angelika and Asan, Esther}, title = {Double and triple in situ hybridization for coexpression studies: combined fluorescent and chromogenic detection of neuropeptide Y (NPY) and serotonin receptor subtype mRNAs expressed at different abundance levels}, series = {Histochemistry and Cell Biology}, volume = {137}, journal = {Histochemistry and Cell Biology}, number = {1}, doi = {10.1007/s00418-011-0882-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127080}, pages = {11-24}, year = {2012}, abstract = {Multiple fluorescence in situ hybridization is the method of choice for studies aimed at determining simultaneous production of signal transduction molecules and neuromodulators in neurons. In our analyses of the monoamine receptor mRNA expression of peptidergic neurons in the rat telencephalon, double tyramide-signal-amplified fluorescence in situ hybridization delivered satisfactory results for coexpression analysis of neuropeptide Y (NPY) and serotonin receptor 2C (5-HT2C) mRNA, a receptor subtype expressed at high-to-moderate abundance in the regions analyzed. However, expression of 5-HT1A mRNA, which is expressed at comparatively low abundance in many telencephalic areas, could not be unequivocally identified in NPY mRNA-reactive neurons due to high background and poor signal-to-noise ratio in fluorescent receptor mRNA detections. Parallel chromogenic in situ hybridization provided clear labeling for 5-HT1A mRNA and additionally offered the possibility to monitor the chromogen deposition at regular time intervals to determine the optimal signal-to-noise ratio. We first developed a double labeling protocol combining fluorescence and chromogenic in situ hybridization and subsequently expanded this variation to combine double fluorescence and chromogenic in situ hybridization for triple labelings. With this method, we documented expression of 5-HT2C and/or 5-HT1A in subpopulations of telencephalic NPY-producing neurons. The method developed in the present study appears suitable for conventional light and fluorescence microscopy, combines advantages of fluorescence and chromogenic in situ hybridization protocols and thus provides a reliable non-radioactive alternative to previously published multiple labeling methods for coexpression analyses in which one mRNA species requires highly sensitive detection.}, language = {en} } @article{WilmsOverloeperNowrousianetal.2012, author = {Wilms, Ina and Overl{\"o}per, Aaron and Nowrousian, Minou and Sharma, Cynthia M. and Narberhaus, Franz}, title = {Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens}, series = {RNA Biology}, volume = {9}, journal = {RNA Biology}, number = {446-457}, doi = {10.4161/rna.17212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127101}, pages = {4}, year = {2012}, abstract = {Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium.}, language = {en} } @phdthesis{Schmitt2017, author = {Schmitt, Dominik}, title = {Structural Characterization of the TFIIH Subunits p34 and p44 from C. thermophilum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104851}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Several important cellular processes, including transcription, nucleotide excision repair and cell cycle control are mediated by the multifaceted interplay of subunits within the general transcription factor II H (TFIIH). A better understanding of the molecular structure of TFIIH is the key to unravel the mechanism of action of this versatile protein complex within these pathways. This becomes especially important in the context of severe diseases like xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that arise from single point mutations in some of the TFIIH subunits. In an attempt to structurally characterize the TFIIH complex, we harnessed the qualities of the eukaryotic thermophile Chaetomium thermophilum, a remarkable fungus, which has only recently been recognized as a novel model organism. Homologues of TFIIH from C. thermophilum were expressed in E. coli, purified to homogeneity and subsequently utilized for crystallization trials and biochemical studies. The results of the present work include the first crystal structure of the p34 subunit of TFIIH, comprising the N-terminal domain of the protein. The structure revealed a von Willebrand Factor A (vWA) like fold, which is generally known to be involved in a multitude of protein-protein interactions. Structural comparison allowed to delineate similarities as well as differences to already known vWA domains, providing insight into the role of p34 within TFIIH. These results indicate that p34 assumes the role of a structural scaffold for other TFIIH subunits via its vWA domain, while likely serving additional functions, which are mediated through its C-terminal zinc binding domain and are so far unknown. Within TFIIH p34 interacts strongly with the p44 subunit, a positive regulator of the XPD helicase, which is required for regulation of RNA Polymerase II mediated transcription and essential for eukaryotic nucleotide excision repair. Based on the p34 vWA structure putative protein-protein interfaces were analyzed and binding sites for the p34 p44 interaction suggested. Continuous crystallization efforts then led to the first structure of a p34 p44 minimal complex, comprising the N-terminal vWA domain of p34 and the C-terminal C4C4 RING domain of p44. The structure of the p34 p44 minimal complex verified the previous hypothesis regarding the involved binding sites. In addition, careful analysis of the complex interface allowed to identify critical residues, which were subsequently mutated and analyzed with respect to their significance in mediating the p34 p44 interaction, by analytical size exclusion chromatography, electrophoretic mobility shift assays and isothermal titration calorimetry. The structure of the p34 p44 complex also revealed a binding mode of the p44 C4C4 RING domain, which differed from that of other known RING domains in several aspects, supporting the hypothesis that p44 contains a novel variation of this domain.}, subject = {DNA-Reparatur}, language = {en} } @phdthesis{Stoll2015, author = {Stoll, Georg}, title = {Identification of the mRNA-associated TOP3β- TDRD3-FMRP (TTF) -complex and its implication for neurological disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The propagation of the genetic information into proteins is mediated by messenger- RNA (mRNA) intermediates. In eukaryotes mRNAs are synthesized by RNA- Polymerase II and subjected to translation after various processing steps. Earlier it was suspected that the regulation of gene expression occurs primarily on the level of transcription. In the meantime it became evident that the contribution of post- transcriptional events is at least equally important. Apart from non-coding RNAs and metabolites, this process is in particular controlled by RNA-binding proteins, which assemble on mRNAs in various combinations to establish the so-called "mRNP- code". In this thesis a so far unknown component of the mRNP-code was identified and characterized. It constitutes a hetero-trimeric complex composed of the Tudor domain-containing protein 3 (TDRD3), the fragile X mental retardation protein (FMRP) and the Topoisomerase III beta (TOP3β) and was termed TTF (TOP3β-TDRD3-FMRP) -complex according to its composition. The presented results also demonstrate that all components of the TTF-complex shuttle between the nucleus and the cytoplasm, but are predominantly located in the latter compartment under steady state conditions. Apart from that, an association of the TTF-complex with fully processed mRNAs, not yet engaged in productive translation, was detected. Hence, the TTF-complex is a component of „early" mRNPs. The defined recruitment of the TTF-complex to these mRNPs is not based on binding to distinct mRNA sequence-elements in cis, but rather on an interaction with the so-called exon junction complex (EJC), which is loaded onto the mRNA during the process of pre-mRNA splicing. In this context TDRD3 functions as an adapter, linking EJC, FMRP and TOP3β on the mRNP. Moreover, preliminary results suggest that epigenetic marks within gene promoter regions predetermine the transfer of the TTF-complex onto its target mRNAs. Besides, the observation that TOP3β is able to catalytically convert RNA-substrates disclosed potential activities of the TTF-complex in mRNA metabolism. In combination with the already known functions of FMRP, this finding primarily suggests that the TTF-complex controls the translation of bound mRNAs. In addition to its role in mRNA metabolism, the TTF-complex is interesting from a human genetics perspective as well. It was demonstrated in collaboration with researchers from Finland and the US that apart from FMRP, which was previously linked to neurocognitive diseases, also TOP3β is associated with neurodevelopmental disorders. Understanding the function of the TTF-complex in mRNA metabolism might hence provide important insight into the etiology of these diseases.}, subject = {Messenger-RNS}, language = {en} } @article{BerghoffKonzerManketal.2013, author = {Berghoff, Bork A. and Konzer, Anne and Mank, Nils N. and Looso, Mario and Rische, Tom and F{\"o}rstner, Konrad U. and Kr{\"u}ger, Marcus and Klug, Gabriele}, title = {Integrative "Omics"-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {6}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003576}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127587}, pages = {e1003576}, year = {2013}, abstract = {Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered expression maps on the system level ("expressome"). Finally, intense mass spectrometry combined with RNA-seq might be the future tool of choice to re-annotate genomes in various organisms and will help to understand how they adapt to alternating conditions.}, language = {en} } @article{HohenauerBerkingSchmidtetal.2013, author = {Hohenauer, Tobias and Berking, Carola and Schmidt, Andreas and Haferkamp, Sebastian and Senft, Daniela and Kammerbauer, Claudia and Fraschka, Sabine and Graf, Saskia Anna and Irmler, Martin and Beckers, Johannes and Flaig, Michael and Aigner, Achim and H{\"o}bel, Sabrina and Hoffmann, Franziska and Hermeking, Heiko and Rothenfusser, Simon and Endres, Stefan and Ruzicka, Thomas and Besch, Robert}, title = {The neural crest transcription factor Brn3a is expressed in melanoma and required for cell cycle progression and survival}, series = {EMBO Molecular Medicine}, volume = {5}, journal = {EMBO Molecular Medicine}, issn = {1757-4676}, doi = {10.1002/emmm.201201862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122193}, pages = {919-934}, year = {2013}, abstract = {Pigment cells and neuronal cells both are derived from the neural crest. Here, we describe the Pit-Oct-Unc (POU) domain transcription factor Brn3a, normally involved in neuronal development, to be frequently expressed in melanoma, but not in melanocytes and nevi. RNAi-mediated silencing of Brn3a strongly reduced the viability of melanoma cell lines and decreased tumour growth in vivo. In melanoma cell lines, inhibition of Brn3a caused DNA double-strand breaks as evidenced by Mre11/Rad50-containing nuclear foci. Activated DNA damage signalling caused stabilization of the tumour suppressor p53, which resulted in cell cycle arrest and apoptosis. When Brn3a was ectopically expressed in primary melanocytes and fibroblasts, anchorage-independent growth was increased. In tumourigenic melanocytes and fibroblasts, Brn3a accelerated tumour growth in vivo. Furthermore, Brn3a cooperated with proliferation pathways such as oncogenic BRAF, by reducing oncogene-induced senescence in non-malignant melanocytes. Together, these results identify Brn3a as a new factor in melanoma that is essential for melanoma cell survival and that promotes melanocytic transformation and tumourigenesis.}, language = {en} } @article{SalatWinklerUrlaubetal.2015, author = {Salat, Daniela and Winkler, Anja and Urlaub, Henning and Gessler, Manfred}, title = {Hey bHLH Proteins Interact with a FBXO45 Containing SCF Ubiquitin Ligase Complex and Induce Its Translocation into the Nucleus}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {6}, doi = {10.1371/journal.pone.0130288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125769}, pages = {e0130288}, year = {2015}, abstract = {The Hey protein family, comprising Hey1, Hey2 and HeyL in mammals, conveys Notch signals in many cell types. The helix-loop-helix (HLH) domain as well as the Orange domain, mediate homo- and heterodimerization of these transcription factors. Although distinct interaction partners have been identified so far, their physiological relevance for Hey functions is still largely unclear. Using a tandem affinity purification approach and mass spectrometry analysis we identified members of an ubiquitin E3-ligase complex consisting of FBXO45, PAM and SKP1 as novel Hey1 associated proteins. There is a direct interaction between Hey1 and FBXO45, whereas FBXO45 is needed to mediate indirect Hey1 binding to SKP1. Expression of Hey1 induces translocation of FBXO45 and PAM into the nucleus. Hey1 is a short-lived protein that is degraded by the proteasome, but there is no evidence for FBXO45-dependent ubiquitination of Hey1. On the contrary, Hey1 mediated nuclear translocation of FBXO45 and its associated ubiquitin ligase complex may extend its spectrum to additional nuclear targets triggering their ubiquitination. This suggests a novel mechanism of action for Hey bHLH factors.}, language = {en} } @article{NaseemKunzDandekar2014, author = {Naseem, Muhammad and Kunz, Meik and Dandekar, Thomas}, title = {Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches}, series = {Bioinformatics and Biology Insights}, volume = {8}, journal = {Bioinformatics and Biology Insights}, issn = {1177-9322}, doi = {10.4137/bbi.s13462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120199}, pages = {35-44}, year = {2014}, abstract = {Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.}, language = {en} } @phdthesis{Bedenk2018, author = {Bedenk, Kristina}, title = {Biochemische und strukturelle Charakterisierung der Genexpressionsmaschinerie des Vaccinia Virus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135538}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Familie der Pockenviren zeichnet sich durch ein komplexes DNA Genom aus und hat großes medizinisches Potential. Am eindrucksvollsten ist dies f{\"u}r das Vaccinia-Virus (VACV) belegt, welches nicht nur als Pocken-Impfstoff eingesetzt wird, sondern auch als onkolytisches Virus in der Tumorbiologie. VACV hat einen außergew{\"o}hnlichen Replikationszyklus, welcher ausschließlich im Zytoplasma der Wirtszelle stattfindet. Somit ist die gesamte virale Genexpressionsmaschinerie v{\"o}llig unabh{\"a}ngig von kernvermittelten Reaktionen des Wirts und somit auch aus Sicht der Grundlagenforschung von gr{\"o}ßtem Interesse. Die Schl{\"u}sselkomponente der viralen Genexpression ist die makromolekulare DNA-abh{\"a}ngige RNA Polymerase (vvRPO), deren Untereinheiten allesamt Virus-kodiert sind. Zwar wurden in den letzten Jahren Protokolle zur biochemischen und funktionellen Charakterisierung der vvRPO etabliert, ein detailliertes Wissen {\"u}ber deren Zusammenlagerung in vivo und die r{\"a}umlichen und zeitlichen Interaktionen mit den Transkriptions- bzw. Prozessierungsfaktoren sind aber weitgehend unbekannt. Diese Arbeit umfasst Untersuchungen zur strukturellen und funktionellen Charakterisierung der vvRPO und seiner assoziierten Faktoren. Grundlage hierf{\"u}r war die Etablierung eines Reinigungsprotokolls mithilfe eines neu konstruierten rekombinanten VACV (GLV-1h439). Diese Strategie erlaubte es hoch-molekulare native vvRPO Komplexe zu isolieren. Ein transkriptions-inaktiver Komplex (Komplex I) mit einer kalkulierten Masse von 575 kDa bestand aus den acht Untereinheiten des vvRPO Holoenzyms und den Polymerase-assoziierten Faktoren RAP94 und D6. Ein zweiter, transkriptionell aktiver Komplex (Komplex II) mit einer Masse von 803 kDa enthielt, neben dem Holoenzym der vvRPO, noch weitere Faktoren, die prim{\"a}r die Erkennung der DNA-Matrize und die Prozessierung der naszierenden RNA vermitteln. Hierbei handelt es sich um RAP94, das virale Capping Enzym bestehend aus den zwei Untereinheiten D1 und D12, A7 und dem Terminationsfaktor NPH I. Interessanterweise enthielt dieser Komplex zus{\"a}tzlich mit E11 eine bislang unbekannte weitere Protein-Komponente, sowie tRNAGln und tRNAArg. Der isolierte Kompelx II ist daher ein Ribonukleoprotein (RNP). Die Verf{\"u}gbarkeit von hoch-reinen vvRPO Komplexen erlaubte es erstmals deren strukturelle Architektur zu untersuchen. Hierf{\"u}r wurden drei experimentelle Ans{\"a}tze, die klassische R{\"o}ntgenstrukturanalyse, die Kryo-Elektronenmikroskopie (Kryo-EM) und Quervernetzungssstudien miteinander kombiniert. Die Strukturen der Komplexe I und II haben eine Aufl{\"o}sung von 11-12 {\AA}, wobei auff{\"a}llig war, dass beide eine markante strukturelle {\"A}hnlichkeit zur eukaryotischen RNA Polymerase II aufwiesen. Dar{\"u}ber hinaus gelang es zus{\"a}tzliche Bereiche im Komplex II zu definieren, welche die Polymerase-assoziierten Prozessierungsfaktoren beherbergen. Zudem konnte die atomare Struktur von E11, mittels R{\"o}ntgenstrukturanalyse bei einer Aufl{\"o}sung von 1,9 {\AA}, gel{\"o}st werden. Das E11 Protein besitzt ein neuartiges Faltungsmuster und weist einen intensiven Dimerisierungskontakt auf, welcher sich {\"u}ber vier ß-Faltbl{\"a}tter ausbildet. Die im Rahmen dieser Arbeit erhaltenen Daten legen die Grundlage f{\"u}r ein detailliertes Verst{\"a}ndnis der r{\"a}umlichen Organisation der viralen Transkriptonsmaschinerie. Dar{\"u}ber hinaus werden sie funktionelle Studien erm{\"o}glichen, welche die Rolle der einzelnen Proteine, sowie der tRNAs bei der mRNA Synthese kl{\"a}ren helfen.}, subject = {Vaccinia-Virus}, language = {de} } @article{StepniakKaestnerPoggietal.2015, author = {Stepniak, Beata and K{\"a}stner, Anne and Poggi, Giulia and Mitjans, Marina and Begemann, Martin and Hartmann, Annette and Van der Auwera, Sandra and Sananbenesi, Farahnaz and Kr{\"u}ger-Burg, Dilja and Matuszko, Gabriela and Brosi, Cornelia and Homuth, Georg and V{\"o}lzke, Henry and Benseler, Fritz and Bagni, Claudia and Fischer, Utz and Dityatev, Alexander and Grabe, Hans-J{\"o}rgen and Rujescu, Dan and Fischer, Andre and Ehrenreich, Hannelore}, title = {Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {12}, doi = {10.15252/emmm.201505696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136893}, pages = {1565-1579}, year = {2015}, abstract = {Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60\% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high-versus low-risk constellation regarding the accumulation model. Thereby, the brain-expressed miR-181 species emerged as potential "umbrella regulator", with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes.}, language = {en} } @article{SpiveyDeGiorgiZhaoetal.2012, author = {Spivey, Tara L. and De Giorgi, Valeria and Zhao, Yingdong and Bedognetti, Davide and Pos, Zoltan and Liu, Qiuzhen and Tomei, Sara and Ascierto, Maria Libera and Uccellini, Lorenzo and Reinboth, Jennifer and Chouchane, Lotfi and Stroncek, David F. and Wang, Ena and Marincola, Francesco M.}, title = {The stable traits of melanoma genetics: an alternate approach to target discovery}, series = {BMC Genomics}, volume = {13}, journal = {BMC Genomics}, number = {156}, doi = {10.1186/1471-2164-13-156}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131992}, year = {2012}, abstract = {Background: The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number. Results: Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including MITF, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis. Conclusions: This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy.}, language = {en} } @article{GrossHennardMasourisetal.2012, author = {Gross, Henrik and Hennard, Christine and Masouris, Ilias and Cassel, Christian and Barth, Stephanie and Stober-Gr{\"a}sser, Ute and Mamiani, Alfredo and Moritz, Bodo and Ostareck, Dirk and Ostareck-Lederer, Antje and Neuenkirchen, Nils and Fischer, Utz and Deng, Wen and Leonhardt, Heinrich and Noessner, Elfriede and Kremmer, Elisabeth and Gr{\"a}sser, Friedrich A.