@phdthesis{Graus2020, author = {Graus, Dorothea}, title = {Auswirkungen einer V-PPase-{\"U}berexpression auf Nicotiana benthamiana Blattzellen und deren physiologische Bedeutung unter Salzbelastung}, doi = {10.25972/OPUS-19367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Vakuol{\"a}re PPasen (V-PPase) in Landpflanzen dienen dem Transport von Protonen in die Vakuole und dem Aufbau eines elektrochemischen Gradienten, w{\"a}hrend sie gleichzeitig durch Hydrolyse eine Anreicherung des toxischen PPi im Cytosol verhindern. Zahlreiche Publikationen bewiesen bereits positive Effekte der stabilen V-PPase-{\"U}berexpression in Pflanzen. Unter anderem zeigte die Ackerschmalwand, Tabak, Reis und Tomate eine erh{\"o}hte Biomasse und gesteigerte Stresstoleranz auf Grund einer erh{\"o}hten stabilen V-PPase Ex-pression. Um die zugrundeliegenden Prozesse ohne potenzielle pleiotropische Effekte w{\"a}hrend der Pflanzenentwicklung zu analysieren, wurden in der vorliegenden Dissertation die physiologischen Auswirkungen einer transienten V-PPase-{\"U}berexpression in Nicotiona benthamiana Bl{\"a}ttern und die Einflussnahme von NaCl quantitativ erfasst. Zu diesem Zweck wurden zwei endogene V-PPasen (NbVHP1 und NbVHP2) aus N. bentha-miana zun{\"a}chst bioinformatisch und dann auf Transkriptionsebene mittels quantitativer Real-Time-PCR identifiziert. Die endogenen V-PPasen wurden mittels der Agrobakterien-Infiltrationstechnik transient in N. benthamiana Bl{\"a}ttern und ihre vakuol{\"a}re Lokalisation mit Hilfe von Fluoreszenzmarkern best{\"a}tigt. Die Protonenpump-Funktion der {\"u}berexprimierten NbVHPs konnte mit der Patch-Clamp-Technik anhand des vier-fach erh{\"o}hten Protonenpump-stroms in den isolierten Mesophyllvakuolen verifiziert werden. Im Zuge der elektro-physiologischen Charakterisierung der endogenen N. benthamiana V-PPasen konnte die f{\"u}r V-PPasen typische Sensitivit{\"a}t gegen{\"u}ber cytosolischem Calcium best{\"a}tigt werden, welche sich bei einem erh{\"o}hten Calcium-Spiegel in einer Hemmung der Pumpstr{\"o}me {\"a}ußerte. Ferner wurde ihre gleichartige Substrataffinit{\"a}t (Km von 65 µM PPi) unabh{\"a}ngig des vakuol{\"a}ren pHs zwischen 5,5 und 7,5 festgestellt. Der Vergleich dieser Ergebnisse mit analog durchgef{\"u}hrten Messungen an der bereits publizierten AtVHP1 von A. thaliana best{\"a}tigte die große Homo-logie der V-PPasen von Landpflanzen. Im Gegensatz zu den erw{\"u}nschten Auswirkungen der stabilen V-PPase {\"U}berexpression resultierte diese starke transiente {\"U}berexpression nach drei Tagen im Absterben makroskopischer Blattbereiche. Das Ausmaß dieser Nekrosen wurde anhand des vorhandenen PhotosystemII in den transformierten Bl{\"a}ttern mit der Puls-Amplituden-Modulations-Technik quantifiziert. Die analoge transiente {\"U}berexpression einer l{\"o}slichen PPase (IPP1) f{\"u}hrte allerdings zu keinerlei negativen Effekten f{\"u}r die Pflanze, wodurch die erh{\"o}hte Protonentransportaktivit{\"a}t im Gegensatz zur Hydrolyseaktivit{\"a}t der V-PPasen als Ursache des Zellsterbens verifiziert werden konnte. Aufgrund dieser unerwarteten negativen Auswirkungen der transienten V-PPase-{\"U}berex-pression auf die Blattvitalit{\"a}t wurde zus{\"a}tzlich die Salzstresstoleranz der Bl{\"a}tter untersucht. Unter Ber{\"u}cksichtigung des kurzen Transformations- und damit Beobachtungszeitfensters wurde ein Salzapplikationsverfahren etabliert, bei dem simultan mit der Agrobakterien-infiltration 200 mM NaCl direkt in den Blattapoplasten