@article{SchmidtDenkWiegering2020, author = {Schmidt, Stefanie and Denk, Sarah and Wiegering, Armin}, title = {Targeting protein synthesis in colorectal cancer}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {5}, issn = {2072-6694}, doi = {10.3390/cancers12051298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206014}, year = {2020}, abstract = {Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.}, language = {en} } @phdthesis{Steinmetzger2020, author = {Steinmetzger, Christian}, title = {Fluorogenic Aptamers and Fluorescent Nucleoside Analogs as Probes for RNA Structure and Function}, doi = {10.25972/OPUS-20760}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {RNA plays a key role in numerous cellular processes beyond the central dogma of molecular biology. Observing and understanding this wealth of functions, discovering new ones and engineering them into purpose-built tools requires a sensitive means of observation. Over the past decade, fluorogenic aptamers have emerged to fill this niche. These short oligonucleotides are generated by in vitro selection to specifically interact with small organic fluorophores and can be utilized as genetically encoded tags for RNAs of interest. The most versatile class of fluorogenic aptamers is based on derivatives of hydroxybenzylidene imidazolone (HBI), a conditional fluorophore mimicking the chromophore structure found in green and red fluorescent proteins. The respective aptamers are well-known by the "vegetable" nomenclature, including Spinach, Broccoli and Corn, and have found numerous applications for studying RNA function in vitro and in cells. Their success, however, is somewhat overshadowed by individual shortcomings such as a propensity for misfolding, dependence on unphysiologically high concentrations of magnesium ions or, in the case of Corn, dimerization that might affect the function of the tagged RNA. Moreover, most fluorogenic aptamers exhibit limited ligand promiscuity by design, thereby restricting their potential for spectral tuning to a narrow window of wavelengths. This thesis details the characterization of a new fluorogenic aptamer system nicknamed Chili. Chili is derived from an aptamer that was originally selected to bind 4-hydroxy-3,5-dimethoxy¬hydroxy-benzylidene imidazolone (DMHBI), resulting in a green fluorescent complex. Unlike other aptamers of its kind, Chili engages in a proton transfer cycle with the bound ligand, resulting in a remarkably large Stokes shift of more than 130 nm. By means of an empirical ligand optimization approach, several new DMHBI derivatives were found that bind to Chili with high affinity, furnishing complexes up to 7.5 times brighter compared to the parent ligand. In addition, Chili binds to π-extended DMHBI derivatives that confer fluorescence in the yellow-red region of the visible spectrum. The highest affinity and degree of fluorescence turn-on for both green and red fluorogenic ligands were achieved by the incorporation of a unique, positively charged substituent into the HBI scaffold. Supplemented by NMR spectroscopy, kinetic and thermodynamic studies showed that the binding site of Chili is loosely preorganized in the absence of ligand and likely forms a G-quadruplex upon ligand binding. To showcase future applications, Chili was incorporated into a FRET sensor for monitoring the cleavage of an RNA substrate by a 10-23 DNAzyme. Besides aptamers as macromolecular fluorescent complexes, fluorescent nucleobase analogs are powerful small isomorphic components of RNA suitable for studying structure and folding. Here, the highly emissive nucleobase analog 4-cyanoindole (4CI) was developed into a ribonucleoside (r4CI) for this purpose. A new phosphoramidite building block was synthesized to enable site-specific incorporation of 4CI into RNA. Thermal denaturation experiments confirmed that 4CI behaves as a universal nucleobase, i.e. without bias towards any particular hybridization partner. Photophysical characterization established r4CI as a generally useful fluorescent ribonucleoside analog. In this work, it was employed to gain further insight into the structure of the Chili aptamer. Using several 4CI-modified Chili-HBI complexes, a novel base-ligand FRET assay was established to obtain a set of combined distance and orientation restraints for the tertiary structure of the aptamer. In addition to their utility for interrogating structure and binding, supramolecular FRET pairs comprising a fluorescent nucleobase analog donor and an innately fluorogenic acceptor hold great promise for the construction of color-switchable RNA aptamer sensor devices.