}, title = {Binding of the Heterogeneous Ribonucleoprotein K (hnRNP K) to the Epstein-Barr Virus Nuclear Antigen 2 (EBNA2) Enhances Viral LMP2A Expression}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0042106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133707}, year = {2012}, abstract = {The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA-antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV-infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.}, language = {en} } @article{GowdaGodderKmieciaketal.2011, author = {Gowda, Madhu and Godder, Kamar and Kmieciak, Maciej and Worschech, Andrea and Ascierto, Maria-Libera and Wang, Ena and Francesco M., Marincola and Manjili, Masoud H.}, title = {Distinct signatures of the immune responses in low risk versus high risk neuroblastoma}, series = {Journal of Translational Medicine}, volume = {9}, journal = {Journal of Translational Medicine}, number = {170}, doi = {10.1186/1479-5876-9-170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135147}, pages = {1-8}, year = {2011}, abstract = {Background: Over 90\% of low risk (LR) neuroblastoma patients survive whereas less than 30\% of high risk (HR) patients are long term survivors. Age (children younger than 18 months old) is associated with LR disease. Considering that adaptive immune system is well developed in older children, and that T cells were shown to be involved in tumor escape and progression of cancers, we sought to determine whether HR patients may tend to show a signature of adaptive immune responses compared to LR patients who tend to have diminished T-cell responses but an intact innate immune response. Methods: We performed microarray analysis of RNA extracted from the tumor specimens of HR and LR patients. Flow cytometry was performed to determine the cellular constituents in the blood while multiplex cytokine array was used to detect the cytokine profile in patients' sera. A HR tumor cell line, SK-N-SH, was also used for detecting the response to IL-1 beta, a cytokines which is involved in the innate immune responses. Results: Distinct patterns of gene expression were detected in HR and LR patients indicating an active T-cell response and a diminished adaptive immune response, respectively. A diminished adaptive immune response in LR patients was evident by higher levels of IL-10 in the sera. In addition, HR patients had lower levels of circulating myeloid derived suppressor cells (MDSC) compared with a control LR patient. LR patients showed slightly higher levels of cytokines of the innate immune responses. Treatment of the HR tumor line with IL-1b induced expression of cytokines of the innate immune responses. Conclusions: This data suggests that adaptive immune responses may play an important role in the progression of HR disease whereas innate immune responses may be active in LR patients.}, language = {en} } @article{WeibelBasseLuesebrinkHessetal.2013, author = {Weibel, Stephanie and Basse-Luesebrink, Thomas Christian and Hess, Michael and Hofmann, Elisabeth and Seubert, Carolin and Langbein-Laugwitz, Johanna and Gentschev, Ivaylo and Sturm, Volker J{\"o}rg Friedrich and Ye, Yuxiang and Kampf, Thomas and Jakob, Peter Michael and Szalay, Aladar A.}, title = {Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130311}, pages = {e56317}, year = {2013}, abstract = {Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.}, language = {en} } @article{KrehanHeubeckMenzeletal.2012, author = {Krehan, Mario and Heubeck, Christian and Menzel, Nicolas and Seibel, Peter and Sch{\"o}n, Astrid}, title = {RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {16}, doi = {10.1093/nar/gks476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130648}, pages = {7956- 7966}, year = {2012}, abstract = {RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.}, language = {en} } @article{WangChenMinevetal.2013, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Zimmermann, Martina and Aguilar, Richard J. and Zhang, Qian and Sturm, Julia B. and Fend, Falko and Yu, Yong A. and Cappello, Joseph and Lauer, Ulrich M. and Szalay, Aladar A.}, title = {Optical Detection and Virotherapy of Live Metastatic Tumor Cells in Body Fluids with Vaccinia Strains}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {9}, doi = {10.1371/journal.pone.0071105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130059}, pages = {e71105}, year = {2013}, abstract = {Metastatic tumor cells in body fluids are important targets for treatment, and critical surrogate markers for evaluating cancer prognosis and therapeutic response. Here we report, for the first time, that live metastatic tumor cells in blood samples from mice bearing human tumor xenografts and in blood and cerebrospinal fluid samples from patients with cancer were successfully detected using a tumor cell-specific recombinant vaccinia virus (VACV). In contrast to the FDA-approved CellSearch system, VACV detects circulating tumor cells (CTCs) in a cancer biomarker-independent manner, thus, free of any bias related to the use of antibodies, and can be potentially a universal system for detection of live CTCs of any tumor type, not limited to CTCs of epithelial origin. Furthermore, we demonstrate for the first time that VACV was effective in preventing and reducing circulating tumor cells in mice bearing human tumor xenografts. Importantly, a single intra-peritoneal delivery of VACV resulted in a dramatic decline in the number of tumor cells in the ascitic fluid from a patient with gastric cancer. Taken together, these results suggest VACV to be a useful tool for quantitative detection of live tumor cells in liquid biopsies as well as a potentially effective treatment for reducing or eliminating live tumor cells in body fluids of patients with metastatic disease.}, language = {en} } @phdthesis{Pelz2015, author = {Pelz, Jann-Patrick}, title = {Strukturbiologische Untersuchungen zur Chaperone-vermittelten Zusammenlagerung spleißosomaler U-snRNPs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116973}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Durch die Spleißreaktion werden nicht-kodierende Sequenzelemente (Introns) aus eukaryotischen Vorl{\"a}ufer-mRNAs entfernt und die kodierenden Sequenzelemente (Exons) miteinander zu einem offenen Leserahmen verbunden. Dieser zentrale Prozessierungsschritt w{\"a}hrend der eukaryotischen Genexpression wird durch das Spleißosom katalysiert, das aus den vier kleinen nukle{\"a}ren Ribonucleoproteinpartikeln (snRNPs) U1, U2, U4/U6 und U5, sowie einer Vielzahl weiterer Proteinfaktoren gebildet wird. Alle snRNPs besitzen eine gemeinsame ringf{\"o}rmige Kernstruktur, die aus sieben gemeinsamen Sm-Proteinen (SmB/B'-D1-D2-D3-E-F-G) besteht, die ein einzelstr{\"a}ngiges Sequenzmotiv auf der snRNAs binden. W{\"a}hrend sich diese, als Sm-Core-Dom{\"a}ne bezeichnete Struktur in vitro spontan ausbilden kann, erfolgt die Zusammenlagerung in vivo in einem assistierten und hochregulierten Prozess. Dieser ist abh{\"a}ngig von insgesamt mindestens 12 trans-agierenden Faktoren, die in den PRMT5- und SMN-Komplexen organisiert sind. Der PRMT5-Komplex agiert in der fr{\"u}hen Phase der Zusammenlagerung, indem er die Sm-Proteine durch die Untereinheit pICln rekrutiert und die symmetrische Methylierung von Argininresten in den C terminalen Schw{\"a}nzen von SmB/B', SmD1 und SmD3 katalysiert. Als Resultat dieser fr{\"u}hen Phase befinden sich die Sm-Proteine SmD1-D2-E-F-G und SmB/B'-D3 in zwei getrennten und durch pICln organisierten Komplexen. W{\"a}hrend SmB/B'-D3-pICln am PRMT5-Komplex gebunden bleibt, existiert der zweite Komplex als freies Intermediat mit einem Sedimentationskoeffizienten von 6S. Diese Intermediate k{\"o}nnen nicht mit RNA assoziieren, sodass f{\"u}r die Fortsetzung des Zusammenlagerungsprozesses die Interaktion der Sm-Proteine mit pICln aufgel{\"o}st werden muss. Dies geschieht in der sp{\"a}ten Phase der Sm-Core-Zusammenlagerung, in der die Sm-Proteine vom SMN-Komplex (bestehend aus SMN, Gemin2-8 und unrip) {\"u}bernommen werden und pICln dissoziiert wird. Dadurch werden die Sm-Proteine f{\"u}r ihre Interaktion mit der snRNA aktiviert und k{\"o}nnen auf die Sm-Bindestelle transferiert werden, wodurch die Formierung des Sm-Core abgeschlossen wird. Im Rahmen dieser Arbeit konnten mit Hilfe einer Kombination r{\"o}ntgenkristallographischer und elektronenmikroskopischer Methoden zwei wichtige Intermediate dieses Zusammenlagerungs-prozesses strukturbiologisch charakterisiert werden. Bei diesen Intermediaten handelt es sich um den 6S-Komplex, sowie um ein Sm-Protein-Transferintermediat mit einem Sedimentations-koeffizienten von 8S. In diesem ist der 6S-Komplex an zwei zentrale Untereinheiten des SMN-Komplexes (SMN und Gemin2) gebunden, w{\"a}hrend pICln den Komplex noch nicht verlassen hat. Der 8S-Komplex stellt daher ein „gefangenes" Intermediat zwischen der fr{\"u}hen und sp{\"a}ten Phase der Zusammenlagerung dar. Zun{\"a}chst gelang es eine erste Kristallform des rekombinant hergestellten 8S-Komplexes zu erhalten, die jedoch keine Strukturl{\"o}sung erlaubte. Durch eine kombinierte Optimierung der Kristallisationsbedingung und der verwendeten Proteine wurde eine weitere {\"a}hnliche Kristallform erhalten, mit der die Kristallstruktur des 8S-Komplexes gel{\"o}st werden konnte. Die Kristallisation des 6S-Komplexes gelang im Anschluss auf Basis der Hypothese, dass Kristalle beider Komplexe aufgrund der kompositionellen Verwandtschaft zwischen 6S und 8S auch {\"A}hnlichkeiten in der Architektur ihrer Kristallgitter aufweisen k{\"o}nnten. Daher wurden innerhalb von pICln gezielt Aminos{\"a}uren substituiert, die sich innerhalb von Kristallkontakten der 8S-Kristalle befanden und konformationell eingeschr{\"a}nkt waren. Mit entsprechend rekonstituierten 6S-Pr{\"a}parationen konnten dann zwei Kristallformen erzeugt werden, die eine Strukturl{\"o}sung des 6S-Komplexes erm{\"o}glichten. Durch die Kristallstruktur des 6S-Komplexes konnte f{\"u}r pICln eine strukturelle Mimikry der Sm-Proteine identifiziert werden. Diese erm{\"o}glicht eine Bindung der Sm-Proteine und eine fr{\"u}hzeitige topologische Organisation des Sm-Pentamers D1-D2-F-E-G in einer geschlossenen hexameren Ringstruktur. Die Kristallstruktur des 8S-Komplexes zeigt, wie der SMN-Komplex {\"u}ber Gemin2 an das Sm-Pentamer bindet. In Kombination mit einer EM-Struktur des 8S-Komplexes gelang es weiterhin, einen plausiblen Mechanismus f{\"u}r die Elimination von pICln und die Aktivierung der Sm-Proteine f{\"u}r die snRNA-Bindung zu formulieren. Somit konnten diese Arbeiten zu einem besseren Verst{\"a}ndnis der Funktionen von trans-agierenden Faktoren bei Zusammenlagerung von RNA-Protein-Komplexen in vivo beitragen.}, subject = {Spleißosom}, language = {de} } @article{BenzMaierBaueretal.2014, author = {Benz, Roland and Maier, Elke and Bauer, Susanne and Ludwig, Albrecht}, title = {The Deletion of Several Amino Acid Stretches of Escherichia coli Alpha-Hemolysin (HlyA) Suggests That the Channel-Forming Domain Contains Beta-Strands}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0112248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118115}, pages = {e112248}, year = {2014}, abstract = {Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71-110, 158-167, 180-203, and 264-286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71-110 and HlyAΔ264-286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158-167 and HlyAΔ180-203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71-110 and HlyAΔ264-286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71-110, and HlyAΔ264-286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.}, language = {en} } @phdthesis{Karl2015, author = {Karl, Ingolf}, title = {Die Bedeutung von TRAF2 bei TRAIL-induzierter Apoptose und Nekroptose}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114506}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die vorliegende Arbeit behandelt TRAIL-induzierte Apoptose und Nekroptose in verschiedenen Zelllinien. Im Speziellen wurden die verschiedenen Funktionen des TNF receptor-associated factor 2 (TRAF2) untersucht. Hierzu wurde ein transienter Knockdown etabliert und dessen Wirkung auf die Suszeptibilit{\"a}t der Zellen gegen{\"u}ber dem Zytokin TRAIL untersucht. Es konnte gezeigt werden, dass ein Knockdown von TRAF2 nicht nur zur Sensitivierung f{\"u}r Apoptose f{\"u}hrt, sondern auch in Nekroptose-kompetenten Zellen zu einer Verst{\"a}rkung der durch Caspaseinhibition mittels zVAD-fmk nach TRAIL-Stimulation induzierten Nekroptose f{\"u}hrt. Mittels des Zytokins Fc-TWEAK wurde Fn14-vermittelt TRAF2 aus dem Zytosol in ein Triton X100-unl{\"o}sliches Kompartiment rekrutiert und dadurch physiologisch depletiert. Dies f{\"u}hrte zwar kaum zu gesteigerter TRAIL-abh{\"a}ngiger Apoptose, sensitivierte jedoch analog zum TRAF2-Knockdown RIP3-exprimierende Zellen f{\"u}r Nekroptose. Durch Vergleich RIP3-negativer (HeLa-Leervektor) mit RIP3-exprimierenden Zellen (HeLa RIP3, HT29, HaCaT) konnte die Essentialit{\"a}t von RIP3 f{\"u}r die Nekroptose herausgestellt werden und Einsatz des RIP1-Kinase-Inhibitors Necrostatin-1 sowie des MLKL-Inhibitors Necrosulfonamide belegte die Beteiligung der Nekroptosomkomponenten RIP1 und MLKL. Antagonismus putativen autokrinen TNFs bewies, dass es sich bei dem durch Fc-TWEAK verst{\"a}rkten Zelltod um einen direkten TRAIL-Effekt handelte und Inhibition kanonischen NFkBs durch IKK2-Inhibitor TPCA-1, dass die TRAF2-Knockdown-vermittelte Sensitivierung gegen{\"u}ber TRAIL nicht auf ver{\"a}ndertes NFkB-Signalling zur{\"u}ckzuf{\"u}hren ist. Einsatz des SMAC-Mimetikums BV6 rekapitulierte zudem stark das im TRAF2-Knockdown Gesehene und unterstrich die Bedeutung der cIAPs. Immunpr{\"a}zipitation von Caspase 8 unter nekroptotischen Bedingungen zeigte bei TRAF2-Knockdown eine Depletion von TRAF2 und cIAP1/2 sowie RIP1 und RIP3 aus dem Komplex mit Caspase 8. Insgesamt wird deutlich, dass TRAF2 einerseits antiapoptotisch wirkt als K48-Ubiquitinligase, die die Halbwertszeit aktiver Caspase 8-Komplexe determiniert und andererseits eine antinekroptotische Funktion hat, da es durch Rekrutierung von cIAP1/2 an RIP1 die TRAIL-induzierte Nekroptose verhindert, wenn die Caspasen inhibiert sind.}, subject = {Nekrose}, language = {de} } @phdthesis{Sibilski2014, author = {Sibilski, Claudia}, title = {Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114672}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses.}, subject = {MAP-Kinase}, language = {en} } @article{LinderHirmerGaletal.2014, author = {Linder, Bastian and Hirmer, Anja and Gal, Andreas and R{\"u}ther, Klaus and Bolz, Hanno J{\"o}rn and Winkler, Christoph and Laggerbauer, Bernhard and Fischer, Utz}, title = {Identification of a PRPF4 Loss-of-Function Variant That Abrogates U4/U6.U5 Tri-snRNP Integration and Is Associated with Retinitis Pigmentosa}, doi = {10.1371/journal.pone.0111754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113663}, year = {2014}, abstract = {Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina.}, language = {en} } @phdthesis{Schubert2015, author = {Schubert, Andreas}, title = {Protein kinases as targets for the development of novel drugs against alveolar echinococcosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113694}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The metacestode larval stage of the fox tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most lethal zoonosis of the northern hemisphere. The development of metacestode vesicles by asexual multiplication and the almost unrestricted infiltrative growth within the host organs is ensured from a population of undifferentiated, proliferative cells, so-called germinative cells. AE treatment options include surgery, if possible, as well as Benzimidazole-based chemotherapy (BZ). Given that the cellular targets of BZs, the -tubulins, are highly conserved between cestodes and humans, the chemotherapy is associated with considerable side-effects. Therefore, BZ can only be applied in parasitostatic doses and has to be given lifelong. Furthermore, the current anti-AE chemotherapy is ineffective in eliminating the germinative cell population of the parasite, which leads to remission of parasite growth as soon as therapy is discontinued. This work focuses on protein kinases involved in the proliferation and development of the parasite with the intention of developing novel anti-AE therapies. Polo-like kinases (Plks) are important regulators of the eukaryotic cell cycle and are involved in the regulation and formation of the mitotic spindles during the M-phase of the cell cycle. Plks have already been shown to be associated with deregulated cellular growth in human cancers and have been investigated as novel drug targets in the flatworm parasite Schistosoma mansoni. In the first part of this work, the characterisation of a novel and druggable parasite enzyme, EmPlk1, which is homologous to the polo-like kinase 1 (Plk1) of humans and S. mansoni (SmPlk1), is presented. Through in situ hybridisation, it could be demonstrated that emplk1 is specifically expressed in the Echinococcus germinative cells. Upon heterologous expression in the Xenopus oocyte system, EmPlk1 induced germinal vesicle breakdown, thus indicating that it is an active kinase. Furthermore, BI 2536, a compound originally designed to inhibit the human ortholog of EmPlk1, inhibited the EmPlk1 activity at a concentration of 25 nM. In vitro treatment of parasite vesicles with similar concentrations of BI 2536 led to the elimination of the germinative cells from Echinococcus larvae, thus preventing the growth and further development of the parasite. In in vitro cultivation systems for parasite primary cells, BI 2536 effectively inhibited the formation of new metacestode vesicles from germinative cells. Thus, BI 2536 has profound anti-parasitic activities in vitro at concentrations well within the range of plasma levels measured after the administration of safe dosages to patients (50 nM after 24 h). This implies that EmPlk1 is a promising new drug target for the development of novel anti-AE drugs that would specifically affect the parasite's stem cell population, namely the only parasite cells capable of proliferation. In addition to the chemotherapeutic aspects of this work, the inhibitor BI 2536 could be further used to study the function of stem cells in this model organism, utilising a method of injection of parasite stem cells into metacestode vesicles, for instance, as has been developed in this work. In the second part of this work, a novel receptor tyrosine kinase, the Venus flytrap kinase receptor (EmVKR) of E. multilocularis has been characterised. Members of this class of single-pass transmembrane receptors have recently been discovered in the related trematode S. mansoni and are associated with the growth and differentiation of sporocyst germinal cells and ovocytes. The ortholog receptor in EmVKR is characterised by an unusual domain composition of an extracellular Venus flytrap module (VFT), which shows significant similarity to GABA receptors, such as the GABAB receptor (γ-amino butyric acid type B) and is linked through a single transmembrane domain to an intracellular tyrosine kinase domain with similarities to the kinase domains of human insulin receptors. Based upon the size (5112bp) of emvkr and nucleotide sequence specificities, efforts have been made to isolate the gene from cell culture samples to study the ligand for the activation of this receptor type in Xenopus oocytes. To date, this type of receptor has only been described in invertebrates, thus making it an attractive target for drug screening. In a first trial, the ATP competitive inhibitor AG 1024 was tested in our in vitro cell culture. In conclusion, the EmVKR represents a novel receptor tyrosine kinase in E. multilocularis. Further efforts have to be made to identify the activating ligand of the receptor and its cellular function, which might strengthen the case for EmVKR as a potential drug target. The successful depletion of stem cells in the metacestode vesicle by the Plk1 inhibitor BI 2536 gives rise to optimising the chemical component for EmPlk1 as a new potential drug target. Furthermore, this inhibitor opens a new cell culture technique with high potential to study the cellular behaviour and influencing factors of stem cells in vitro.}, subject = {Chemotherapie}, language = {en} } @article{HofmannWeibelSzalay2014, author = {Hofmann, Elisabeth and Weibel, Stephanie and Szalay, Aladar A.