eingef{\"u}hrt wurde. Anhand einer Zu-nahme in sowohl der Transskriptmenge der V-PPase als auch des PPi-induzierten Protonen-pumptransportes {\"u}ber den Tonoplasten wurde gezeigt, dass die NaCl-Anwesenheit im Blatt eine erh{\"o}hte Aktivit{\"a}t der endogenen V-PPasen des N. benthaminan Pflanzen bewirkte. Der gleichzeitige tendenzielle R{\"u}ckgang der V-ATPase-Pumpaktivit{\"a}t in salzbehandelten Mesophyllvakuolen l{\"a}sst vermuten, dass die V-PPasen eine gr{\"o}ßere Rolle bei der Bewahrung des vakuol{\"a}ren pH-Wertes und der protonenmotorische Kraft (PMF) unter Salzstress ein-nimmt. Interessanterweise f{\"u}hrte die Salzapplikation bei einer V-PPase-{\"U}berexpression zu keinen additiven negativen Effekten, sondern verhinderte sogar das Auftreten der Nekrosen. Um dieses Ph{\"a}nomen zu ergr{\"u}nden, wurde zun{\"a}chst mit Hilfe von Apoplastenwaschungen und Natrium-Konzentrationsmessungen best{\"a}tigt, dass das injizierte NaCl im Blatt verblieb und von den Blattzellen aufgenommen wurde. F{\"u}r weitere Studien der Ursachen der Nekrosen wurden in-vivo-pH-, Membranpotenzial- und Metabolitmessungen durchgef{\"u}hrt. W{\"a}hrend in V-PPase-{\"u}berexprimierenden Zellen der vakuol{\"a}re pH-Wert zu Kontrollvakuolen signifikant sank, blieb er mit zus{\"a}tzlicher Salzbehandlung auf Kontrollniveau. Des Weiteren schw{\"a}chte die Salzapplikation die starke Depolarisation der Plasmamembran nach V-PPase-{\"U}ber-expression um mehr als die H{\"a}lfte ab. Hingegen konnten keine nennenswerten Ver-{\"a}nderungen im Metabolit- und Ionengehalt des Blattgewebes bei V-PPase-{\"U}berexpression festgestellt werden. Lediglich der Natrium- und Chlorid-Spiegel waren bei salz-behandelten Bl{\"a}ttern erwartungsgem{\"a}ß erh{\"o}ht. Diese Ergebnisse bekr{\"a}ftigten, dass der stark erh{\"o}hte V-PPase-vermittelte Protonenpumpstrom und weniger metabolische Ver{\"a}nderungen f{\"u}r die Nekrosen von V-PPase-{\"u}berexprimierte Pflanzen verantwortlich ist. Diese negativen Auswirkungen werden offensichtlich durch die Salzbehandlung stark vermindert, da die Aufnahme der Salz-ionen {\"u}ber Protonen-Na+/K+-Antiporter wie NHX antagonistisch auf die V-PPase verursachte Protonenanreicherung und die daraus folgende Ver{\"a}nderung des Membran-potentials und der PMF entgegenwirkt. In diese Arbeit wurde in einem neuen Blickwinkel deutlich, dass die nat{\"u}rliche Expressions-kontrolle der V-PPase in ausdifferenzierten Pflanzenzellen sich den Umweltbedingungen anpasst, um das Gleich-gewicht zwischen den positiven und negativen Auswirkungen der Pumpaktivit{\"a}t zu halten.}, subject = {Pyrophosphatase}, language = {de} } @phdthesis{Boehm2015, author = {B{\"o}hm, Jennifer}, title = {Die N{\"a}hrstoffresorption in den Fallen von Dionaea muscipula weist Parallelen zur N{\"a}hrsalzaufnahme in Wurzeln auf}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123958}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die Venusfliegenfalle, Dionaea muscipula, weckte aufgrund ihrer karnivoren Lebensweise schon sehr fr{\"u}h das Interesse vieler Wissenschaftler. F{\"u}r karnivore Pflanzen, die auf N{\"a}hrstoff-armen B{\"o}den wachsen, spielen Insekten als Beute und somit als N{\"a}hrstofflieferant eine entscheidende Rolle. So k{\"o}nnen die Pflanzen durch die Verdauung der Beute mit wichtigen Makro- und Mikron{\"a}hrstoffen, wie Stickstoff, Phosphat, Kalium oder Natrium versorgt werden. Aus diesem Grund sollte im Rahmen meiner Arbeit ein besonderes Augenmerk auf die molekularen Mechanismen