}, subject = {Aptamer}, language = {en} } @phdthesis{Kauk2018, author = {Kauk, Michael}, title = {Investigating the Molecular Mechanism of Receptor Activation at Muscarinic Receptors by Means of Pathway-Specific Dualsteric Ligands and Partial Agonists}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173729}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G protein-coupled receptors (GPCRs) form the biggest receptor family that is encoded in the human genome and represent the most druggable target structure for modern therapeutics respectively future drug development. Belonging to aminergic class A GPCRs muscarinic Acetylcholine receptors (mAChRs) are already now of clinical relevance and are also seen as promising future drug targets for treating neurodegenerative diseases like Alzheimer or Parkinson. The mAChR family consist of five subtypes showing high sequence identity for the endogenous ligand binding region and thus it is challenging until now to selectively activate a single receptor subtype. A well accepted method to study ligand binding, dynamic receptor activation and downstream signaling is the fluorescence resonance energy transfer (FRET) application. Here, there relative distance between two fluorophores in close proximity (<10 nm) can be monitored in a dynamic manner. The perquisite for that is the spectral overlap of the emission spectrum of the first fluorophore with the excitation spectrum of the second fluorophore. By inserting two fluorophores into the molecular receptor structure receptor FRET sensors can serve as a powerful tool to study dynamic receptor pharmacology. Dualsteric Ligands consist of two different pharmacophoric entities and are regarded as a promising ligand design for future drug development. The orthosteric part interacts with high affinity with the endogenous ligand binding region whereas the allosteric part binds to a different receptor region mostly located in the extracellular vestibule. Both moieties are covalently linked. Dualsteric ligands exhibit a dynamic ligand binding. The dualsteric binding position is characterized by a simultaneous binding of the orthosteric and allosteric moiety to the receptor and thus by receptor activation. In the purely allosteric binding position no receptor activation can be monitored. In the present work the first receptor FRET sensor for the muscarinic subtype 1 (M1) was generated and characterized. The M1-I3N-CFP sensor showed an unaltered physiological behavior as well as ligand and concentration dependent responses. The sensor was used to characterize different sets of dualsteric ligands concerning their pharmacological properties like receptor activation. It was shown that the hybrids consisting of the synthetic full agonist iperoxo and the positive allosteric modulator of BQCA type is very promising. Furthermore, it was shown for orthosteric as well as dualsteric ligands that the degree of receptor activation is highly dependent on the length of and the chemical properties of the linker moiety. For dualsteric ligands a bell-shaped activation characteristic was reported for the first time, suggesting that there is an optimal linker length for dualsteric ligands. The gained knowledge about hybrid design was then used to generate and characterize the first photo-switchable dualsteric ligand. The resulting hybrids were characterized with the M1-I3N-CFP sensor and were described as photo-inactivatable and dimmable. In addition to the ligand characterization the ligand application methodology was further developed and improved. Thus, a fragment-based screening approach for dualsteric ligands was reported in this study for the first time. With this approach it is possible to investigate dualsteric ligands in greater detail by applying either single ligand fragments alone or in a mixture of building blocks. These studies revealed the insights that the effect of dualsteric ligands on a GPCR can be rebuild by applying the single building blocks simultaneously. The fragment-based screening provides high potential for the molecular understanding of dualsteric ligands and for future screening approaches. Next, a further development of the standard procedure for measuring FRET by sensitized emission was performed. Under normal conditions single cell FRET is measured on glass coverslips. After coating the coverslips surface with a 20 nm thick gold layer an increased FRET efficiency up to 60 \% could be reported. This finding was validated in different approaches und in different configurations. This FRET enhancement by plasmonic surfaces was until yet unreported in the literature for physiological systems and make FRET for future projects even more powerful.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Rydzek2019, author = {Rydzek, Julian}, title = {NF-κB/NFAT Reporter Cell Platform for Chimeric Antigen Receptor (CAR)-Library Screening}, doi = {10.25972/OPUS-17918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179187}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Immunotherapy with engineered T cells expressing a tumor-specific chimeric antigen receptor (CAR) is under intense preclinical and clinical investigation. This involves a rapidly increasing portfolio of novel target antigens and CAR designs that need to be tested in time- and work-intensive screening campaigns in primary T cells. Therefore, we anticipated that a standardized screening platform, similar as in pharmaceutical small molecule and antibody discovery, would facilitate the analysis of CARs by pre-selecting lead candidates from a large pool of constructs that differ in their