}, title = {Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice}, doi = {10.1186/1479-5876-12-197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110168}, year = {2014}, abstract = {Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the enhanced tumor growth inhibition achieved by combining GLV-1h68 with CPA is due to an effect on the vasculature rather than an immunosuppressive action of CPA. These results provide evidence to support further preclinical studies of combining GLV-1h68 and CPA in other highly angiogenic tumor models. Moreover, data presented here demonstrate that CPA can be combined successfully with GLV-1h68 based oncolytic virus therapy and therefore might be promising as combination therapy in human clinical trials.}, language = {en} } @article{MayerLoefflerLozaValdesetal.2019, author = {Mayer, Alexander E. and L{\"o}ffler, Mona C. and Loza Vald{\´e}s, Angel E. and Schmitz, Werner and El-Merahbi, Rabih and Trujillo-Viera, Jonathan and Erk, Manuela and Zhang, Thianzhou and Braun, Ursula and Heikenwalder, Mathias and Leitges, Michael and Schulze, Almut and Sumara, Grzegorz}, title = {The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling}, series = {Science Signaling}, journal = {Science Signaling}, edition = {accepted manuscript}, doi = {10.1126/scisignal.aav9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250025}, year = {2019}, abstract = {Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.}, language = {en} } @phdthesis{Schaefer2014, author = {Sch{\"a}fer, Christin Marliese}, title = {Approaching antimicrobial resistance - Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The number of fungal infections is rising in Germany and worldwide. These infections are mainly caused by the opportunistic fungal pathogen C. albicans, which especially harms immunocompromised people. With increasing numbers of fungal infections, more frequent and longer lasting treatments are necessary and lead to an increase of drug resistances, for example against the clinically applied therapeutic fluconazole. Drug resistance in C. albicans can be mediated by the Multidrug resistance pump 1 (Mdr1), a membrane transporter belonging to the major facilitator family. However, Mdr1-mediated fluconazole drug resistance is caused by the pump's regulator, the transcription factor Mrr1 (Multidrug resistance regulator 1). It was shown that Mrr1 is hyperactive without stimulation or further activation in resistant strains which is due to so called gain of function mutations in the MRR1 gene. To understand the mechanism that lays behind this constitutive activity of Mrr1, the transcription factor should be structurally and functionally (in vitro) characterized which could provide a basis for successful drug development to target Mdr1-mediated drug resistance caused by Mrr1. Therefore, the entire 1108 amino acid protein was successfully expressed in Escherichia coli. However, further purification was compromised as the protein tended to form aggregates, unsuitable for crystallization trials or further characterization experiments. Expression trials in the eukaryote Pichia pastoris neither yielded full length nor truncated Mrr1 protein. In order to overcome the aggregation problem, a shortened variant, missing the N-terminal 249 amino acids named Mrr1 '250', was successfully expressed in E. coli and could be purified without aggregation. Similar to the wild type Mrr1 '250', selected gain of function variants were successfully cloned, expressed and purified with varying yields and with varying purity. The Mrr1 `250' construct contains most of the described regulatory domains of Mrr1. It was used for crystallization and an initial comparative analysis between the wild type protein and the variants. The proposed dimeric form of the transcription factor, necessary for DNA binding, could be verified for both, the wild type and the mutant proteins. Secondary structure analysis by circular dichroism measurements revealed no significant differences in the overall fold of the wild type and variant proteins. In vitro, the gain of function variants seem to be less stable compared to the wild type protein, as they were more prone to degradation. Whether this observation holds true for the full length protein's stability in vitro and in vivo remains to be determined. The crystallization experiments, performed with the Mrr1 '250' constructs, led to few small needle shaped or cubic crystals, which did not diffract very well and were hardly reproducible. Therefore no structural information of the transcription factor could be gained so far. Infections with M. tuberculosis, the causative agent of tuberculosis, are the leading cause of mortality among bacterial diseases. Especially long treatment times, an increasing number of resistant strains and the prevalence of for decades persisting bacteria create the necessity for new drugs against this disease. The cholesterol import and metabolism pathways were discovered as promising new targets and interestingly they seem to play an important role for the chronic stage of the tuberculosis infection and for persisting bacteria. In this thesis, the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis was characterized and the potential for specifically targeting this enzyme was investigated. FadA5 catalyzes the last step of the β-oxidation reaction in the side-chain degradation pathway of cholesterol. We solved the three dimensional structure of this enzyme by X-ray crystallography and obtained two different apo structures and three structures in complex with acetyl-CoA, CoA and a hydrolyzed steroid-CoA, which is the natural product of FadA5. Analysis of the FadA5 apo structures revealed a typical thiolase fold as it is common for biosynthetic and degradative enzymes of this class for one of the structures. The second apo structure showed deviations from the typical thiolase fold. All obtained structures show the enzyme as a dimer, which is consistent with the observed dimer formation in solution. Thus the dimer is likely to be the catalytically active form of the enzyme. Besides the characteristic structural fold, the catalytic triad, comprising two cysteines and one histidine, as well as the typical coenzyme A binding site of enzymes belonging to the thiolase class could be identified. The two obtained apo structures differed significantly from each other. One apo structure is in agreement with the characteristic thiolase fold and the well-known dimer interface could be identified in our structure. The same characteristics were observed in all complex structures. In contrast, the second apo structure followed the thiolase fold only partially. One subdomain, spanning 30 amino acids, was in a different orientation. This reorientation was caused by the formation of two disulfide bonds, including the active site cysteines, which rendered the enzyme inactive. The disulfide bonds together with the resulting domain swap still permitted dimer formation, yet with a significantly shifted dimer interface. The comparison of the apo structures together with the preliminary activity analysis performed by our collaborator suggest, that FadA5 can be inactivated by oxidation and reactivated by reduction. If this redox switch is of biological importance requires further evaluation, however, this would be the first reported example of a bacterial thiolase employing redox regulation. Our obtained complex structures represent different stages of the thiolase reaction cycle. In some complex structures, FadA5 was found to be acetylated at the catalytic cysteine and it was in complex with acetyl-CoA or CoA. These structures, together with the FadA5 structure in complex with a hydrolyzed steroid-CoA, revealed important insights into enzyme dynamics upon ligand binding and release. The steroid-bound structure is as yet a unique example of a thiolase enzyme interacting with a complex ligand. The characterized enzyme was used as platform for modeling studies and for comparison with human thiolases. These studies permitted initial conclusions regarding the specific targetability of FadA5 as a drug target against M. tuberculosis infection, taking the closely related human enzymes into account. Additional analyses led to the proposal of a specific lead compound based on the steroid and ligand interactions within the active site of FadA5.}, subject = {Multidrug-Resistenz}, language = {en} } @phdthesis{Weber2014, author = {Weber, David}, title = {Hey target gene regulation in embryonic stem cells and cardiomyocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101663}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Notch signaling pathway is crucial for mammalian heart development. It controls cell-fate decisions, coordinates patterning processes and regulates proliferation and differentiation. Critical Notch effectors are Hey bHLH transcription factors (TF) that are expressed in atrial (Hey1) and ventricular (Hey2) cardiomyocytes (CM) and in the developing endocardium (Hey1/2/L). The importance of Hey proteins for cardiac development is demonstrated by knockout (KO) mice, which suffer from lethal cardiac defects, such as ventricular septum defects (VSD), valve defects and cardiomyopathy. Despite this clear functional relevance, little is known about Hey downstream targets in the heart and the molecular mechanism by which they are regulated. Here, I use a cell culture system with inducible Hey1, Hey2 or HeyL expression to study Hey target gene regulation in HEK293 cells, in murine embryonic stem cells (ESC) and in ESC derived CM. In HEK293 cells, I could show that genome wide binding sites largely overlap between all three Hey proteins, but HeyL has many additional binding sites that are not bound by Hey1 or Hey2. Shared binding sites are located close to transcription start sites (TSS) where Hey proteins preferentially bind to canonical E boxes, although more loosely defined modes of binding exist. Additional sites only bound by HeyL are more scattered across the genome. The ability of HeyL to bind these sites depends on the C-terminal part of the protein. Although there are genes which are differently regulated by HeyL, it is unclear whether this regulation results from binding of additional sites by HeyL. Additionally, Hey target gene regulation was studied in ESC and differentiated CM, which are more relevant for the observed cardiac phenotypes. ESC derived CM contract in culture and are positive for typical cardiac markers by qRT PCR and staining. According to these markers differentiation is unaffected by prolonged Hey1 or Hey2 overexpression. Regulated genes are largely redundant between Hey1 and Hey2. These are mainly other TF involved in e.g. developmental processes, apoptosis, cell migration and cell cycle. Many target genes are cell type specifically regulated causing a shift in Hey repression of genes involved in cell migration in ESC to repression of genes involved in cell cycle in CM. The number of Hey binding sites is reduced in CM and HEK293 cells compared to ESC, most likely due to more regions of dense chromatin in differentiated cells. Binding sites are enriched at the proximal promoters of down-regulated genes, compared to up-or non-regulated genes. This indicates that up-regulation primarily results from indirect effects, while down-regulation is the direct results of Hey binding to target promoters. The extent of repression generally correlates with the amount of Hey binding and subsequent recruitment of histone deacetylases (Hdac) to target promoters resulting in histone H3 deacetylation. However, in CM the repressive effect of Hey binding on a subset of genes can be annulled, likely due to binding of cardiac specific activators like Srf, Nkx2-5 and Gata4. These factors seem not to interfere with Hey binding in CM, but they recruit histone acetylases such as p300 that may counteract Hey mediated histone H3 deacetylation. Such a scenario explains differential regulation of Hey target genes between ESC and CM resulting in gene and cell-type specific regulation.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Nube2013, author = {Nube, Jacqueline Sui Lin}, title = {Comparative Analysis of Vaccinia Virus-Encoded Markers Reflecting Actual Viral Titres in Oncolytic Virotherapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Using viruses to treat cancer is a novel approach to an age-old disease. Oncolytic viruses are native or recombinant viruses that have the innate or enhanced capability to infect tumour cells, replicate within the tumour microenvironment and subsequently lyse those cells. One representative, the vaccinia virus (VACV), belongs to the orthopoxvirus genus of the Poxviridae family. GLV-1h68, a recombinant and attenuated vaccinia virus devel- oped by the Genelux Corporation, is a member of this family currently being tested in various phase I/II clinical trials under the name GL-ONC1. It has been shown to specif- ically replicate in tumour cells while sparing healthy tissue and to metabolise prodrug at or transport immunological payloads to the site of affliction. Since imaging modalities offer little insight into viral replication deep within the body, and because oncolytic virotherapy is dependent on replication within the target tissue, the need for a monitoring system is evident. Pharmacokinetic analysis of this oncolytic agent was to give insight into the dynamics present in tumours during treatment. This, in turn, would give clinicians the opportunity to monitor the efficacy as early as possible after the onset of treatment, to observe treatment progression and possibly to gauge prognosis, without resorting to invasive procedures, e.g. biopsies. A criteria for viable biomarkers was that it had to be directly dependent on viral replica- tion. Ideally, a marker for treatment efficacy would be specific to the treatment modality, not necessarily the treatment type. Such a marker would be highly detectable (high sen- sitivity), specific for the treatment (high specificity), and present in an easily obtained specimen (blood). Taking this into consideration, the biomarkers were chosen for their potential to be indicators of viral replication. Thus, the biomarkers analysed in this thesis are: the native proteins expressed by the viral genes A27L and B5R, the virally encoded recombinant proteins β-galactosidase, β-glucuronidase, green fluorescent protein (GFP), carboxypeptidase G2 (CPG2) and carcinoembryonic antigen (CEA). Each marker is under the control of one of five different promoters present. All recombinant viruses used in this thesis express A27L, B5R, GFP and β-glucuronidase and all are derived from the parental virus GLV-1h68. In addition to these markers, GLV-1h68 expresses β-galactosidase; GLV-1h181 expresses CPG2. [...]}, subject = {Onkolyse}, language = {en} } @phdthesis{Flegler2022, author = {Flegler, Vanessa Judith}, title = {Application of electron cryomicroscopy for structural and functional studies on the mechanosensitive channels of small conductance}, doi = {10.25972/OPUS-26897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268979}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Bacteria thrive and survive in many different environments, and as a result, they have developed robust mechanisms to adapt rapidly to alterations in their surroundings. The protection against osmotic forces is provided by mechanosensitive channels: their primary function is to maintain the integrity of the cell upon a hypoosmotic shock. The mechanosensitive channel of small conductance (MscS) is not only the smallest common structural unit of a diverse family that allows for a tailored response in osmoregulation; it is also the most intensively studied homologue. Mechanosensitive channels directly sense elevated membrane tension levels generated by increased pressure within the cell and open transiently. Escherichia coli has six paralogues that differ in their gating properties and the number of additional transmembrane (TM) helices. These TM helices, termed sensor paddles, are essential for sensing, as they directly contact the surrounding membrane; however, the role of the additional TM helices is still unclear. Furthermore, lipids occupy hydrophobic pockets far away from the membrane plane. A recent gating model for MscS states that increased membrane tension triggers the expulsion of lipids out of those pockets, modulating different conformational states of MscS. This model focuses on bound lipids, but it is still unclear to what extent the direct interaction with the membrane influences sensing and how relevant it is for the larger paralogues. In the herein described work, structural studies on two larger paralogues, the medium-sized channel YnaI and the large channel YbiO were realised using electron cryomicroscopy (cryo-EM). Lipids were identified in YnaI in the pockets in a similar position and orientation as in MscS, suggesting a conserved sensing mechanism. Moreover, the copolymer diisobutylene/maleic acid (DIBMA) allowed the extraction of artificially activated YnaI from plasma membranes, leading to an open-like form of this channel. This novel conformation indicated that the pore helices bend at a GGxGG motif during gating, which is unique among the Escherichia coli paralogues, concomitant with a structural reorganisation of the sensor paddles. Thus, despite a high similarity of their closed states, the gating mechanisms of MscS and YnaI are surprisingly different. Furthermore, the comparison of MscS, YnaI, and YbiO accentuates variations and similarities between the differently sized family members, implying fine-tuning of channel properties in the pore regions and the cytosolic lateral entry sides into the channel. Structural analyses of MscS reconstituted into different systems showed the advantages and disadvantages of certain polymers and detergents. The novel DIBMA copolymer and the more conventional amphiphilic polymers, so-called Amphipols, perturb contacting transmembrane helices or lead to their denaturation. Due to this observation, the obtained structures of YnaI must also be cautiously considered. The structures obtained in detergents resulted in unaffected channels; however, the applicability of detergents for MscS-like channels is limited by the increased required sample concentration. The role of lipids for gating MscS in the absence of a membrane was examined by deliberately removing coordinated lipid molecules from MscS using different amounts and kinds of detergent. The effects on the channel were inspected by cryo-EM. These experiments showed that closed MscS adopts the open conformation when it is enough delipidated by incubation with the detergent n-dodecyl-β-D-maltoside, and adding lipids to the open channel reverses this process. The results agree with the state-of-the-art model that the amount of lipid molecules in the pockets and grooves is responsible for the conformational state of MscS. Furthermore, incubation with the detergent lauryl maltose neopentyl glycol, which has stabilising and delipidating characteristics, resulted in a high-resolution structure of open MscS exhibiting an intricate network of ligands. Based on this structure, an updated gating model is proposed, which states that upon opening, lipids from the pockets migrate into the cytosolic membrane leaflet, while lipids from the periplasmic leaflet enter the grooves that arise between the sensor paddles.