der Kationenaufnahme w{\"a}hrend der N{\"a}hrstoffresorption gerichtet werden. Insbesondere die aus dem Insekt stammenden N{\"a}hrstoffe Kalium und Natrium waren dabei von großem Interesse. Im Allgemeinen sind Kaliumionen f{\"u}r Pflanzen eine essentielle anorganische Substanz und von großer physiologischer Bedeutung f{\"u}r die Entwicklung, den Metabolismus, die Osmoregulation, das Membranpotential und viele zellul{\"a}re Prozesse. Analysen der Kaliumaufnahme an Wurzeln von Modellpflanzen wie Arabidopsis thaliana und Reis zeigten, dass die Aufnahme von K+ ein Zusammenspiel von hoch-affinen K+-Transportern der HAK5-Familie und nieder-affinen Kaliumkan{\"a}len (AKT1/AtKC1) erfordert, die in ein komplexes (De-)Phosphorylierungsnetzwerk eingebunden sind. In der vorliegenden Arbeit war es mir m{\"o}glich das Netzwerk zur Kaliumaufnahme in den Dr{\"u}sen der Venusfliegenfalle zu entschl{\"u}sseln. Es konnten Orthologe zum Kaliumtransporter HAK5 aus Arabidopsis (DmHAK5) und zum Kaliumkanal AKT1 (DmKT1) identifiziert und im heterologen Expressionssystem der Xenopus laevis Oozyten elektrophysiologisch charakterisiert werden. Dabei zeigte sich, das DmKT1 durch einen Ca2+-Sensor/Kinase-Komplex aus der CBL/CIPK-Familie phosphoryliert und somit aktiviert wird. Phylogenetische Analysen von DmKT1 best{\"a}tigten die Eingruppierung dieses Kaliumkanals in die Gruppe der pflanzlichen Shaker-Kaliumkan{\"a}le des AKT1-Typs. Die Transporteigenschaften zeigten zudem, dass DmKT1 bei hyperpolarisierenden Membranpotentialen aktiviert wird und einen K+-selektiven Einw{\"a}rtsstrom vermittelt. In Oozyten konnte eine Kaliumaufnahme bis zu einer externen Konzentration von ≥1 mM beobachtet werden. DmKT1 repr{\"a}sentiert also einen Kaliumkanal mit einer hohen Transportkapazit{\"a}t, der die nieder-affine Kaliumaufnahme in die Dr{\"u}senzellen der Venusfliegenfalle vermitteln kann. Unterhalb einer externen Kaliumkonzentration von 1 mM w{\"u}rde der anliegende elektrochemische Kaliumgradient einen Kaliumausstrom und somit einen Verlust von Kalium favorisieren. Hoch-affine K+/H+-Symporter k{\"o}nnen durch die Ausnutzung des Protonengradienten eine Kaliumaufnahme im mikromolaren Bereich gew{\"a}hrleisten. In Wurzelhaaren von Arabidopsis vermittelt der Transporter AtHAK5 die Kaliumaufnahme unter Kaliummangelbedingungen. DmHAK5, ein Ortholog zu AtHAK5, ist in Dionaea Dr{\"u}sen exprimiert und konnte zum ersten Mal im heterologen Expressionssystem der Xenopus Oozyten im Detail charakterisiert werden. Interessanterweise zeigte sich, dass DmHAK5 wie der K+-Kanal DmKT1 durch denselben CBL/CIPK-Komplex posttranslational reguliert und aktiviert wird. Die Transporteigenschaften von DmHAK5 wiesen auf einen Transporter mit einer breiten Substratspezifit{\"a}t hin, sodass sich DmHAK5 neben Kalium auch f{\"u}r Ammonium permeabel zeigte. Affinit{\"a}tsuntersuchungen von DmHAK5 zu seinem Substrat Kalium klassifizierten das Protein als einen hoch-affinen Kaliumtransporter, der im Symport mit Protonen die Kaliumaufnahme im mikromolaren Konzentrationsbereich vermitteln kann. Das Kaliumtransportmodul besteht also aus dem K+-selektiven Kanal DmKT1 und dem K+/H+-Symporter DmHAK5, die die hoch- und nieder-affine Kaliumaufnahme in den Dr{\"u}senzellen w{\"a}hrend der Beuteverdauung in Dionaea muscipula Fallen erm{\"o}glichen. Beide Transportmodule werden Kalzium-abh{\"a}ngig durch die Kinase CIPK23 und den Ca2+-Sensor CBL9 auf posttranslationaler Ebene reguliert. Zusammenfassend gelang es in dieser