extracellular and intracellular modules. Because CARs integrate structural elements of the T cell receptor (TCR) complex and engage TCR-associated signaling molecules upon stimulation, we reasoned that the transcription factors nuclear factor-κB (NF-κB) and nuclear factor of activated T cells (NFAT) could serve as surrogate markers for primary T cell function. The nuclear translocation of both transcription factors in primary T cells, which we observed following CAR stimulation, supported our rationale to use NF-κB and NFAT as indicators of CAR-mediated activation in a screening platform. To enable standardized and convenient analyses, we have established a CAR-screening platform based on the human T cell lymphoma line Jurkat that has been modified to provide rapid detection of NF-κB and NFAT activation. For this purpose, Jurkat cells contained NF-κB and NFAT-inducible reporter genes that generate a duplex output of cyan fluorescent protein (CFP) and green fluorescent protein (GFP), respectively. Upon stimulation of NF-κB/NFAT reporter cells, the expression of both fluorophores could be readily quantified in high-throughput screening campaigns by flow cytometry. We modified the reporter cells with CD19-specific and ROR1-specific CARs, and we co-cultured them with antigen-positive stimulator cells to analyze NF-κB and NFAT activation. CAR-induced reporter signals could already be detected after 6 hours. The optimal readout window with high-level reporter activation was set to 24 hours, allowing the CAR-screening platform to deliver results in a rapid turnaround time. A reporter cell-screening campaign of a spacer library with CARs comprising a short, intermediate or long IgG4-Fc domain allowed distinguishing functional from non-functional constructs. Similarly, reporter cell-based analyses identified a ROR1-CAR with 4-1BB domain from a library with different intracellular signal modules due to its ability to confer high NF-κB activation, consistent with data from in vitro and in vivo studies with primary T cells. The results of both CAR screening campaigns were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary T cells (21 days). We further challenged the reporter cells in a large-scale screening campaign with a ROR1 CAR library comprising mutations in the VH CDR3 sequence of the R11 scFv. This region is crucial for binding the R11 epitope of ROR1, and we anticipated that mutations here would cause a loss of specificity and affinity for most of the CAR variants. This provided the opportunity to determine whether the CAR screening platform was able to retrieve functional constructs from a large pool of CAR variants. Indeed, using a customized pre enrichment and screening strategy, the reporter cells identified a functional CAR variant that was present with a frequency of only 6 in 1.05x10^6. As our CAR-screening platform enabled the analysis of activating signal modules, it encouraged us to also evaluate inhibitory signal modules that change the CAR mode of action. Such an inhibitory CAR (iCAR) can be used in logic gates with an activating CAR to interfere with T cell stimulation. By selecting appropriate target antigens for iCAR and CAR, this novel application aims to improve the selectivity towards tumor cells, and it could readily be studied using our screening platform. Accordingly, we tested CD19-specific iCARs with inhibitory PD-1 signal module for their suppressive effect on reporter gene activation. In logic gates with CAR or TCR stimulation, a decrease of NF-κB and NFAT signals was only observed when activating and inhibitory receptors were forced into spatial proximity. These results were further verified by experiments with primary T cells. In conclusion, our reporter cell system is attractive as a platform technology because it is independent of testing in primary T cells, exportable between laboratories, and scalable to enable small- to large-scale screening campaigns of CAR libraries. The pre-selection of appropriate lead candidates with optimal extracellular and intracellular modules can reduce the number of CAR constructs to be investigated in further in vitro and in vivo studies with primary T cells. We are therefore confident that our CAR-screening platform based on NF-κB/NFAT reporter cells will be useful to accelerate translational research by facilitating the evaluation of CARs with novel design parameters.