}, language = {en} } @phdthesis{Orth2021, author = {Orth, Barbara}, title = {Identification of an atypical peptide binding mode of the BTB domain of the transcription factor MIZ1 with a HUWE1-derived peptide}, doi = {10.25972/OPUS-25044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250447}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ubiquitination is a posttranslational modification with immense impact on a wide range of cellular processes, including proteasomal degradation, membrane dynamics, transcription, translation, cell cycle, apoptosis, DNA repair and immunity. These diverse functions stem from the various ubiquitin chain types, topologies, and attachment sites on substrate proteins. Substrate recruitment and modification on lysine, serine or threonine residues is catalyzed by ubiquitin ligases (E3s). An important E3 that decides about the fate of numerous substrates is the HECT-type ubiquitin ligase HUWE1. Depending on the substrate, HUWE1 is involved in different processes, such as cell proliferation and differentiation, DNA repair, and transcription. One of the transcription factors that is ubiquitinated by HUWE1 is the MYC interacting zinc finger protein 1 (MIZ1). MIZ1 is a BTB/POZ (Bric-{\`a}-brac, Tramtrack and Broad-Complex/Pox virus and zinc finger) zinc finger (ZF) protein that binds to DNA through its 13 C2H2-type zinc fingers and either activates or represses the transcription of target genes, including genes involved in cell cycle arrest, such as P21CIP1 (CDKN1A). The precise functions of MIZ1 depend on its interactions with the MYC-MAX heterodimer, but also its heterodimerization with other BTB-ZF proteins, such as BCL6 or NAC1. How MIZ1 interacts with HUWE1 has not been studied and, as a consequence, it has not been possible to rationally develop tools to manipulate this interaction with specificity in order to better understand the effects of the interaction on the transcriptional function of MIZ1 on target genes or processes downstream. One aspect of my research, therefore, aimed at characterizing the MIZ1-HUWE1 interaction at a structural level. I determined a crystal structure of the MIZ1-BTB-domain in complex with a peptide, referred to as ASC, derived from a C terminal region of HUWE1, previously named 'activation segment'. The binding mode observed in this crystal structure could be validated by binding and activity assays in vitro and by cell-based co-IP experiments in the context of N-terminally truncated HUWE1 constructs. I was not able to provide unambiguous evidence for the identified binding mode in the context of full-length HUWE1, indicating that MIZ1 recognition by HUWE1 requires yet unknown regions in the cell. While the structural details of the MIZ1-HUWE1 interaction remains to be elucidated in the context of the full-length proteins, the binding mode between MIZ1BTB and ASC revealed an interesting, atypical structural feature of the BTB domain of MIZ1 that, to my knowledge, has not been described for other BTB-ZF proteins: The B3 region in MIZ1BTB is conformationally malleable, which allows for a HUWE1-ASC-peptide-mediated β-sheet extension of the upper B1/B2-strands, resulting in a mixed, 3 stranded β-sheet. Such β-sheet extension does not appear to occur in other homo- or heterodimeric BTB-ZF proteins, including MIZ1-heterodimers, since these proteins typically possess a pre-formed B3-strand in at least one subunit. Instead, BCL6 co repressor-derived peptides (SMRT and BCOR) were found to extend the lower β-sheet in BCL6BTB by binding to an adjacent 'lateral groove'. This interaction follows a 1:1 stoichiometry, whereas the MIZ1BTB-ASC-complex shows a 2:1 stoichiometry. The crystal structure of the MIZ1BTB-ASC-complex I determined, along with comparative binding studies of ASC with monomeric, homodimeric, and heterodimeric MIZ1BTB variants, respectively, suggests that ASC selects for MIZ1BTB homodimers. The structural data I generated may serve as an entry point for the prediction of additional interaction partners of MIZ1 that also have the ability to extend the upper β-sheet of MIZ1BTB. If successful, such interaction partners and structures thereof might aid the design of peptidomimetics or small-molecule inhibitors of MIZ1 signaling. Proof-of-principle for such a structure-guided approach targeting BTB domains has been provided by small-molecule inhibitors of BCL6BTB co-repressors interactions. If a similar approach led to molecules that interfere with specific interactions of MIZ1, they would provide intriguing probes to study MIZ1 biology and may eventually allow for the development of MIZ1-directed cancer therapeutics.}, subject = {Ubiquitin}, language = {en} } @phdthesis{Nordblom2023, author = {Nordblom, Noah Frieder}, title = {Synthese und Evaluation von Gephyrinsonden f{\"u}r hochaufl{\"o}sende Mikroskopieverfahren}, doi = {10.25972/OPUS-30230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This decade saw the development of new high-end light microscopy approaches. These technologies are increasingly used to expand our understanding of cellular function and the molecular mechanisms of life and disease. The precision of state-of-the-art super resolution microscopy is limited by the properties of the applied fluorescent label. Here I describe the synthesis and evaluation of new functional fluorescent probes that specifically stain gephyrin, universal marker of the neuronal inhibitory post-synapse. Selected probe precursor peptides were synthesised using solid phase peptide synthesis and conjugated with selected super resolution capable fluorescent dyes. Identity and purity were defined using chromatography and mass spectrometric methods. To probe the target specificity of the resulting probe variants in cellular context, a high-throughput assay was established. The established semi-automated and parallel workflow was used for the evaluation of three selected probes by defining their co-localization with the expressed fluorescent target protein. My work provided NN1Dc and established the probe as a visualisation tool for essentially background-free visualisation of the synaptic marker protein gephyrin in a cellular context. Furthermore, NN1DA became part of a toolbox for studying the inhibitory synapse ultrastructure and brain connectivity and turned out useful for the development of a label-free, high-throughput protein interaction quantification assay.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @article{TsonevaMinevFrentzenetal.2017, author = {Tsoneva, Desislava and Minev, Boris and Frentzen, Alexa and Zhang, Qian and Wege, Anja K. and Szalay, Aladar A.}, title = {Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis}, series = {Molecular Therapy Oncolytics}, volume = {5}, journal = {Molecular Therapy Oncolytics}, doi = {10.1016/j.omto.2017.03.001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170786}, pages = {41-61}, year = {2017}, abstract = {Oncolytic vaccinia virus (VACV) therapy is an alternative cancer treatment modality that mediates targeted tumor destruction through a tumor-selective replication and an induction of anti-tumor immunity. We developed a humanized tumor mouse model with subcutaneous human tumors to analyze the interactions of VACV with the developing tumors and human immune system. A successful systemic reconstitution with human immune cells including functional T cells as well as development of tumors infiltrated with human T and natural killer (NK) cells was observed. We also demonstrated successful in vivo colonization of such tumors with systemically administered VACVs. Further, a new recombinant GLV-1h376 VACV encoding for a secreted human CTLA4-blocking single-chain antibody (CTLA4 scAb) was tested. Surprisingly, although proving CTLA4 scAb's in vitro binding ability and functionality in cell culture, beside the significant increase of CD56\(^{bright}\) NK cell subset, GLV-1h376 was not able to increase cytotoxic T or overall NK cell levels at the tumor site. Importantly, the virus-encoded β-glucuronidase as a measure of viral titer and CTLA4 scAb amount was demonstrated. Therefore, studies in our "patient-like" humanized tumor mouse model allow the exploration of newly designed therapy strategies considering the complex relationships between the developing tumor, the oncolytic virus, and the human immune system.}, language = {en} } @phdthesis{Amelingmeier2022, author = {Amelingmeier, Florian}, title = {Identifizierung und Untersuchung TOP-mRNA - bindender Faktoren}, doi = {10.25972/OPUS-28923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289231}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Im Zellkern eukaryotischer Zellen werden Gene in mRNAs transkribiert, welche umfangreich prozessiert und aus dem Zellkern exportiert werden. Im Zytoplasma erfolgt die Translation der mRNAs in Proteine, ein Prozess, welcher viel Energie ben{\"o}tigt und daher mittels vielf{\"a}ltiger Mechanismen streng reguliert wird. Ein Beispiel hierf{\"u}r stellt die Klasse der TOP-mRNAs dar, eine RNA-Spezies, welche haupts{\"a}chlich Transkripte von Genen umfasst, die selbst in die Translation involviert sind. Die prominentesten Vertreter dieser Klasse sind die Proteine der kleinen und großen ribosomalen Untereinheiten. TOP-mRNAs zeichnen sich durch ein gemeinsames Sequenz-Motiv am Anfang Ihrer 5'-UTR aus, welches aus einem Pyrimidinstrang besteht und unmittelbar nach dem Cap mit einem Cytosin beginnt. Dieses allen TOP-RNAs gemeinsame Motiv erm{\"o}glicht die zeitgleiche Translationskontrolle dieser RNA-Klasse. So kann die Translation der TOP-mRNAs unter Stressbedingungen wie z.B. N{\"a}hrstoffmangel koordiniert inhibiert werden, wodurch Energie eingespart wird. Bereits lange wird nach einem Regulator gesucht, der an dieses TOP-Motiv bindet und die koordinierte Regulation erm{\"o}glicht. Man kann sich hier einen Inhibitor oder auch einen Aktivator vorstellen. Verschiedene Proteine wurden bereits in Erw{\"a}gung gezogen. In dieser Arbeit wurde das Protein TIAR mittels Massenspektrometrie als TOP-interagierender Faktor identifiziert und dessen Bindungseigenschaften mit dem TOP-Motiv durch Shift Assays untersucht. Hierbei konnten Minimalkonstrukte verschiedener Organismen sowie RNA-TOP - Sequenzen identifiziert werden, welche sich f{\"u}r Strukturanalysen eignen w{\"u}rden. Als weiterer TOP-interagierender Faktor wurde {\"u}ber verschiedene sequenzielle Reinigungsschritte das Protein 14-3-3ε identifiziert. Weiterhin wurden die TOP-Motiv-bindenden Proteine LARP1 und LARP7 auf Ihre Bindungseigenschaften mit Ihren Zielsequenzen untersucht. W{\"a}hrend gezeigt werden konnte, dass LARP1 einen inhibierenden Einfluss auf TOP-RNAs hat, wurde in weiteren Shift-Assays die Bindungseigenschaften von LARP7 mit 7SK untersucht, wobei ebenfalls ein minimales LARP7-Konstrukt sowie 7SK-Konstrukte f{\"u}r Strukturanalysen identifiziert werden konnten. Weiterhin konnte gezeigt werden, dass verschiedene Substanzen wie tRNA und Arginin einen starken Einfluss auf die LARP7-7SK - Interaktion aus{\"u}ben, welcher in weiteren Studien ber{\"u}cksichtigt werden sollte.}, subject = {Proteinbiosynthese}, language = {de} } @article{HaddadSocciChenetal.2016, author = {Haddad, Dana and Socci, Nicholas and Chen, Chun-Hao and Chen, Nanhai G and Zhang, Qian and Carpenter, Susanne G and Mittra, Arjun and Szalay, Aladar A and Fong, Yuman}, title = {Molecular network, pathway, and functional analysis of-time dependent gene changes associated with pancreatic cancer susceptibility to oncolytic vaccinia virotherapy}, series = {Molecular Therapy — Oncolytics}, volume = {3}, journal = {Molecular Therapy — Oncolytics}, doi = {10.1038/mto.2016.8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165855}, pages = {16008}, year = {2016}, abstract = {Background: Pancreatic cancer is a fatal disease associated with resistance to conventional therapies. This study aimed to determine changes in gene expression patterns associated with infection and susceptibility of pancreatic cancer cells to an oncolyticvaccinia virus, GLV-1h153, carrying the human sodium iodide symporter for deep tissue imaging of virotherapy. Methods: Replication and susceptibility of pancreatic adenocarcinoma PANC-1 cells to GLV-1h153 was confirmed with replication and cytotoxicity assays. PANC-1 cells were then infected with GLV-1h153 and near-synchronous infection confirmed via flow cytometry of viral-induced green fluorescent protein (GFP) expression. Six and 24 hours after infection, three samples of each time point were harvested, and gene expression patterns assessed using HG-U133A cDNA microarray chips as compared to uninfected control. Differentially expressed genes were identified using Bioconductor LIMMA statistical analysis package. A fold change of 2.0 or above was used as a cutoff, with a P value of 0.01. The gene list was then analyzed using Ingenuity Pathways Analysis software. Results: Differential gene analysis revealed a total of 12,412 up- and 11,065 downregulated genes at 6 and 24 hours postinfection with GLV-1h153 as compared to control. At 6 hours postinfection. A total of 139 genes were either up or downregulated >twofold (false discovery rate < 0.05), of which 124 were mapped by Ingenuity Pathway Analysis (IPA). By 24 hours postinfection, a total of 5,698 genes were identified and 5,563 mapped by IPA. Microarray revealed gene expression changes, with gene networks demonstrating downregulation of processes such as cell death, cell cycle, and DNA repair, and upregulation of infection mechanisms (P < 0.01). Six hours after infection, gene changes involved pathways such as HMGB-1, interleukin (IL)-2, IL-6, IL-8, janus kinase/signal tranducer and activator of transcription (JAK/STAT), interferon, and ERK 5 signaling (P < 0.01). By 24 hours, prominent pathways included P53- and Myc-induced apoptotic processes, pancreatic adenocarcinoma signaling, and phosphoinositide 3-kinase/v-akt murine thymoma vial oncogene homolog 1 (PI3/AKT) pathways. Conclusions: Our study reveals the ability to assess time-dependent changes in gene expression patterns in pancreatic cancer cells associated with infection and susceptibility to vaccinia viruses. This suggests that molecular assays may be useful to develop safer and more efficacious oncolyticvirotherapies and support the idea that these treatments may target pathways implicated in pancreatic cancer resistance to conventional therapies.}, language = {en} } @phdthesis{Schmid2020, author = {Schmid, Benedikt}, title = {Molecular Signaling Mechanisms at the µ-Opioid Receptor}, doi = {10.25972/OPUS-17685}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {To this day, opioids represent the most effective class of drugs for the treatment of severe pain. On a molecular level, all opioids in use today are agonists at the μ-opioid receptor (μ receptor). The μ receptor is a class A G protein-coupled receptor (GPCR). GPCRs are among the biological structures most frequently targeted by pharmaceuticals. They are membrane bound receptors, which confer their signals into the cell primarily by activating a variety of GTPases called G proteins. In the course of the signaling process, the μ receptor will be phosphorylated by GRKs, increasing its affinity for another entity of signaling proteins called β-arrestins (β-arrs). The binding of a β-arr to the activated μ receptor will end the G protein signal and cause the receptor to be internalized into the cell. Past research showed that the μ receptor's G protein signal puts into effect the desired pain relieving properties of opioid drugs, whereas β-arr recruitment is more often linked to adverse effects like obstipation, tolerance, and respiratory depression. Recent work in academic and industrial research picked up on these findings and looked into the possibility of enhancing G protein signaling while suppressing β-arr recruitment. The conceptual groundwork of such approaches is the phenomenon of biased agonism. It appreciates the fact that different ligands can change the relative contribution of any given pathway to the overall downstream signaling, thus enabling not only receptor-specific but even pathway-specific signaling. This work examined the ability of a variety of common opioid drugs to specifically activate the different signaling pathways and quantify it by means of resonance energy transfer and protein complementation experiments in living cells. Phosphorylation of the activated receptor is a central step in the canonical GPCR signaling process. Therefore, in a second step, expression levels of the phosphorylating GRKs were enhanced in search for possible effects on receptor signaling and ligand bias. In short, detailed pharmacological profiles of 17 opioid ligands were recorded. Comparison with known clinical properties of the compounds showed robust correlation of G protein activation efficacy and analgesic potency. Ligand bias (i.e. significant preference of any path- way over another by a given agonist) was found for a number of opioids in native HEK293 cells overexpressing μ receptor and β-arrs. Furthermore, overexpression of GRK2 was shown to fundamentally change β-arr pharmacodynamics of nearly all opioids. As a consequence, any ligand bias as detected earlier was abolished with GRK2 overexpression, with the exception of buprenorhin. In summary, the following key findings stand out: (1) Common opioid drugs exert biased agonism at the μ receptor to a small extent. (2) Ligand bias is influenced by expression levels of GRK2, which may vary between individuals, target tissues or even over time. (3) One of the opioids, buprenorhin, did not change its signaling properties with the overexpression of GRK2. This might serve as a starting point for the development of new opioids which could lack the ability of β-arr recruitment altogether and thus might help reduce adverse side effects in the treatment of severe pain.}, subject = {Opiatrezeptor}, language = {en} } @article{FischerHelfrichFoersterPeschel2016, author = {Fischer, Robin and Helfrich-F{\"o}rster, Charlotte and Peschel, Nicolai}, title = {GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180370}, year = {2016}, abstract = {Cryptochrome (CRY) is the primary photoreceptor of Drosophila's circadian clock. It resets the circadian clock by promoting light-induced degradation of the clock protein Timeless (TIM) in the proteasome. Under constant light, the clock stops because TIM is absent, and the flies become arrhythmic. In addition to TIM degradation, light also induces CRY degradation. This depends on the interaction of CRY with several proteins such as the E3 ubiquitin ligases Jetlag (JET) and Ramshackle (BRWD3). However, CRY can seemingly also be stabilized by interaction with the kinase Shaggy (SGG), the GSK-3 beta fly orthologue. Consequently, flies with SGG overexpression in certain dorsal clock neurons are reported to remain rhythmic under constant light. We were interested in the interaction between CRY, Ramshackle and SGG and started to perform protein interaction studies in S2 cells. To our surprise, we were not able to replicate the results, that SGG overexpression does stabilize CRY, neither in S2 cells nor in the relevant clock neurons. SGG rather does the contrary. Furthermore, flies with SGG overexpression in the dorsal clock neurons became arrhythmic as did wild-type flies. Nevertheless, we could reproduce the published interaction of SGG with TIM, since flies with SGG overexpression in the lateral clock neurons shortened their free-running period. We conclude that SGG does not directly interact with CRY but rather with TIM. Furthermore we could demonstrate, that an unspecific antibody explains the observed stabilization effects on CRY.}, language = {en} } @article{SchmidtDenkWiegering2020, author = {Schmidt, Stefanie and Denk, Sarah and Wiegering, Armin}, title = {Targeting protein synthesis in colorectal cancer}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {5}, issn = {2072-6694}, doi = {10.3390/cancers12051298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206014}, year = {2020}, abstract = {Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.