Arbeit Einblicke in die Kationenaufnahme w{\"a}hrend der N{\"a}hrstoffresorptionsphase der Venusfliegenfalle, Dionaea muscipula, zu gewinnen. Dabei wurde klar, dass Dionaea muscipula im Laufe ihrer Evolution zu einer karnivoren Pflanze, nicht neue Transportmodule zur N{\"a}hrstoffresorption aus der Beute entwickelte, sondern bekannte aus Wurzeln stammende Transportmodule umfunktionierte. Auf molekularer Ebene konnten die biophysikalischen Charakteristika der K+- und Na+-Transportproteine, sowie ihre Regulation entschl{\"u}sselt werden. Diese Erkenntnisse wurden schließlich in den Kontext des Beutefangs der Venusfliegenfalle gebracht und diskutiert.}, subject = {Venusfliegenfalle}, language = {de} } @phdthesis{Imes2016, author = {Imes, Dennis}, title = {Aufkl{\"a}rung der molekularen Struktur und Funktion des R-Typ Anionenkanals QUAC1 in Schließzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Zum Gasaustausch mit Ihrer Umgebung besitzen h{\"o}here Pflanzen stomat{\"a}re Komplexe. Die Turgor-getrieben Atmungs{\"o}ffnungen in der Epidermis der Bl{\"a}tter werden von zwei Schließzellen ums{\"a}umt. Um bei Trockenheit einen exzessiven Verlust von Wasser zu verhindern, synthetisieren/importieren Schließzellen das Stresshormon ABA (Abszisins{\"a}ure), das {\"u}ber eine schnelle ABA-Signalkaskade plasmamembrangebundene Ionenkan{\"a}le steuert. Dabei wird der Stomaschluss durch die Aktivit{\"a}t von R-(rapid) und S-(slow)Typ Anionenkan{\"a}len initiiert. Obwohl die R- und S-Typ Anionenstr{\"o}me in Schließzellen seit Jahrzehnten bekannt waren, konnte erst k{\"u}rzlich das Gen identifiziert werden, das f{\"u}r den S-Typ Anionenkanal (SLAC1, Slow activating Anion Channel 1) kodiert. Daraufhin wurde schnell der Zusammenhang zwischen dem Stresshormon ABA, der ABA-Signalkette und der Aktivit{\"a}t des SLAC1 Anionenkanals im heterologen Expressionssystem der X. laevis Oozyten als auch in Schließzellprotoplasten aufgekl{\"a}rt. Es konnte gezeigt werden, dass ABA durch einen zytosolischen Rezeptor/Phosphatasekomplex (RCAR1/ABI1) erkannt wird und die Aktivit{\"a}t von kalziumabh{\"a}ngigen Kinasen (CPK-Familie) sowie kalziumunabh{\"a}ngigen Kinasen der SnRK2-Familie (OST1) steuert. In Anwesenheit von ABA phosphorylieren diese Kinasen SLAC1 und sorgen so f{\"u}r die Aktivierung von Anionenstr{\"o}men und damit f{\"u}r die Initiierung des Stomaschlusses. Die genetische Herkunft der ABA-induzierten R-Typ Str{\"o}me in Schließzellen war zu Beginn der vorliegenden Arbeit noch nicht bekannt. R-Typ Str{\"o}me zeichnen sich durch eine strikte Spannungsabh{\"a}ngigkeit und sehr schnellen Aktivierungs- sowie Deaktivierungskinetiken aus. Die Charakterisierung von Verlustmutanten des Schließzell-exprimierten Gens ALMT12 (Aluminium-aktivierter Malattransporter 12) konnte in Zusammenarbeit mit der Arbeitsgruppe Martinoia (Z{\"u}rich) erste Hinweise auf die Beteiligung dieses Gens an der Stomabewegung demonstrieren. Anschließende Patch-Clamp Untersuchungen an Schließzellprotoplasten aus Wildtyppflanzen und ALMT12-Verlustmutanten zeigten, dass ALMT12 f{\"u}r die Malat-aktivierte R-Typ Anionenstromkomponente verantwortlich ist. Deshalb wurde der Anionenkanal QUAC1 (Quickly activating Anion Channel 1) benannt - in Anlehnung an die Benennung des Anionenkanals SLAC1. Mit der Identifizierung von QUAC1 in planta war es nun meine Aufgabe, die elektrischen Eigenschaften von ALMT12/QUAC1 und dessen Aktivit{\"a}tskontrolle durch die ABA-Signalkaskade im heterologen Expressionssystem