}, subject = {Antigenrezeptor}, language = {en} } @phdthesis{Kaiser2020, author = {Kaiser, Sebastian}, title = {A RecQ helicase in disguise: Characterization of the unconventional Structure and Function of the human Genome Caretaker RecQ4}, doi = {10.25972/OPUS-16041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160414}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {From the simplest single-cellular organism to the most complex multicellular life forms, genetic information in form of DNA represents the universal basis for all biological processes and thus for life itself. Maintaining the structural and functional integrity of the genome is therefore of paramount importance for every single cell. DNA itself, as an active and complex macromolecular structure, is both substrate and product of many of these biochemical processes. A cornerstone of DNA maintenance is thus established by the tight regulation of the multitude of reactions in DNA metabolism, repressing adverse side reactions and ensuring the integrity of DNA in sequence and function. The family of RecQ helicases has emerged as a vital class of enzymes that facilitate genomic integrity by operating in a versatile spectrum of nucleic acid metabolism processes, such as DNA replication, repair, recombination, transcription and telomere stability. RecQ helicases are ubiquitously expressed and conserved in all kingdoms of life. Human cells express five different RecQ enzymes, RecQ1, BLM, WRN, RecQ4 and RecQ5, which all exhibit individual as well as overlapping functions in the maintenance of genomic integrity. Dysfunction of three human RecQ helicases, BLM, WRN and RecQ4, causes different heritable cancer susceptibility syndromes, supporting the theory that genomic instability is a molecular driving force for cancer development. However, based on their inherent DNA protective nature, RecQ helicases represent a double-edged sword in the maintenance of genomic integrity. While their activity in normal cells is essential to prevent cancerogenesis and cellular aging, cancer cells may exploit this DNA protective function by the overexpression of many RecQ helicases, aiding to overcome the disadvantageous results of unchecked DNA replication and simultaneously gaining resistance against chemotherapeutic drugs. Therefore, detailed knowledge how RecQ helicases warrant genomic integrity is required to understand their implication in cancerogenesis and aging, thus setting the stage to develop new strategies towards the treatment of cancer. The current study presents and discusses the first high-resolution X-ray structure of the human RecQ4 helicase. The structure encompasses the conserved RecQ4 helicase core, including a large fraction of its unique C- terminus. Our structural analysis of the RecQ4 model highlights distinctive differences and unexpected similarities to other, structurally conserved, RecQ helicases and permits to draw conclusions about the functional implications of the unique domains within the RecQ4 C-terminus. The biochemical characterization of various RecQ4 variants provides functional insights into the RecQ4 helicase mechanism, suggesting that RecQ4 might utilize an alternative DNA strand separation technique, compared to other human RecQ family members. Finally, the RecQ4 model permits for the first time the analysis of multiple documented RecQ4 patient mutations at the atomic level and thus provides the possibility for an advanced interpretation of particular structure-function relationships in RecQ4 pathogenesis.}, subject = {Helikasen}, language = {en} } @phdthesis{PrietoGarcia2022, author = {Prieto Garc{\´i}a, Cristian}, title = {USP28 regulates Squamous cell oncogenesis and DNA repair via ΔNp63 deubiquitination}, doi = {10.25972/OPUS-27033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {∆Np63 is a master regulator of squamous cell identity and regulates several signaling pathways that crucially contribute to the development of squamous cell carcinoma (SCC) tumors. Its contribution to coordinating the expression of genes involved in oncogenesis, epithelial identity, DNA repair, and genome stability has been extensively studied and characterized. For SCC, the expression of ∆Np63 is an essential requirement to maintain the malignant phenotype. Additionally, ∆Np63 functionally contributes to the development of cancer resistance toward therapies inducing DNA damage. SCC patients are currently treated with the same conventional Cisplatin therapy as they would have been treated 30 years ago. In contrast to patients with other tumor entities, the survival of SCC patients is limited, and the efficacy of the current therapies is rather low. Considering the rising incidences of these tumor entities, the development of novel SCC therapies is urgently required. Targeting ∆Np63, the transcription factor, is a potential alternative to improve the therapeutic response and clinical outcomes of SCC patients. However, ∆Np63 is considered "undruggable." As is commonly observed in transcription factors, ∆Np63 does not provide any suitable domains for the binding of small molecule inhibitors. ∆Np63 regulates a plethora of different pathways and cellular processes, making it difficult to counteract its function by targeting downstream effectors. As ∆Np63 is strongly regulated by the ubiquitin-proteasome system (UPS), the development of deubiquitinating enzyme inhibitors has emerged as a promising therapeutic strategy to target ∆Np63 in SCC treatment. This work involved identifying the first deubiquitinating enzyme that regulates ∆Np63 protein stability. Stateof-the-art SCC models were used to prove that USP28 deubiquitinates ∆Np63, regulates its protein stability, and affects squamous transcriptional profiles in vivo and ex vivo. Accordingly, SCC depends on USP28 to maintain essential levels of ∆Np63 