}, language = {en} } @phdthesis{Steinmetzger2020, author = {Steinmetzger, Christian}, title = {Fluorogenic Aptamers and Fluorescent Nucleoside Analogs as Probes for RNA Structure and Function}, doi = {10.25972/OPUS-20760}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {RNA plays a key role in numerous cellular processes beyond the central dogma of molecular biology. Observing and understanding this wealth of functions, discovering new ones and engineering them into purpose-built tools requires a sensitive means of observation. Over the past decade, fluorogenic aptamers have emerged to fill this niche. These short oligonucleotides are generated by in vitro selection to specifically interact with small organic fluorophores and can be utilized as genetically encoded tags for RNAs of interest. The most versatile class of fluorogenic aptamers is based on derivatives of hydroxybenzylidene imidazolone (HBI), a conditional fluorophore mimicking the chromophore structure found in green and red fluorescent proteins. The respective aptamers are well-known by the "vegetable" nomenclature, including Spinach, Broccoli and Corn, and have found numerous applications for studying RNA function in vitro and in cells. Their success, however, is somewhat overshadowed by individual shortcomings such as a propensity for misfolding, dependence on unphysiologically high concentrations of magnesium ions or, in the case of Corn, dimerization that might affect the function of the tagged RNA. Moreover, most fluorogenic aptamers exhibit limited ligand promiscuity by design, thereby restricting their potential for spectral tuning to a narrow window of wavelengths. This thesis details the characterization of a new fluorogenic aptamer system nicknamed Chili. Chili is derived from an aptamer that was originally selected to bind 4-hydroxy-3,5-dimethoxy¬hydroxy-benzylidene imidazolone (DMHBI), resulting in a green fluorescent complex. Unlike other aptamers of its kind, Chili engages in a proton transfer cycle with the bound ligand, resulting in a remarkably large Stokes shift of more than 130 nm. By means of an empirical ligand optimization approach, several new DMHBI derivatives were found that bind to Chili with high affinity, furnishing complexes up to 7.5 times brighter compared to the parent ligand. In addition, Chili binds to π-extended DMHBI derivatives that confer fluorescence in the yellow-red region of the visible spectrum. The highest affinity and degree of fluorescence turn-on for both green and red fluorogenic ligands were achieved by the incorporation of a unique, positively charged substituent into the HBI scaffold. Supplemented by NMR spectroscopy, kinetic and thermodynamic studies showed that the binding site of Chili is loosely preorganized in the absence of ligand and likely forms a G-quadruplex upon ligand binding. To showcase future applications, Chili was incorporated into a FRET sensor for monitoring the cleavage of an RNA substrate by a 10-23 DNAzyme. Besides aptamers as macromolecular fluorescent complexes, fluorescent nucleobase analogs are powerful small isomorphic components of RNA suitable for studying structure and folding. Here, the highly emissive nucleobase analog 4-cyanoindole (4CI) was developed into a ribonucleoside (r4CI) for this purpose. A new phosphoramidite building block was synthesized to enable site-specific incorporation of 4CI into RNA. Thermal denaturation experiments confirmed that 4CI behaves as a universal nucleobase, i.e. without bias towards any particular hybridization partner. Photophysical characterization established r4CI as a generally useful fluorescent ribonucleoside analog. In this work, it was employed to gain further insight into the structure of the Chili aptamer. Using several 4CI-modified Chili-HBI complexes, a novel base-ligand FRET assay was established to obtain a set of combined distance and orientation restraints for the tertiary structure of the aptamer. In addition to their utility for interrogating structure and binding, supramolecular FRET pairs comprising a fluorescent nucleobase analog donor and an innately fluorogenic acceptor hold great promise for the construction of color-switchable RNA aptamer sensor devices.}, subject = {Aptamer}, language = {en} } @phdthesis{Kauk2018, author = {Kauk, Michael}, title = {Investigating the Molecular Mechanism of Receptor Activation at Muscarinic Receptors by Means of Pathway-Specific Dualsteric Ligands and Partial Agonists}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173729}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G protein-coupled receptors (GPCRs) form the biggest receptor family that is encoded in the human genome and represent the most druggable target structure for modern therapeutics respectively future drug development. Belonging to aminergic class A GPCRs muscarinic Acetylcholine receptors (mAChRs) are already now of clinical relevance and are also seen as promising future drug targets for treating neurodegenerative diseases like Alzheimer or Parkinson. The mAChR family consist of five subtypes showing high sequence identity for the endogenous ligand binding region and thus it is challenging until now to selectively activate a single receptor subtype. A well accepted method to study ligand binding, dynamic receptor activation and downstream signaling is the fluorescence resonance energy transfer (FRET) application. Here, there relative distance between two fluorophores in close proximity (<10 nm) can be monitored in a dynamic manner. The perquisite for that is the spectral overlap of the emission spectrum of the first fluorophore with the excitation spectrum of the second fluorophore. By inserting two fluorophores into the molecular receptor structure receptor FRET sensors can serve as a powerful tool to study dynamic receptor pharmacology. Dualsteric Ligands consist of two different pharmacophoric entities and are regarded as a promising ligand design for future drug development. The orthosteric part interacts with high affinity with the endogenous ligand binding region whereas the allosteric part binds to a different receptor region mostly located in the extracellular vestibule. Both moieties are covalently linked. Dualsteric ligands exhibit a dynamic ligand binding. The dualsteric binding position is characterized by a simultaneous binding of the orthosteric and allosteric moiety to the receptor and thus by receptor activation. In the purely allosteric binding position no receptor activation can be monitored. In the present work the first receptor FRET sensor for the muscarinic subtype 1 (M1) was generated and characterized. The M1-I3N-CFP sensor showed an unaltered physiological behavior as well as ligand and concentration dependent responses. The sensor was used to characterize different sets of dualsteric ligands concerning their pharmacological properties like receptor activation. It was shown that the hybrids consisting of the synthetic full agonist iperoxo and the positive allosteric modulator of BQCA type is very promising. Furthermore, it was shown for orthosteric as well as dualsteric ligands that the degree of receptor activation is highly dependent on the length of and the chemical properties of the linker moiety. For dualsteric ligands a bell-shaped activation characteristic was reported for the first time, suggesting that there is an optimal linker length for dualsteric ligands. The gained knowledge about hybrid design was then used to generate and characterize the first photo-switchable dualsteric ligand. The resulting hybrids were characterized with the M1-I3N-CFP sensor and were described as photo-inactivatable and dimmable. In addition to the ligand characterization the ligand application methodology was further developed and improved. Thus, a fragment-based screening approach for dualsteric ligands was reported in this study for the first time. With this approach it is possible to investigate dualsteric ligands in greater detail by applying either single ligand fragments alone or in a mixture of building blocks. These studies revealed the insights that the effect of dualsteric ligands on a GPCR can be rebuild by applying the single building blocks simultaneously. The fragment-based screening provides high potential for the molecular understanding of dualsteric ligands and for future screening approaches. Next, a further development of the standard procedure for measuring FRET by sensitized emission was performed. Under normal conditions single cell FRET is measured on glass coverslips. After coating the coverslips surface with a 20 nm thick gold layer an increased FRET efficiency up to 60 \% could be reported. This finding was validated in different approaches und in different configurations. This FRET enhancement by plasmonic surfaces was until yet unreported in the literature for physiological systems and make FRET for future projects even more powerful.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Rydzek2019, author = {Rydzek, Julian}, title = {NF-κB/NFAT Reporter Cell Platform for Chimeric Antigen Receptor (CAR)-Library Screening}, doi = {10.25972/OPUS-17918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179187}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Immunotherapy with engineered T cells expressing a tumor-specific chimeric antigen receptor (CAR) is under intense preclinical and clinical investigation. This involves a rapidly increasing portfolio of novel target antigens and CAR designs that need to be tested in time- and work-intensive screening campaigns in primary T cells. Therefore, we anticipated that a standardized screening platform, similar as in pharmaceutical small molecule and antibody discovery, would facilitate the analysis of CARs by pre-selecting lead candidates from a large pool of constructs that differ in their extracellular and intracellular modules. Because CARs integrate structural elements of the T cell receptor (TCR) complex and engage TCR-associated signaling molecules upon stimulation, we reasoned that the transcription factors nuclear factor-κB (NF-κB) and nuclear factor of activated T cells (NFAT) could serve as surrogate markers for primary T cell function. The nuclear translocation of both transcription factors in primary T cells, which we observed following CAR stimulation, supported our rationale to use NF-κB and NFAT as indicators of CAR-mediated activation in a screening platform. To enable standardized and convenient analyses, we have established a CAR-screening platform based on the human T cell lymphoma line Jurkat that has been modified to provide rapid detection of NF-κB and NFAT activation. For this purpose, Jurkat cells contained NF-κB and NFAT-inducible reporter genes that generate a duplex output of cyan fluorescent protein (CFP) and green fluorescent protein (GFP), respectively. Upon stimulation of NF-κB/NFAT reporter cells, the expression of both fluorophores could be readily quantified in high-throughput screening campaigns by flow cytometry. We modified the reporter cells with CD19-specific and ROR1-specific CARs, and we co-cultured them with antigen-positive stimulator cells to analyze NF-κB and NFAT activation. CAR-induced reporter signals could already be detected after 6 hours. The optimal readout window with high-level reporter activation was set to 24 hours, allowing the CAR-screening platform to deliver results in a rapid turnaround time. A reporter cell-screening campaign of a spacer library with CARs comprising a short, intermediate or long IgG4-Fc domain allowed distinguishing functional from non-functional constructs. Similarly, reporter cell-based analyses identified a ROR1-CAR with 4-1BB domain from a library with different intracellular signal modules due to its ability to confer high NF-κB activation, consistent with data from in vitro and in vivo studies with primary T cells. The results of both CAR screening campaigns were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary T cells (21 days). We further challenged the reporter cells in a large-scale screening campaign with a ROR1 CAR library comprising mutations in the VH CDR3 sequence of the R11 scFv. This region is crucial for binding the R11 epitope of ROR1, and we anticipated that mutations here would cause a loss of specificity and affinity for most of the CAR variants. This provided the opportunity to determine whether the CAR screening platform was able to retrieve functional constructs from a large pool of CAR variants. Indeed, using a customized pre enrichment and screening strategy, the reporter cells identified a functional CAR variant that was present with a frequency of only 6 in 1.05x10^6. As our CAR-screening platform enabled the analysis of activating signal modules, it encouraged us to also evaluate inhibitory signal modules that change the CAR mode of action. Such an inhibitory CAR (iCAR) can be used in logic gates with an activating CAR to interfere with T cell stimulation. By selecting appropriate target antigens for iCAR and CAR, this novel application aims to improve the selectivity towards tumor cells, and it could readily be studied using our screening platform. Accordingly, we tested CD19-specific iCARs with inhibitory PD-1 signal module for their suppressive effect on reporter gene activation. In logic gates with CAR or TCR stimulation, a decrease of NF-κB and NFAT signals was only observed when activating and inhibitory receptors were forced into spatial proximity. These results were further verified by experiments with primary T cells. In conclusion, our reporter cell system is attractive as a platform technology because it is independent of testing in primary T cells, exportable between laboratories, and scalable to enable small- to large-scale screening campaigns of CAR libraries. The pre-selection of appropriate lead candidates with optimal extracellular and intracellular modules can reduce the number of CAR constructs to be investigated in further in vitro and in vivo studies with primary T cells. We are therefore confident that our CAR-screening platform based on NF-κB/NFAT reporter cells will be useful to accelerate translational research by facilitating the evaluation of CARs with novel design parameters.}, subject = {Antigenrezeptor}, language = {en} } @phdthesis{Kaiser2020, author = {Kaiser, Sebastian}, title = {A RecQ helicase in disguise: Characterization of the unconventional Structure and Function of the human Genome Caretaker RecQ4}, doi = {10.25972/OPUS-16041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160414}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {From the simplest single-cellular organism to the most complex multicellular life forms, genetic information in form of DNA represents the universal basis for all biological processes and thus for life itself. Maintaining the structural and functional integrity of the genome is therefore of paramount importance for every single cell. DNA itself, as an active and complex macromolecular structure, is both substrate and product of many of these biochemical processes. A cornerstone of DNA maintenance is thus established by the tight regulation of the multitude of reactions in DNA metabolism, repressing adverse side reactions and ensuring the integrity of DNA in sequence and function. The family of RecQ helicases has emerged as a vital class of enzymes that facilitate genomic integrity by operating in a versatile spectrum of nucleic acid metabolism processes, such as DNA replication, repair, recombination, transcription and telomere stability. RecQ helicases are ubiquitously expressed and conserved in all kingdoms of life. Human cells express five different RecQ enzymes, RecQ1, BLM, WRN, RecQ4 and RecQ5, which all exhibit individual as well as overlapping functions in the maintenance of genomic integrity. Dysfunction of three human RecQ helicases, BLM, WRN and RecQ4, causes different heritable cancer susceptibility syndromes, supporting the theory that genomic instability is a molecular driving force for cancer development. However, based on their inherent DNA protective nature, RecQ helicases represent a double-edged sword in the maintenance of genomic integrity. While their activity in normal cells is essential to prevent cancerogenesis and cellular aging, cancer cells may exploit this DNA protective function by the overexpression of many RecQ helicases, aiding to overcome the disadvantageous results of unchecked DNA replication and simultaneously gaining resistance against chemotherapeutic drugs. Therefore, detailed knowledge how RecQ helicases warrant genomic integrity is required to understand their implication in cancerogenesis and aging, thus setting the stage to develop new strategies towards the treatment of cancer. The current study presents and discusses the first high-resolution X-ray structure of the human RecQ4 helicase. The structure encompasses the conserved RecQ4 helicase core, including a large fraction of its unique C- terminus. Our structural analysis of the RecQ4 model highlights distinctive differences and unexpected similarities to other, structurally conserved, RecQ helicases and permits to draw conclusions about the functional implications of the unique domains within the RecQ4 C-terminus. The biochemical characterization of various RecQ4 variants provides functional insights into the RecQ4 helicase mechanism, suggesting that RecQ4 might utilize an alternative DNA strand separation technique, compared to other human RecQ family members. Finally, the RecQ4 model permits for the first time the analysis of multiple documented RecQ4 patient mutations at the atomic level and thus provides the possibility for an advanced interpretation of particular structure-function relationships in RecQ4 pathogenesis.}, subject = {Helikasen}, language = {en} } @phdthesis{PrietoGarcia2022, author = {Prieto Garc{\´i}a, Cristian}, title = {USP28 regulates Squamous cell oncogenesis and DNA repair via ΔNp63 deubiquitination}, doi = {10.25972/OPUS-27033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {∆Np63 is a master regulator of squamous cell identity and regulates several signaling pathways that crucially contribute to the development of squamous cell carcinoma (SCC) tumors. Its contribution to coordinating the expression of genes involved in oncogenesis, epithelial identity, DNA repair, and genome stability has been extensively studied and characterized. For SCC, the expression of ∆Np63 is an essential requirement to maintain the malignant phenotype. Additionally, ∆Np63 functionally contributes to the development of cancer resistance toward therapies inducing DNA damage. SCC patients are currently treated with the same conventional Cisplatin therapy as they would have been treated 30 years ago. In contrast to patients with other tumor entities, the survival of SCC patients is limited, and the efficacy of the current therapies is rather low. Considering the rising incidences of these tumor entities, the development of novel SCC therapies is urgently required. Targeting ∆Np63, the transcription factor, is a potential alternative to improve the therapeutic response and clinical outcomes of SCC patients. However, ∆Np63 is considered "undruggable." As is commonly observed in transcription factors, ∆Np63 does not provide any suitable domains for the binding of small molecule inhibitors. ∆Np63 regulates a plethora of different pathways and cellular processes, making it difficult to counteract its function by targeting downstream effectors. As ∆Np63 is strongly regulated by the ubiquitin-proteasome system (UPS), the development of deubiquitinating enzyme inhibitors has emerged as a promising therapeutic strategy to target ∆Np63 in SCC treatment. This work involved identifying the first deubiquitinating enzyme that regulates ∆Np63 protein stability. Stateof-the-art SCC models were used to prove that USP28 deubiquitinates ∆Np63, regulates its protein stability, and affects squamous transcriptional profiles in vivo and ex vivo. Accordingly, SCC depends on USP28 to maintain essential levels of ∆Np63 protein abundance in tumor formation and maintenance. For the first time, ∆Np63, the transcription factor, was targeted in vivo using a small molecule inhibitor targeting the activity of USP28. The pharmacological inhibition of USP28 was sufficient to hinder the growth of SCC tumors in preclinical mouse models. Finally, this work demonstrated that the combination of Cisplatin with USP28 inhibitors as a novel therapeutic alternative could expand the limited available portfolio of SCC therapeutics. Collectively, the data presented within this dissertation demonstrates that the inhibition of USP28 in SCC decreases ∆Np63 protein abundance, thus downregulating the Fanconi anemia (FA) pathway and recombinational DNA repair. Accordingly, USP28 inhibition reduces the DNA damage response, thereby sensitizing SCC tumors to DNA damage therapies, such as Cisplatin.}, language = {en} } @phdthesis{Nelke2022, author = {Nelke, Johannes}, title = {Entwicklung multi-funktioneller TNFRSF Rezeptorspezifischer Antik{\"o}rper-Fusionsproteine mit FcγR-unabh{\"a}ngiger Aktivit{\"a}t}, doi = {10.25972/OPUS-27985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Antik{\"o}rper, die gegen eine klinisch relevante Gruppe von Rezeptoren innerhalb der Tumornekrosefaktor-Rezeptor-Superfamilie (TNFRSF) gerichtet sind, darunter CD40 und CD95 (Fas/Apo-1), ben{\"o}tigen ebenfalls eine Bindung an Fc-Gamma-Rezeptoren (FcγRs), um eine starke agonistische Wirkung zu entfalten. Diese FcγR-Abh{\"a}ngigkeit beruht weitgehend auf der bloßen zellul{\"a}ren Verankerung durch die Fc-Dom{\"a}ne des Antik{\"o}rpers und ben{\"o}tigt dabei kein FcγR-Signalling. Ziel dieser Doktorarbeit war es, das agonistische Potenzial von αCD40- und αCD95-Antik{\"o}rpern unabh{\"a}ngig von der Bindung an FcγRs durch die Verankerung an Myelomzellen zu entfalten. Zu diesem Zweck wurden verschiedene Antik{\"o}rpervarianten (IgG1, IgG1-N297A, Fab2) gegen die TNFRSF-Mitglieder CD40 und CD95 genetisch mit einem einzelkettig kodierten B-Zell-aktivierenden Faktor (scBaff) Trimer als C-terminale myelom-spezifische Verankerungsdom{\"a}ne fusioniert, welche die Fc-Dom{\"a}ne-vermittelte FcγR-Bindung ersetzt. Diese bispezifischen Antik{\"o}rper-scBaff-Fusionsproteine wurden in Bindungsstudien und funktionellen Assays mit Tumorzelllinien untersucht, die einen oder mehrere der drei Baff-Rezeptoren exprimieren: BaffR, Transmembran-Aktivator und CAML-Interaktor (TACI) und B-Zell-Reifungsantigen (BCMA). Zellul{\"a}re Bindungsstudien zeigten, dass die Bindungseigenschaften der verschiedenen Dom{\"a}nen innerhalb der Antik{\"o}rper-scBaff-Fusionen gegen{\"u}ber der Zielantigene vollst{\"a}ndig intakt blieben. In Ko-Kulturversuchen von CD40- und CD95-responsiven Zellen mit BaffR-, BCMA- oder TACI-exprimierenden Verankerungszellen zeigten die Antik{\"o}rper-Fusionsproteine einen starken Agonismus, w{\"a}hrend in Ko-Kulturen mit Zellen ohne Expression von Baff-interagierenden Rezeptoren nur eine geringe Rezeptorstimulation beobachtet wurde. Die hier vorgestellten αCD40- und αCD95-Antik{\"o}rper-scBaff-Fusionsproteine zeigen also Myelom-spezifische Aktivit{\"a}t und versprechen im Vergleich zu herk{\"o}mmlichen CD40- und CD95-Agonisten geringere systemische Nebenwirkungen.}, subject = {Antigen CD40}, language = {de} } @phdthesis{Ries2020, author = {Ries, Lena Kerstin}, title = {From recognition to reaction: Mechanistic analysis of the interactions of the HECT ligase E6AP with ubiquitin}, doi = {10.25972/OPUS-17960}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179609}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The ubiquitination of proteins controls a multitude of physiological processes. This versatility of ubiquitin as a molecular signal arises from the diverse ways by which it can be attached to target proteins. Different ubiquitination patterns are then translated into different downstream consequences. Due to the enormous complexity of possible ubiquitin modifications, the ubiquitination machinery must be highly specific and tightly controlled. Ubiquitination proceeds through an enzymatic cascade, the last step of which is catalyzed by the E3 enzyme family. E3 enzymes are the crucial regulators since they dictate the specificity of substrate selection and modification. Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity, regulation and specificity in this crucial ligase are incompletely understood. One aim of this study was to unravel the role of the a1'-helix N-terminal to the HECT domain that was found to be a key element mediating regulation and oligomerization in other HECT ligases. I found that most N-terminally extended HECT domain constructs were insoluble when expressed in E. coli, indicating that additional regions N-terminal to the tested fragments may be essential to protect this highly hydrophobic helix from causing aggregation. Another question addressed in this study was how E6AP builds ubiquitin chains. Using single-turnover experiments, I showed that ubiquitin-loaded E6AP is unable to transfer an additional ubiquitin molecule onto a stably linked ubiquitin-E6AP complex. This indicates that E6AP cannot assemble chains on its active site and may instead follow a sequential addition mechanism in which one ubiquitin molecule is transferred at a time to the target protein. Using NMR spectroscopy and extensive mutational analyses, the determinants of ubiquitin recognition by the C-lobe of E6AP were unraveled and assigned to particular steps in the catalytic cycle. A functionally critical interface was identified that is specifically required during thioester formation between the C-terminus of ubiquitin and the ligase active site. This interface resembles the one utilized by NEDD4-type enzymes, suggesting a conserved ubiquitin binding mode across HECT ligases, independent of their linkage specificities. Moreover, I identified critical surface patches on ubiquitin and in the N- and C-terminal portions of the catalytic domain of E6AP that are important for the subsequent step of isopeptide bond formation. I also uncovered key determinants of the Lys48-linkage specificity of E6AP, both in the E6AP HECT domain and ubiquitin itself. This includes the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site, Lys48. It is thus tempting to speculate that ubiquitin linkage formation by E6AP is substrate-assisted. Taken together, my results improve our mechanistic understanding of the structure-function relationship between E6AP and ubiquitin, thus providing a basis for ultimately manipulating the functions of this HECT ligase for therapeutic applications.}, subject = {Ubiquitin}, language = {en} } @phdthesis{Koelmel2020, author = {K{\"o}lmel, Wolfgang}, title = {Structural and functional characterization of TFIIH from \(Chaetomium\) \(thermophilum\)}, doi = {10.25972/OPUS-16176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Gene expression and transfer of the genetic information to the next generation forms the basis of cellular life. These processes crucially rely on DNA, thus the preservation, transcription and translation of DNA is of fundamental importance for any living being. The general transcription factor TFIIH is a ten subunit protein complex, which consists of two subcomplexes: XPB, p62, p52, p44, p34, and p8 constitute the TFIIH core, CDK7, CyclinH, and MAT1 constitute the CAK. These two subcomplexes are connected via XPD. TFIIH is a crucial factor involved in both, DNA repair and transcription. The central role of TFIIH is underlined by three severe disorders linked to failure of TFIIH in these processes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Only limited structural and functional data of TFIIH are available so far. Here, the model organism Chaetomium thermophilum was utilized with the aim to structurally and functionally characterize TFIIH. By combining the expression and purification of single TFIIH subunits with the co-expression and co-purification of dual complexes, a unique and powerful modular system of the TFIIH core subunits could be established, encompassing all proteins in high quality and fully functional. This system permits the step-wise assembly of TFIIH core, thereby making it possible to assess the influence of the intricate interaction network within TFIIH core on the overall enzymatic activities of TFIIH, which has not been possible so far. Utilizing the single subunits and dual complexes, a detailed interaction network of TFIIH core was established, revealing the crucial role of the p34 subunit as a central scaffold of TFIIH by linking the two proteins p44 and p52. Our studies also suggest that p62 constitutes the central interface of TFIIH to the environment rather than acting as a scaffold. TFIIH core complexes were assembled and investigated via electron microscopy. Preliminary data indicate that TFIIH adopts different conformational states, which are important to fulfill its functions in transcription and DNA repair. Additionally, a shortened construct of p62 was used to develop an easy-to-use, low cost strategy to overcome the crystallographic phase problem via cesium derivatization.}, subject = {Transkriptionsfaktor}, language = {en} } @article{WanzekSchwindtCapraetal.2017, author = {Wanzek, Katharina and Schwindt, Eike and Capra, John A. and Paeschke, Katrin}, title = {Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {13}, doi = {10.1093/nar/gkx467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170577}, pages = {7796-7806}, year = {2017}, abstract = {The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and replication fork progression at particular G-rich motifs. This motif can form G-quadruplex (G4) structures in vitro. G4 are stable DNA structures that are known to impede replication fork progression. In the absence of Mms1, genome stability is at risk at these G-rich/G4 regions as demonstrated by gross chromosomal rearrangement assays. Mms1 binds throughout the cell cycle to these G-rich/G4 regions and supports the binding of Pif1 DNA helicase. Based on these data we propose a mechanistic model in which Mms1 binds to specific G-rich/G4 motif located on the lagging strand template for DNA replication and supports Pif1 function, DNA replication and genome integrity.}, language = {en} } @phdthesis{Kalb2021, author = {Kalb, Jacqueline}, title = {The role of BRCA1 and DCP1A in the coordination of transcription and replication in neuroblastoma}, doi = {10.25972/OPUS-24871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248711}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The deregulation of the MYC oncoprotein family plays a major role in tumorigenesis and tumour maintenance of many human tumours. Because of their structure and nuclear localisation, they are defined as undruggable targets which makes it difficult to find direct therapeutic approaches. An alternative approach for targeting MYC-driven tumours is the identification and targeting of partner proteins which score as essential in a synthetic lethality screen. Neuroblastoma, an aggressive entity of MYCN-driven tumours coming along with a bad prognosis, are dependent on the tumour suppressor protein BRCA1 as synthetic lethal data showed. BRCA1 is recruited to promoter regions in a MYCN-dependent manner. The aim of this study was to characterise the role of BRCA1 in neuroblastoma with molecular biological methods. BRCA1 prevents the accumulation of RNA Polymerase II (RNAPII) at the promoter region. Its absence results in the formation of DNA/RNA-hybrids, so called R-loops, and DNA damage. To prevent the accumulation of RNAPII, the cell uses DCP1A, a decapping factor known for its cytoplasmatic and nuclear role in mRNA decay. It is the priming factor in the removal of the protective 5'CAP of mRNA, which leads to degradation by exonucleases. BRCA1 is necessary for the chromatin recruitment of DCP1A and its proximity to RNAPII. Cells showed upon acute activation of MYCN a higher dependency on DCP1A. Its activity prevents the deregulation of transcription and leads to proper coordination of transcription and replication. The deregulation of transcription in the absence of DCP1A results in replication fork stalling and leads to activation of the Ataxia telangiectasia and Rad3 related (ATR) kinase. The result is a disturbed cell proliferation to the point of increased apoptosis. The activation of the ATR kinase pathway in the situation where DCP1A is knocked down and MYCN is activated, makes those cells more vulnerable for the treatment with ATR inhibitors. In summary, the tumour suppressor protein BRCA1 and the decapping factor DCP1A, mainly known for its function in the cytoplasm, have a new nuclear role in a MYCN-dependent context. This study shows their essentiality in the coordination of transcription and replication which leads to an unrestrained growth of tumour cells if uncontrolled.}, subject = {Neuroblastom}, language = {en} } @article{VeepaschitViswanathanBordonneetal.2021, author = {Veepaschit, Jyotishman and Viswanathan, Aravindan and Bordonne, Remy and Grimm, Clemens and Fischer, Utz}, title = {Identification and structural analysis of the Schizosaccharomyces pombe SMN complex}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {13}, doi = {10.1093/nar/gkab158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259880}, pages = {7207-7223}, year = {2021}, abstract = {The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.}, language = {en} } @article{AndelovicWinterJakobetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Herold, Volker and Zernecke, Alma}, title = {Evaluation of plaque characteristics and inflammation using magnetic resonance imaging}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines9020185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228839}, year = {2021}, abstract = {Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.}, language = {en} } @article{TolayBuchberger2022, author = {Tolay, Nazife and Buchberger, Alexander}, title = {Role of the ubiquitin system in stress granule metabolism}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073624}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284061}, year = {2022}, abstract = {Eukaryotic cells react to various stress conditions with the rapid formation of membrane-less organelles called stress granules (SGs). SGs form by multivalent interactions between RNAs and RNA-binding proteins and are believed to protect stalled translation initiation complexes from stress-induced degradation. SGs contain hundreds of different mRNAs and proteins, and their assembly and disassembly are tightly controlled by post-translational modifications. The ubiquitin system, which mediates the covalent modification of target proteins with the small protein ubiquitin ('ubiquitylation'), has been implicated in different aspects of SG metabolism, but specific functions in SG turnover have only recently emerged. Here, we summarize the evidence for the presence of ubiquitylated proteins at SGs, review the functions of different components of the ubiquitin system in SG formation and clearance, and discuss the link between perturbed SG clearance and the pathogenesis of neurodegenerative disorders. We conclude that the ubiquitin system plays an important, medically relevant role in SG biology.}, language = {en} } @article{TolayBuchberger2021, author = {Tolay, Nazife and Buchberger, Alexander}, title = {Comparative profiling of stress granule clearance reveals differential contributions of the ubiquitin system}, series = {Life Science Alliance}, volume = {4}, journal = {Life Science Alliance}, number = {5}, doi = {10.26508/lsa.202000927}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259810}, pages = {e202000927}, year = {2021}, abstract = {Stress granules (SGs) are cytoplasmic condensates containing untranslated mRNP complexes. They are induced by various proteotoxic conditions such as heat, oxidative, and osmotic stress. SGs are believed to protect mRNPs from degradation and to enable cells to rapidly resume translation when stress conditions subside. SG dynamics are controlled by various posttranslationalmodifications, but the role of the ubiquitin system has remained controversial. Here, we present a comparative analysis addressing the involvement of the ubiquitin system in SG clearance. Using high-resolution immuno-fluorescence microscopy, we found that ubiquitin associated to varying extent with SGs induced by heat, arsenite, H2O2, sorbitol, or combined puromycin and Hsp70 inhibitor treatment. SG-associated ubiquitin species included K48- and K63-linked conjugates, whereas free ubiquitin was not significantly enriched. Inhibition of the ubiquitin activating enzyme, deubiquitylating enzymes, the 26S proteasome and p97/VCP impaired the clearance of arsenite- and heat-induced SGs, whereas SGs induced by other stress conditions were little affected. Our data underline the differential involvement of the ubiquitin system in SG clearance, a process important to prevent the formation of disease-linked aberrant SGs.}, language = {en} } @phdthesis{Reil2023, author = {Reil, Lucy Honor}, title = {The role of WASH complex subunit Strumpellin in platelet function}, doi = {10.25972/OPUS-24207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Strumpellin is a member of the highly conserved pentameric WASH complex, which stimulates the Arp2/3 complex on endosomes and induces the formation of a branched actin network. The WASH complex is involved in the formation and stabilisation of endosomal retrieval subdomains and transport carriers, into which selected proteins are packaged and subsequently transported to their respective cellular destination, e.g. the plasma membrane. Up until now, the role of Strumpellin in platelet function and endosomal trafficking has not been researched. In order to examine its role, a conditional knockout mouse line was generated, which specifically lacked Strumpellin in megakaryocytes and platelets. Conditional knockout of Strumpellin resulted in only a mild platelet phenotype. Loss of Strumpellin led to a decreased abundance of the αIIbβ3 integrin in platelets, including a reduced αIIbβ3 surface expression by approximately 20\% and an impaired αIIbβ3 activation after platelet activation. The reduced surface expression of αIIbβ3 was also detected in megakaryocytes. The expression of other platelet surface glycoproteins was not affected. Platelet count, size and morphology remained unaltered. The reduction of αIIbβ3 expression in platelets resulted in a reduced fibrinogen binding capacity after platelet activation. However, fibrinogen uptake under resting conditions, although slightly delayed, as well as overall fibrinogen content in Strumpellin-deficient platelets were comparable to controls. Most notably, reduced αIIbβ3 expression did not lead to any platelet spreading and aggregation defects in vitro. Furthermore, reduced WASH1 protein levels were detected in the absence of Strumpellin. In conclusion, loss of Strumpellin does not impair platelet function, at least not in vitro. However, the data demonstrates that Strumpellin plays a role in selectively regulating αIIbβ3 surface expression. As a member of the WASH complex, Strumpellin may regulate αIIbβ3 recycling back to the platelet surface. Furthermore, residual WASH complex subunits may still assemble and partially function in the absence of Strumpellin, which could explain the only 20\% decrease in αIIbβ3 surface expression. Nonetheless, the exact mechanism still remains unclear.}, language = {en} } @phdthesis{Klingler2023, author = {Klingler, Philipp}, title = {Exploration of proteasome interactions with human platelet function}, doi = {10.25972/OPUS-32108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Platelets are anucleated cell fragments derived from megakaryocytes. They play a fundamental role in hemostasis, but there is rising evidence that they are also involved in immunological processes. Despite absence of a nucleus, human platelets are capable of de novo protein synthesis and contain a fully functional proteasome system, which is, in nucleated cells, involved in processes like cell cycle progression or apoptosis by its ability of protein degradation. The physiological significance of the proteasome system in human platelets is not yet fully understood and subject of ongoing research. Therefore, this study was conducted with the intention to outline the role of the proteasome system for functional characteristics of human platelets. For experimentation, citrated whole blood from healthy donors was obtained and preincubated with proteasome inhibitors. In addition to the commonly used bortezomib, the potent and selective proteasome inhibitor carfilzomib was selected as a second inhibitor to rule out agent-specific effects and to confirm that observed changes are related to proteasome inhibition. Irreversibly induced platelet activation and aggregation were not affected by proteasome blockade with bortezomib up to 24 hours. Conversely, proteasome inhibition led to enhanced threshold aggregation and agglutination up to 25 \%, accompanied by partial alleviation of induced VASP phosphorylation of approximately 10-15 \%. Expression of different receptors were almost unaffected. Instead, a significant increase of PP2A activity was observable in platelets after proteasome blockade, accompanied by facilitated platelet adhesion to coated surfaces in static experiments or flow chamber experiments. Carfilzomib, used for the first time in functional experimentation with human platelets in vitro, led to a dose-dependent decrease of proteasome activity with accumulation of poly ubiquitylated proteins. Like bortezomib, carfilzomib treatment resulted in enhanced threshold aggregation with attenuated VASP phosphorylation. As the main conclusion of this thesis, proteasome inhibition enhances the responsiveness of human platelets, provided by an alleviation of platelet inhibitory pathways and by an additional increase of PP2A activity, resulting in facilitated platelet adhesion under static and flow conditions. The proteasome system appears to be involved in the promotion of inhibitory counterregulation in platelets. The potential of proteasome inhibitors for triggering thromboembolic adverse events in patients must be clarified in further studies, in addition to their possible use for targeting platelet function to improve the hemostatic reactivity of platelets.