protein abundance in tumor formation and maintenance. For the first time, ∆Np63, the transcription factor, was targeted in vivo using a small molecule inhibitor targeting the activity of USP28. The pharmacological inhibition of USP28 was sufficient to hinder the growth of SCC tumors in preclinical mouse models. Finally, this work demonstrated that the combination of Cisplatin with USP28 inhibitors as a novel therapeutic alternative could expand the limited available portfolio of SCC therapeutics. Collectively, the data presented within this dissertation demonstrates that the inhibition of USP28 in SCC decreases ∆Np63 protein abundance, thus downregulating the Fanconi anemia (FA) pathway and recombinational DNA repair. Accordingly, USP28 inhibition reduces the DNA damage response, thereby sensitizing SCC tumors to DNA damage therapies, such as Cisplatin.}, language = {en} } @phdthesis{Nelke2022, author = {Nelke, Johannes}, title = {Entwicklung multi-funktioneller TNFRSF Rezeptorspezifischer Antik{\"o}rper-Fusionsproteine mit FcγR-unabh{\"a}ngiger Aktivit{\"a}t}, doi = {10.25972/OPUS-27985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Antik{\"o}rper, die gegen eine klinisch relevante Gruppe von Rezeptoren innerhalb der Tumornekrosefaktor-Rezeptor-Superfamilie (TNFRSF) gerichtet sind, darunter CD40 und CD95 (Fas/Apo-1), ben{\"o}tigen ebenfalls eine Bindung an Fc-Gamma-Rezeptoren (FcγRs), um eine starke agonistische Wirkung zu entfalten. Diese FcγR-Abh{\"a}ngigkeit beruht weitgehend auf der bloßen zellul{\"a}ren Verankerung durch die Fc-Dom{\"a}ne des Antik{\"o}rpers und ben{\"o}tigt dabei kein FcγR-Signalling. Ziel dieser Doktorarbeit war es, das agonistische Potenzial von αCD40- und αCD95-Antik{\"o}rpern unabh{\"a}ngig von der Bindung an FcγRs durch die Verankerung an Myelomzellen zu entfalten. Zu diesem Zweck wurden verschiedene Antik{\"o}rpervarianten (IgG1, IgG1-N297A, Fab2) gegen die TNFRSF-Mitglieder CD40 und CD95 genetisch mit einem einzelkettig kodierten B-Zell-aktivierenden Faktor (scBaff) Trimer als C-terminale myelom-spezifische Verankerungsdom{\"a}ne fusioniert, welche die Fc-Dom{\"a}ne-vermittelte FcγR-Bindung ersetzt. Diese bispezifischen Antik{\"o}rper-scBaff-Fusionsproteine wurden in Bindungsstudien und funktionellen Assays mit Tumorzelllinien untersucht, die einen oder mehrere der drei Baff-Rezeptoren exprimieren: BaffR, Transmembran-Aktivator und CAML-Interaktor (TACI) und B-Zell-Reifungsantigen (BCMA). Zellul{\"a}re Bindungsstudien zeigten, dass die Bindungseigenschaften der verschiedenen Dom{\"a}nen innerhalb der Antik{\"o}rper-scBaff-Fusionen gegen{\"u}ber der Zielantigene vollst{\"a}ndig intakt blieben. In Ko-Kulturversuchen von CD40- und CD95-responsiven Zellen mit BaffR-, BCMA- oder TACI-exprimierenden Verankerungszellen zeigten die Antik{\"o}rper-Fusionsproteine einen starken Agonismus, w{\"a}hrend in Ko-Kulturen mit Zellen ohne Expression von Baff-interagierenden Rezeptoren nur eine geringe Rezeptorstimulation beobachtet wurde. Die hier vorgestellten αCD40- und αCD95-Antik{\"o}rper-scBaff-Fusionsproteine zeigen also Myelom-spezifische Aktivit{\"a}t und versprechen im Vergleich zu herk{\"o}mmlichen CD40- und CD95-Agonisten geringere systemische Nebenwirkungen.}, subject = {Antigen CD40}, language = {de} } @phdthesis{Ries2020, author = {Ries, Lena Kerstin}, title = {From recognition to reaction: Mechanistic analysis of the interactions of the HECT ligase E6AP with ubiquitin}, doi = {10.25972/OPUS-17960}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179609}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The ubiquitination of proteins controls a multitude of physiological processes. This versatility of ubiquitin as a molecular signal arises from the diverse ways by which it can be attached to target proteins. Different ubiquitination patterns are then translated into different downstream consequences. Due to the enormous complexity of possible ubiquitin modifications, the ubiquitination machinery must be highly specific and tightly controlled. Ubiquitination proceeds through an enzymatic cascade, the last step of which is catalyzed by the E3 enzyme family. E3 enzymes are the crucial regulators since they dictate the specificity of substrate selection and modification. Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity, regulation and specificity in this crucial ligase are incompletely understood. One aim of this study was to unravel the role of the a1'-helix N-terminal to the HECT domain that was found to be a key element mediating regulation and oligomerization in other HECT ligases. I found that most N-terminally extended HECT domain constructs were insoluble when expressed in E. coli, indicating that additional regions N-terminal to the tested fragments may be essential to protect this highly hydrophobic helix from causing aggregation. Another question addressed in this study was how E6AP builds ubiquitin chains. Using single-turnover experiments, I showed that ubiquitin-loaded E6AP is unable to transfer an additional ubiquitin molecule onto a stably linked ubiquitin-E6AP complex. This indicates that E6AP cannot assemble chains on its active site and may instead follow a sequential addition mechanism in which one ubiquitin molecule is transferred at a time to the target protein. Using NMR spectroscopy and extensive mutational analyses, the determinants of ubiquitin recognition by the C-lobe of E6AP were unraveled and assigned to particular steps in the catalytic cycle. A functionally critical interface was identified that is specifically required during thioester formation between the C-terminus of ubiquitin and the ligase active site. This interface resembles the one utilized by NEDD4-type enzymes, suggesting a conserved ubiquitin binding mode across HECT ligases, independent of their linkage specificities. Moreover, I identified critical surface patches on ubiquitin and in the N- and C-terminal portions of the catalytic domain of E6AP that are important for the subsequent step of isopeptide bond formation. I also uncovered key determinants of the Lys48-linkage specificity of E6AP, both in the E6AP HECT domain and ubiquitin itself. This includes the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site, Lys48. It is thus tempting to speculate that ubiquitin linkage formation by E6AP is substrate-assisted. Taken together, my results improve our mechanistic understanding of the structure-function relationship between E6AP and ubiquitin, thus providing a basis for ultimately manipulating the functions of this HECT ligase for therapeutic applications.}, subject = {Ubiquitin}, language = {en} } @phdthesis{Koelmel2020, author = {K{\"o}lmel, Wolfgang}, title = {Structural and functional characterization of TFIIH from \(Chaetomium\) \(thermophilum\)}, doi = {10.25972/OPUS-16176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Gene expression and transfer of the genetic information to the next generation forms the basis of cellular life. These processes crucially rely on DNA, thus the preservation, transcription and translation of DNA is of fundamental importance for any living being. The general transcription factor TFIIH is a ten subunit protein complex, which consists of two subcomplexes: XPB, p62, p52, p44, p34, and p8 constitute the TFIIH core, CDK7, CyclinH, and MAT1 constitute the CAK. These two subcomplexes are connected via XPD. TFIIH is a crucial factor involved in both, DNA repair and transcription. The central role of TFIIH is underlined by three severe disorders linked to failure of TFIIH in these processes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Only limited structural and functional data of TFIIH are available so far. Here, the model organism Chaetomium thermophilum was utilized with the aim to structurally and functionally characterize TFIIH. By combining the expression and purification of single TFIIH subunits with the co-expression and co-purification of dual complexes, a unique and powerful modular system of the TFIIH core subunits could be established, encompassing all proteins in high quality and fully functional. This system permits the step-wise assembly of TFIIH core, thereby making it possible to assess the influence of the intricate interaction network within TFIIH core on the overall enzymatic activities of TFIIH, which has not been possible so far. Utilizing the single subunits and dual complexes, a detailed interaction network of TFIIH core was established, revealing the crucial role of the p34 subunit as a central scaffold of TFIIH by linking the two proteins p44 and p52. Our studies also suggest that p62 constitutes the central interface of TFIIH to the environment rather than acting as a scaffold. TFIIH core complexes were assembled and investigated via electron microscopy. Preliminary data indicate that TFIIH adopts different conformational states, which are important to fulfill its functions in transcription and DNA repair. Additionally, a shortened construct of p62 was used to develop an easy-to-use, low cost strategy to overcome the crystallographic phase problem via cesium derivatization.}, subject = {Transkriptionsfaktor}, language = {en} } @article{WanzekSchwindtCapraetal.2017, author = {Wanzek, Katharina and Schwindt, Eike and Capra, John A. and Paeschke, Katrin}, title = {Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {13}, doi = {10.1093/nar/gkx467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170577}, pages = {7796-7806}, year = {2017}, abstract = {The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and replication fork progression at particular G-rich motifs. This motif can form G-quadruplex (G4) structures in vitro. G4 are stable DNA structures that are known to impede replication fork progression. In the absence of Mms1, genome stability is at risk at these G-rich/G4 regions as demonstrated by gross chromosomal rearrangement assays. Mms1 binds throughout the cell cycle to these G-rich/G4 regions and supports the binding of Pif1 DNA helicase. Based on these data we propose a mechanistic model in which Mms1 binds to specific G-rich/G4 motif located on the lagging strand template for DNA replication and supports Pif1 function, DNA replication and genome integrity.}, language = {en} }