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Huber2023, author = {Huber, Hannes}, title = {Biochemical and functional characterization of DHX30, an RNA helicase linked to neurodevelopmental disorder}, doi = {10.25972/OPUS-28050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280505}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {RNA helicases are key players in the regulation of gene expression. They act by remodeling local RNA secondary structures as well as RNA-protein interactions to enable the dynamic association of RNA binding proteins to their targets. The putative RNA helicase DHX30 is a member of the family of DEAH-box helicases with a putative role in the ATP-dependent unwinding of RNA secondary structures. Mutations in the DHX30 gene causes the autosomal dominant neuronal disease "Neurodevelopmental Disorder with severe Motor Impairment and Absent Language" (NEDMIAL;OMIM\#617804). In this thesis, a strategy was established that enabled the large-scale purification of enzymatically active DHX30. Through enzymatic studies performed in vitro, DHX30 was shown to act as an ATP-dependent 3' → 5' RNA helicase that catalyzes the unwinding of RNA:RNA and RNA:DNA substrates. Using recombinant DHX30, it could be shown that disease-causing missense mutations in the conserved helicase core caused the disruption of its ATPase and helicase activity. The protein interactome of DHX30 however, was unchanged indicating that the pathogenic missense-mutations do not cause misfolding of DHX30, but rather specifically affect its catalytic activity. DHX30 localizes predominantly in the cytoplasm where it forms a complex with ribosomes and polysomes. Using a cross-linking mass spectrometry approach, a direct interaction of the N-terminal double strand RNA binding domain of DHX30 with sites next to the ribosome's mRNA entry channel and the subunit interface was uncovered. RNA sequencing of DHX30 knockout cells revealed a strong de-regulation of mRNAs involved in neurogenesis and nervous system development, which is in line with the NEDMIAL disease phenotype. The knockdown of DHX30 results in a decreased 80S peak in polysome gradients, indicating that DHX30 has an effect on the translation machinery. Sequencing of the pool of active translating mRNAs revealed that upon DHX30 knockout mainly 5'TOP mRNAs are downregulated. These mRNAs are coding for proteins of the translational machinery and translation initiation factors. This study identified DHX30 as a factor of the translation machinery that selectively impacts the expression of a subset of proteins and provides insight on the etiology of NEDMIAL.}, language = {en} } @article{BenhalevyGuptaDananetal.2017, author = {Benhalevy, Daniel and Gupta, Sanjay K. and Danan, Charles H. and Ghosal, Suman and Sun, Hong-Wei and Kazemeier, Hinke G. and Paeschke, Katrin and Hafner, Markus and Juranek, Stefan A.}, title = {The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation}, series = {Cell Reports}, volume = {18}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2017.02.080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171122}, pages = {2979-2990}, year = {2017}, abstract = {The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.}, language = {en} } @article{OthmanFathyBekhitetal.2021, author = {Othman, Eman M. and Fathy, Moustafa and Bekhit, Amany Abdlrehim and Abdel-Razik, Abdel-Razik H. and Jamal, Arshad and Nazzal, Yousef and Shams, Shabana and Dandekar, Thomas and Naseem, Muhammad}, title = {Modulatory and toxicological perspectives on the effects of the small molecule kinetin}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {3}, issn = {1420-3049}, doi = {10.3390/molecules26030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223064}, year = {2021}, abstract = {Plant hormones are small regulatory molecules that exert pharmacological actions in mammalian cells such as anti-oxidative and pro-metabolic effects. Kinetin belongs to the group of plant hormones cytokinin and has been associated with modulatory functions in mammalian cells. The mammalian adenosine receptor (A2a-R) is known to modulate multiple physiological responses in animal cells. Here, we describe that kinetin binds to the adenosine receptor (A2a-R) through the Asn253 residue in an adenosine dependent manner. To harness the beneficial effects of kinetin for future human use, we assess its acute toxicity by analyzing different biochemical and histological markers in rats. Kinetin at a dose below 1 mg/kg had no adverse effects on the serum level of glucose or on the activity of serum alanine transaminase (ALT) or aspartate aminotransferase (AST) enzymes in the kinetin treated rats. Whereas, creatinine levels increased after a kinetin treatment at a dose of 0.5 mg/kg. Furthermore, 5 mg/kg treated kinetin rats showed normal renal corpuscles, but a mild degeneration was observed in the renal glomeruli and renal tubules, as well as few degenerated hepatocytes were also observed in the liver. Kinetin doses below 5 mg/kg did not show any localized toxicity in the liver and kidney tissues. In addition to unraveling the binding interaction between kinetin and A2a-R, our findings suggest safe dose limits for the future use of kinetin as a therapeutic and modulatory agent against various pathophysiological conditions.}, language = {en} } @article{PakniaChariStarketal.2016, author = {Paknia, Elham and Chari, Ashwin and Stark, Holger and Fischer, Utz}, title = {The Ribosome Cooperates with the Assembly Chaperone pICln to Initiate Formation of snRNPs}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2016.08.047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162420}, pages = {p3103-3112}, year = {2016}, abstract = {The formation of macromolecular complexes within the crowded environment of cells often requires aid from assembly chaperones. PRMT5 and SMN complexes mediate this task for the assembly of the common core of pre-mRNA processing small nuclear ribonucleoprotein particles (snRNPs). Core formation is initiated by the PRMT5-complex subunit pICln, which pre-arranges the core proteins into spatial positions occupied in the assembled snRNP. The SMN complex then accepts these pICln-bound proteins and unites them with small nuclear RNA (snRNA). Here, we have analyzed how newly synthesized snRNP proteins are channeled into the assembly pathway to evade mis-assembly. We show that they initially remain bound to the ribosome near the polypeptide exit tunnel and dissociate upon association with pICln. Coincident with its release activity, pICln ensures the formation of cognate heterooligomers and their chaperoned guidance into the assembly pathway. Our study identifies the ribosomal quality control hub as a site where chaperone-mediated assembly of macromolecular complexes can be initiated.}, language = {en} } @article{YeWilhelmGentschevetal.2021, author = {Ye, Mingyu and Wilhelm, Martina and Gentschev, Ivaylo and Szalay, Alad{\´a}r}, title = {A modified limiting dilution method for monoclonal stable cell line selection using a real-time fluorescence imaging system: A practical workflow and advanced applications}, series = {Methods and Protocols}, volume = {4}, journal = {Methods and Protocols}, number = {1}, doi = {10.3390/mps4010016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228896}, year = {2021}, abstract = {Stable cell lines are widely used in laboratory research and pharmaceutical industry. They are mainly applied in recombinant protein and antibody productions, gene function studies, drug screens, toxicity assessments, and for cancer therapy investigation. There are two types of cell lines, polyclonal and monoclonal origin, that differ regarding their homogeneity and heterogeneity. Generating a high-quality stable cell line, which can grow continuously and carry a stable genetic modification without alteration is very important for most studies, because polyclonal cell lines of multicellular origin can be highly variable and unstable and lead to inconclusive experimental results. The most commonly used technologies of single cell originate monoclonal stable cell isolation in laboratory are fluorescence-activated cell sorting (FACS) sorting and limiting dilution cloning. Here, we describe a modified limiting dilution method of monoclonal stable cell line selection using the real-time fluorescence imaging system IncuCyte\(^®\)S3.}, language = {en} } @incollection{DasZografakisOeljeklausetal.2023, author = {Das, Hirakjyoti and Zografakis, Alexandros and Oeljeklaus, Silke and Warscheid, Bettina}, title = {Analysis of Yeast Peroxisomes via Spatial Proteomics}, series = {Peroxisomes}, booktitle = {Peroxisomes}, edition = {accepted version}, publisher = {Springer}, doi = {10.1007/978-1-0716-3048-8_2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327532}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {13-31}, year = {2023}, abstract = {Peroxisomes are ubiquitous organelles with essential functions in numerous cellular processes such as lipid metabolism, detoxification of reactive oxygen species and signaling. Knowledge of the peroxisomal proteome including multi-localized proteins and, most importantly, changes of its composition induced by altering cellular conditions or impaired peroxisome biogenesis and function is of paramount importance for a holistic view on peroxisomes and their diverse functions in a cellular context. In this chapter, we provide a spatial proteomics protocol specifically tailored to the analysis of the peroxisomal proteome of baker's yeast that enables the definition of the peroxisomal proteome under distinct conditions and to monitor dynamic changes of the proteome including the relocation of individual proteins to a different cellular compartment. The protocol comprises subcellular fractionation by differential centrifugation followed by Nycodenz density gradient centrifugation of a crude peroxisomal fraction, quantitative mass spectrometric measurements of subcellular and density gradient fractions and advanced computational data analysis, resulting in the establishment of organellar maps on a global scale.}, language = {en} } @phdthesis{Mott2023, author = {Mott, Kristina}, title = {Regulation of platelet biogenesis in the native and myeloablated bone marrow niche}, doi = {10.25972/OPUS-28963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Megakaryocytes (MKs) are the largest cells of the hematopoietic system and the precursor cells of platelets. During proplatelet formation (PPF) bone marrow (BM) MKs extent large cytoplasmic protrusions into the lumen of sinusoidal blood vessels. Under homeostatic conditions PPF occurs exclusively in the direction of the sinusoid, while platelet generation into the marrow cavity is prevented. So far, the mechanisms regulating this process in vivo are still not completely understood, especially when PPF is deregulated during disease. This thesis investigated the mechanisms of PPF in native BM and after myeloablation by total body irradiation (TBI). First, we have identified a specialized type of BM stromal cells, so called CXCL12-abundant reticular (CAR) cells, as novel possible regulators of PPF. By using complementary high-resolution microscopy techniques, we have studied the morphogenetic events at the MK/vessel wall interface in new detail, demonstrating that PPF formation preferentially occurs at CAR cell-free sites at the endothelium. In the second part of this thesis, we analyzed the processes leading to BM remodeling in response to myeloablation by TBI. We used confocal laser scanning microscopy (CLSM) to study the kinetic of radiation-triggered vasodilation and mapped extracellular matrix (ECM) proteins after TBI. We could demonstrate that collagen type IV and laminin α5 are specifically degraded at BM sinusoids. At the radiation-injured vessel wall we observed ectopic release of platelet-like particles into the marrow cavity concomitantly to aberrant CAR cell morphology, suggesting that the balance of factors regulating PPF is disturbed after TBI. ECM proteolysis is predominantly mediated by the matrix metalloproteinase MMP9, as revealed by gelatin-zymography and by a newly established BM in situ zymography technique. In transgenic mice lacking MMP9 vascular recovery was delayed, hinting towards a role of MMP9 in vessel reconstitution after myeloablation. In a third series of experiments, we studied the irradiated BM in the context of hematopoietic stem cell transplantation (HSCT). By using mice as BM donors that ubiquitously express the fluorescent reporter protein dsRed we tracked engraftment of donor cells and especially MKs in the recipient BM. We found a distinct engraftment pattern and cluster formation for MKs, which is different from other blood cell lineages. Finally, we assessed platelet function after TBI and HSCT and were the first to demonstrate that platelets become massively hyporeactive, particularly upon stimulation of the collagen receptor GPVI. In summary, our findings shed light on the processes of PPF during health and disease which will help to develop treatments for aberrant thrombopoiesis.}, subject = {Knochenmark}, language = {en} } @phdthesis{Vitale2023, author = {Vitale, Maria Rosaria}, title = {Excitatory/inhibitory balance in iPSC-derived glutamatergic/GABAergic neuronal networks: differential Cadherin-13 genotype effects}, doi = {10.25972/OPUS-28789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287895}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {While the healthy brain works through balanced synaptic communication between glutamatergic and GABAergic neurons to coordinate excitation (E) and inhibition (I), disruption of E/I balance interferes with synaptic communication, information processing, and ultimately cognition. Multiple line of evidence indicates that E/I imbalance represents the pathophysiological basis of a wide spectrum of mental disorders. Genetic screening approaches have identified Cadherin-13 (CDH13). as a risk gene across neurodevelopmental and mental disorders. CDH13 regulates several cellular and synaptic processes in brain development and neuronal plasticity in adulthood. In addition to other functions, it is specifically localized at inhibitory synapses of parvalbumin- and somatostatin-expressing GABAergic neurons. In support of CDH13's function in moderating E/I balance, electrophysiological recordings of hippocampal slices in a CDH13-deficient mouse model revealed an increase in basal inhibitory but not excitatory synaptic transmission. Moreover, the search for genetic variants impacting functional expression of the CDH13 gene identified SNP (single nucleotide polymorphism)) rs2199430 in intron 1 to be associated with differential mRNA concentrations in human post-mortem brain across the three genotypes CDH13G/G, CDH13A/G and CDH13A/A . This work therefore aimed to further validate these findings in a complementary human model by using induced pluripotent stem cells (iPSCs). The application of human iPSCs in research has replaced the use of embryonic cells, resolving the ethical conflict of destructive usage of human embryos. Investigating CDH13's mode of action in inhibitory synapses was predicted to facilitate mechanistic insight into the effects of CDH13 gene variants on E/I network activity, which can then be targeted to reinstate balance. Genome-wide association studies have identified rare copy number variants (CNVs) resulting in a deletion (or duplication) of CDH13. To reduce genetic background variance, a set of isogenic iPSC lines with a gene dose-dependent deficiency of CDH13 (CDH13-/- and CDH13+/- ) was generated by using the Clustered Regulatory Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. These CRISPRed iPSCs carrying a single or two allele(s) with CDH13 inactivation facilitate investigation of CDH13 function in cellular processes, at inhibitory synapses and in neuronal network activity. In addition, iPSCs carrying allelic SNP rs2199430 variants were used to study the effects of common genetic variation of CDH13. These cell lines were differentiated into pure glutamatergic and GABAergic neurons and co-cultured to generate neuronal networks allowing its activity to be measured and correlated with electrophysiological signatures of differential CDH13 genotypes. The work towards assessment of neuronal network activity of the iPSC lines was subdivided into three major steps: first, generating rtTA/Ngn2 and rtTA/Ascl1-positive iPSCs via a lentivirus-mediated approach; second, differentiating pure glutamatergic and GABAergic neurons from the genetically transduced iPSCs and co-culturing of pure glutamatergic and GABAergic neurons in a pre-established ratio (65:35) by direct differentiation upon supplementation with doxycycline and forskolin on a microelectrode array (MEA) chip; and, finally, recording of neuronal network activity of iPSC lines after 49 days in vitro, followed by extraction and analyses of multiple MEA parameters. x Based on the MEA parameters, it was confirmed that complete CDH13 knockout as well as heterozygous deficiency influence E/I balance by increasing inhibition. It was further revealed that common SNP variation alters the signature of neuronal network activity. Specifically, CDH13 deficiency resulted in a significant reduction in network burst duration (NBD), reduced number of detected spikes within a network burst and reduction in network burst rate (NBR) compared to the control (CDH13G/G). CDH13A/G and CDH13A/A showed similarities with the CRISPRed CDH13-deficient networks by showing a significant reduction in the NBD and a reduced number of detected spikes within a network compared to CDH13G/G. Strikingly. there was a significant increase in the NBR of the CDH13A/G and CDH13A/A compared to CDH13G/G networks. CDH13A/G networks exhibited significant differences in both parameters. At the cellular level, this indicates that signalling pathways which determine the length and frequency of network bursts differ among allelic variants of SNP rs2199430, thus confirming functional relevance of this intronic SNP. In summary, CDH13-deficient isogenic iPSC lines were generated using CRISPR/Cas9, iPSCs were genetically transduced via a lentivirus approach, direct differentiation of glutamatergic/GABAergic neurons derived from transduced iPSCs were used to establish a scalable co-culture system, and network activity was recorded by MEA using pre-established parameters to extract and analyze activity information. The results indicate that iPSC-derived neuronal networks following CRISPR/Cas9-facilitated CDH13 inactivation, as well as networks with allelic SNP variants of CDH13, moderate E/I balance, thus advancing understanding of CDH13 function at inhibitory synapses and elucidating the effects of rare and common CDH13 gene variation.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Gotthard2023, author = {Gotthard, Hannes}, title = {Targeting Colorectal Cancer Stem Cells with Hemibodies}, doi = {10.25972/OPUS-30309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303090}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The cancer stem cell hypothesis is a cancer development model which elicited great interest in the last decades stating that cancer heterogeneity arises from a stem cell through asymmetrical division. The Cancer Stem Cell subset is described as the only population to be tumorigenic and having the potential to renew. Conventional therapy often fails to eradicate CSC resulting in tumor relapse. Consequently, it is of great inter-est to eliminate this subset of cells to provide the best patient outcome. In the last years several approaches to target CSC were developed, one of them being immunotherapeu-tic targeting with antibodies. Since markers associated with CSC are also expressed on normal stem cells or healthy adjacent tissue in colorectal cancer, dual targeting strate-gies are preferred over targeting only a single antigen. Subsequently, the idea of dual targeting two CSC markers in parallel by a newly developed split T cell-engaging anti-body format termed as Hemibodies emerged. In a preliminary single cell RNA sequenc-ing analysis of colorectal cancer cells CD133, CD24, CD166 and CEA were identified as suitable targets for the combinatorial targeting strategy. Therefore, this study focused on trispecific and trivalent Hemibodies comprising a split binding moiety against CD3 and a binding moiety against either CD133, CD24, CD166 or CEA to overcome the occurrence of resistance and to efficiently eradicate all tumor cells including the CSC compartment. The study showed that the Hemibody combinations CD133xCD24, CD133xCD166 and CD133xCEA are able to eliminate double positive CHO cells with high efficacy while having a high specificity indicated by no killing of single antigen positive cells. A thera-peutic window ranging between one to two log levels could be achieved for all combina-tions mentioned above. The combinations CD133xCD24 and CD133xCD166 further-more proved its efficacy and specificity on established colorectal cancer cell lines. Be-sides the evaluation of specificity and efficacy the already introduced 1st generation of Hemibodies could be improved into a 2nd generation Hemibody format with increased half-life, stability and production yield. In future experiments the applicability of above-mentioned Hemibodies will be proven on patient-derived micro tumors to also include variables like tumor microenvironment and infiltration.}, subject = {Monoklonaler bispezifischer Antik{\"o}rper}, language = {en} } @phdthesis{Hauptstein2023, author = {Hauptstein, Niklas}, title = {Site directed molecular design and performances of Interferon-α2a and Interleukin-4 bioconjugates with PEG alternative polymers}, doi = {10.25972/OPUS-29691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296911}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Serum half-life elongation as well as the immobilization of small proteins like cytokines is still one of the key challenges for biologics. This accounts also for cytokines, which often have a molecular weight between 5 and 40 kDa and are therefore prone to elimination by renal filtration and sinusoidal lining cells. To solve this problem biologics are often conjugated to poly(ethylene glycol) (PEG), which is the gold standard for the so called PEGylation. PEG is a synthetic, non-biodegradable polymer for increasing the hydrodynamic radius of the conjugated protein to modulate their pharmacokinetic performance and prolong their therapeutic outcome. Though the benefits of PEGylation are significant, they also come with a prize, which is a loss in bioactivity due to steric hindrance and most often the usage of heterogeneous bioconjugation chemistries. While PEG is a safe excipient in most cases, an increasing number of PEG related side-effects, such as immunological responses like hypersensitivity and accelerated blood clearance upon repetitive exposure occur, which highlights the need for PEG alternative polymers, that can replace PEG in such cases. Another promising method to significantly prolong the residence time of biologics is to immobilize them at a desired location. To achieve this, the transglutaminase (TG) Factor XIIIa (FXIIIa), which is an important human enzyme during blood coagulation can be used. FXIIIa can recognize specific peptide sequences that contain a lysine as substrates and link them covalently to another peptide sequence, that contains a glutamine, forming an isopeptide bond. This mechanism can be used to link modified proteins, which have a N- or C-terminal incorporated signal peptide by mutation, to the extracellular matrix (ECM) of tissues. Additionally, both above-described methods can be combined. By artificially introducing a TG recognition sequence, it is possible to attach an azide group containing peptide site-specifically to the TG, recognition sequence. This allows the creation of a site-selective reactive site at the proteins N- or C-terminus, which can then be targeted by cyclooctyne functionalized polymers, just like amber codon functionalized proteins. This thesis has focused on the two cytokines human Interferon-α2a (IFN-α2a) and human, as well as murine Interleukin-4 (IL-4) as model proteins to investigate the above-described challenges. IFN-α2a has been chosen as a model protein because it is an approved drug since 1986 in systemic applications against some viral infections, as well as several types of cancer. Furthermore, IFN-α2 is also approved in three PEGylated forms, which have different molecular weights and use different conjugation techniques for polymer attachment. This turns it into an ideal candidate to compare new polymers against the gold standard PEG. Interleukin-4 (IL-4) has been chosen as the second model protein due to its similar size and biopotency. This allows to compare found trends from IFN-α2a with another bioconjugate platform and distinguish between IFN-α2a specific, or general trends. Furthermore, IL-4 is a promising candidate for clinical applications as it is a potent anti-inflammatory protein, which polarizes macrophages from the pro-inflammatory M1 state into the anti-inflammatory M2 state.}, subject = {Cytokine}, language = {en} } @article{MaichlKirnerBecketal.2023, author = {Maichl, Daniela Simone and Kirner, Julius Arthur and Beck, Susanne and Cheng, Wen-Hui and Krug, Melanie and Kuric, Martin and Ade, Carsten Patrick and Bischler, Thorsten and Jakob, Franz and Hose, Dirk and Seckinger, Anja and Ebert, Regina and Jundt, Franziska}, title = {Identification of NOTCH-driven matrisome-associated genes as prognostic indicators of multiple myeloma patient survival}, series = {Blood Cancer Journal}, volume = {13}, journal = {Blood Cancer Journal}, doi = {10.1038/s41408-023-00907-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357598}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{SendellPriceTulenkoPetterssonetal.2023, author = {Sendell-Price, Ashley T. and Tulenko, Frank J. and Pettersson, Mats and Kang, Du and Montandon, Margo and Winkler, Sylke and Kulb, Kathleen and Naylor, Gavin P. and Phillippy, Adam and Fedrigo, Olivier and Mountcastle, Jacquelyn and Balacco, Jennifer R. and Dutra, Amalia and Dale, Rebecca E. and Haase, Bettina and Jarvis, Erich D. and Myers, Gene and Burgess, Shawn M. and Currie, Peter D. and Andersson, Leif and Schartl, Manfred}, title = {Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42238-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357827}, year = {2023}, abstract = {Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10\(^{-10}\) per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.}, language = {en} } @phdthesis{MaierverhHartmann2024, author = {Maier [verh. Hartmann], Carina Ramona}, title = {Regulation of the Mevalonate Pathway by the Deubiquitinase USP28 in Squamous Cancer}, doi = {10.25972/OPUS-34874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348740}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The reprogramming of metabolic pathways is a hallmark of cancer: Tumour cells are dependent on the supply with metabolites and building blocks to fulfil their increased need as highly proliferating cells. Especially de novo synthesis pathways are upregulated when the cells of the growing tumours are not able to satisfy the required metabolic levels by uptake from the environment. De novo synthesis pathways are often under the control of master transcription factors which regulate the gene expression of enzymes involved in the synthesis process. The master regulators for de novo fatty acid synthesis and cholesterogenesis are sterol regulatory element-binding proteins (SREBPs). While SREBP1 preferably controls the expression of enzymes involved in fatty acid synthesis, SREBP2 regulates the transcription of the enzymes of the mevalonate pathway and downstream processes namely cholesterol, isoprenoids and building blocks for ubiquinone synthesis. SREBP activity is tightly regulated at different levels: The post-translational modification by ubiquitination decreases the stability of active SREBPs. The attachment of K48-linked ubiquitin chains marks the transcription factors for the proteasomal degradation. In tumour cells, high levels of active SREBPs are essential for the upregulation of the respective metabolic pathways. The increased stability and activity of SREBPs were investigated in this thesis. SREBPs are ubiquitinated by the E3 ligase Fbw7 which leads to the subsequential proteolysis of the transcription factors. The work conducted in this thesis identified the counteracting deubiquitination enzyme USP28 which removes the ubiquitin chains from SREBPs and prevents their proteasomal degradation. It further revealed that the stabilization of SREBP2 by USP28 plays an important role in the context of squamous cancers. Increased USP28 levels are associated with a poor survival in patients with squamous tumour subtypes. It was shown that reduced USP28 levels in cell lines and in vivo result in a decrease of SREBP2 activity and downregulation of the mevalonate pathway. This manipulation led to reduced proliferation and tumour growth. A direct comparison of adenocarcinomas and squamous cell carcinomas in lung cancer patients revealed an upregulation of USP28 as well as SREBP2 and its target genes. Targeting the USP28-SREBP2 regulatory axis in squamous cell lines by inhibitors also reduced cell viability and proliferation. In conclusion, this study reports evidence for the importance of the mevalonate pathway regulated by the USP28-SREBP2 axis in tumour initiation and progression of squamous cancer. The combinatorial inhibitor treatment of USP28 and HMGCR, the rate limiting enzyme of the mevalonate pathway, by statins opens the possibility for a targeted therapeutic treatment of squamous cancer patients.}, subject = {Ubiquitin}, language = {en} } @phdthesis{Karwen2024, author = {Karwen, Till}, title = {Platelets promote insulin secretion of pancreatic β-cells}, doi = {10.25972/OPUS-31393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313933}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.}, subject = {Thrombozyt}, language = {en} } @article{RauschenbergerPiroKasaragodetal.2023, author = {Rauschenberger, Vera and Piro, Inken and Kasaragod, Vikram Babu and H{\"o}rlin, Verena and Eckes, Anna-Lena and Kluck, Christoph J. and Schindelin, Hermann and Meinck, Hans-Michael and Wickel, Jonathan and Geis, Christian and T{\"u}z{\"u}n, Erdem and Doppler, Kathrin and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor autoantibody binding to the extracellular domain is independent from receptor glycosylation}, series = {Frontiers in Molecular Neuroscience}, volume = {16}, journal = {Frontiers in Molecular Neuroscience}, doi = {10.3389/fnmol.2023.1089101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304206}, year = {2023}, abstract = {Glycine receptor (GlyR) autoantibodies are associated with stiff-person syndrome and the life-threatening progressive encephalomyelitis with rigidity and myoclonus in children and adults. Patient histories show variability in symptoms and responses to therapeutic treatments. A better understanding of the autoantibody pathology is required to develop improved therapeutic strategies. So far, the underlying molecular pathomechanisms include enhanced receptor internalization and direct receptor blocking altering GlyR function. A common epitope of autoantibodies against the GlyRα1 has been previously defined to residues 1A-33G at the N-terminus of the mature GlyR extracellular domain. However, if other autoantibody binding sites exist or additional GlyR residues are involved in autoantibody binding is yet unknown. The present study investigates the importance of receptor glycosylation for binding of anti-GlyR autoantibodies. The glycine receptor α1 harbors only one glycosylation site at the amino acid residue asparagine 38 localized in close vicinity to the identified common autoantibody epitope. First, non-glycosylated GlyRs were characterized using protein biochemical approaches as well as electrophysiological recordings and molecular modeling. Molecular modeling of non-glycosylated GlyRα1 did not show major structural alterations. Moreover, non-glycosylation of the GlyRα1N38Q did not prevent the receptor from surface expression. At the functional level, the non-glycosylated GlyR demonstrated reduced glycine potency, but patient GlyR autoantibodies still bound to the surface-expressed non-glycosylated receptor protein in living cells. Efficient adsorption of GlyR autoantibodies from patient samples was possible by binding to native glycosylated and non-glycosylated GlyRα1 expressed in living not fixed transfected HEK293 cells. Binding of patient-derived GlyR autoantibodies to the non-glycosylated GlyRα1 offered the possibility to use purified non-glycosylated GlyR extracellular domain constructs coated on ELISA plates and use them as a fast screening readout for the presence of GlyR autoantibodies in patient serum samples. Following successful adsorption of patient autoantibodies by GlyR ECDs, binding to primary motoneurons and transfected cells was absent. Our results indicate that the glycine receptor autoantibody binding is independent of the receptor's glycosylation state. Purified non-glycosylated receptor domains harbouring the autoantibody epitope thus provide, an additional reliable experimental tool besides binding to native receptors in cell-based assays for detection of autoantibody presence in patient sera.}, language = {en} } @unpublished{BrennerZinkWitzingeretal.2024, author = {Brenner, Marian and Zink, Christoph and Witzinger, Linda and Keller, Angelika and Hadamek, Kerstin and Bothe, Sebastian and Neuenschwander, Martin and Villmann, Carmen and von Kries, Jens Peter and Schindelin, Hermann and Jeanclos, Elisabeth and Gohla, Antje}, title = {7,8-Dihydroxyflavone is a direct inhibitor of pyridoxal phosphatase}, series = {eLife}, journal = {eLife}, doi = {10.7554/eLife.93094.2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350446}, year = {2024}, abstract = {Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small molecule screening, protein crystallography and biolayer interferometry, we discover and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.}, language = {en} } @phdthesis{Aido2024, author = {Aido, Ahmed}, title = {Development of anti-TNF antibody-gold nanoparticles (anti-TNF-AuNPs)}, doi = {10.25972/OPUS-34921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349212}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Gold nanoparticles of diameter ca. 60 nm have been synthesized based on Turkevich and Frens protocols. We have demonstrated that the carboxyl-modified gold nanoparticles can be coupled covalently with antibodies (Ab) of interest using the EDC/NHS coupling procedure. Binding studies with Ab-grafted AuNPs and GpL fusion proteins proved that conjugation of AuNPs with antibodies enables immobilization of antibodies with preservation of a significant antigen binding capacity. More importantly, our findings showed that the conjugation of types of anti-TNF receptors antibodies such as anti-Fn14 antibodies (PDL192 and 5B6) (Aido et al., 2021), anti-CD40, anti-4-1BB and anti-TNFR2 with gold nanoparticles confers them with potent agonism. Thus, our results suggest that AuNPs can be utilized as a platform to immobilize anti-TNFR antibodies which, on the one hand, helps to enhance their agonistic activity in comparison to "free" inactive antibodies by mimicking the effect of cell-anchored antibodies or membrane-bound TNF ligands and, on the other hand, allows to develop new generations of drug delivery systems. These constructs are characterized with their biocompatibility and their tunable synthesis process. In a further work part, we combined the benefits of the established system of Ab-AuNPs with materials used widely in the modern biofabrication approaches such as the photo-crosslinked hydrogels, methacrylate-modified gelatin (GelMA), combined with embedded variants of human cell lines. The acquired results demonstrated clearly that the attaching of proteins like antibodies to gold nanoparticles might reduce their release rate from the crosslinked hydrogels upon the very low diffusion of gold nanoparticles from the solid constructs to the surrounding medium yielding long-term local functioning proteins-attached particles. Moreover, our finding suggests that hydrogel-embedded AuNP-immobilized antibodies, e.g. anti-TNFα-AuNPs or anti-IL1-AuNPs enable local inhibitory functions, To sum up, our results demonstrate that AuNPs can act as a platform to attach anti-TNFR antibodies to enhance their agonistic activity by resembling the output of cell-anchoring or membrane bounding. Gold nanoparticles are considered, thus, as promising tool to develop the next generation of drug delivery systems, which may contribute to cancer therapy. On top of that, the embedding of anti-inflammatory-AuNPs in the biofabricated hydrogel presents new innovative strategy of the treatment of autoinflammatory diseases.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Peindl2024, author = {Peindl, Matthias}, title = {Refinement of 3D lung cancer models for automation and patient stratification with mode-of-action studies}, doi = {10.25972/OPUS-31069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Lung cancer is the main cause of cancer-related deaths worldwide. Despite the availability of several targeted therapies and immunotherapies in the clinics, the prognosis for lung cancer remains poor. A major problem for the low benefit of these therapies is intrinsic and acquired resistance, asking for pre-clinical models for closer investigation of predictive biomarkers for refined personalized medicine and testing of possible combination therapies as well as novel therapeutic approaches to break resistances. One third of all lung adenocarcinoma harbor mutations in the KRAS gene, of which 39 \% are transitions from glycine to cysteine in codon 12 (KRASG12C). Being considered "undruggable" in previous decades, KRASG12C-inhibitors now paved the way into the standard-of-care for lung adenocarcinoma treatment in the clinics. Still, the overall response rates as well as overall survival of patients treated with KRASG12C-inhibitors are sobering. Therefore, 3D KRASG12C-biomarker in vitro models were developed based on a decellularized porcine jejunum (SISmuc) using commercial and PDX-derived cell lines and characterized in regards of epithelial-mesenchymal-transition (EMT), stemness, proliferation, invasion and c-MYC expression as well as the sensitivity towards KRASG12C-inhibiton. The phenotype of lung tumors harboring KRAS mutations together with a c-MYC overexpression described in the literature regarding invasion and proliferation for in vivo models was well represented in the SISmuc models. A higher resistance towards targeted therapies was validated in the 3D models compared to 2D cultures, while reduced viability after treatment with combination therapies were exclusively observed in the 3D models. In the test system neither EMT, stemness nor the c-MYC expression were directly predictive for drug sensitivity. Testing of a panel of combination therapies, a sensitizing effect of the aurora kinase A (AURKA) inhibitor alisertib for the KRASG12C-inhibitor ARS-1620 directly correlating with the level of c-MYC expression in the corresponding 3D models was observed. Thereby, the capability of SISmuc tumor models as an in vitro test system for patient stratification was demonstrated, holding the possibility to reduce animal experiments. Besides targeted therapies the treatment of NSCLC with oncolytic viruses (OVs) is a promising approach. However, a lack of in vitro models to test novel OVs limits the transfer from bench to bedside. In this study, 3D NSCLC models based on the SISmuc were evaluated for their capability to perform efficacy and risk assessment of oncolytic viruses (OVs) in a pre-clinical setting. Hereby, the infection of cocultures of tumor cells and fibroblasts on the SISmuc with provided viruses demonstrated that in contrast to a wildtype herpes simplex virus 1 (HSV-1) based OV, the attenuated version of the OV exhibited specificity for NSCLC cells with a more advanced and highly proliferative phenotype, while fibroblasts were no longer permissive for infection. This approach introduced SISmuc tumor models as novel test system for in vitro validation of OVs. Finally, a workflow for validating the efficacy of anti-cancer therapies in 3D tumor spheroids was established for the transfer to an automated platform based on a two-arm-robot system. In a proof-of-concept process, H358 spheroids were characterized and treated with the KRASG12C-inhibitor ARS-1620. A time- and dose-dependent reduction of the spheroid area after treatment was defined together with a live/dead-staining as easy-to-perform and cost-effective assays for automated drug testing that can be readily performed in situ in an automated system.}, subject = {Krebs }, language = {en} }