der Xenopus Oozyten zu untersuchen. Protein-Protein Interaktionsstudien mit der Hilfe der Bimolekularen Fluoreszenz-Technik, sowie die Beobachtung von markant erh{\"o}hten QUAC1 Anionenstr{\"o}men in Anwesenheit der SnRK2 Kinase OST1 und den Calcium-abh{\"a}ngigen Kinasen CPK2 und CPK20, ließen den Schluss zu, dass QUAC1, ebenso wie SLAC1, unter der Kontrolle des schnellen ABA-Signalwegs steht. Eine zus{\"a}tzliche Expression des negativen Regulators ABI1 unterdr{\"u}ckte die aktivierenden Eigenschaften der QUAC1-aktivierenden Kinasen, was die Hypothese der Koregulation von S- und R-Typ Anionenkan{\"a}len durch die gleiche ABA-Signalkaskade weiter unterst{\"u}tzt. Zur weiteren Aufkl{\"a}rung der elektrischen Eigenschaften von QUAC1 wurden tiefgreifende elektrophysiologische Untersuchungen mit der Zwei-Elektroden-Spannungsklemmen Technik durchgef{\"u}hrt. Durch die Wahl von geschickten Spannungsprotokollen konnte sowohl die schnelle Aktivierungskinetik als auch die schnelle Deaktivierungskinetik von QUAC1 bestimmt und quantifiziert werden. Diese Stromantworten waren sehr {\"a}hnlich zu den R-Typ Str{\"o}men, die man von Patch-Clamp Untersuchungen an Schließzellprotoplasten kannte, was ein weiteres Indiz daf{\"u}r war, dass es sich bei QUAC1 tats{\"a}chlich um eine Komponente des R-Typ Kanals aus Schließzellen handelt. Weiterf{\"u}hrende Untersuchungen bez{\"u}glich der Spannungsabh{\"a}ngigkeit und der Selektivit{\"a}t von QUAC1 charakterisierten das Protein als einen Depolarisations-aktivierten Anionenkanal mit einer starken Pr{\"a}ferenz f{\"u}r Dicarbons{\"a}uren wie Malat und Fumarat. Zudem konnte auch eine Leitf{\"a}higkeit f{\"u}r Sulfat und Chlorid nachgewiesen werden. Interessanterweise erwies sich Malat nicht nur als ein permeierendes Ion, sondern auch als ein regulierendes Ion, welches das spannungsabh{\"a}ngige Schalten von QUAC1 maßgeblich beeinflusst. Extrazellul{\"a}res Malat verschob die Offenwahrscheinlichkeit von QUAC1 sehr stark zu negativeren Membranspannungen, so dass der Anionenkanal bereits bei typischen Ruhespannungen von Schließzellen (ca. -150 mV) aktiviert werden konnte. Eine Beladung von QUAC1-exprimierender Oozyten mit Malat bewirkte zum einen h{\"o}here Anioneneffluxstr{\"o}me, aber auch eine Verschiebung der spannungsabh{\"a}ngigen Offenwahrscheinlichkeit zu negativeren Membranpotentialen. Struktur-Funktionsanalysen sollten die umstrittene Topologie von ALMT-{\"a}hnlichen Proteinen beleuchten und die molekulare Herkunft der Phosphorylierungsaktivierung aufzeigen, sowie die Malatabh{\"a}ngigkeit und die starke Spannungsabh{\"a}ngigkeit von QUAC1 aufkl{\"a}ren. Es zeigte sich jedoch schnell, dass Punktmutationen und Deletionen im C-Terminus von QUAC1 sehr h{\"a}ufig zu nicht-funktionellen Mutanten f{\"u}hrten. Diese Tatsache weist darauf hin, dass es sich um einen hoch-strukturierten und funktionell sehr wichtigen Bereich des Anionenkanals handelt. Auch die Topologie des Anionenkanalproteins wird in der Literatur kontrovers diskutiert. Sowohl die Lage des N- und C-Terminus (extrazellul{\"a}r oder intrazellul{\"a}r), als auch die Anzahl der membrandurchspannenden Dom{\"a}nen war nicht abschließend gekl{\"a}rt. Deshalb wurde in einem Fluoreszenz-basiertem Ansatz die Lage der Termini bestimmt. Im Rahmen meiner Arbeit konnte somit eindeutig gezeigt werden, dass sich beide Termini im Zytosol der Zelle befinden. Auf Grundlage von Modellen aus der Literatur und meiner Topologiebestimmungen konnte schließlich ein erweitertes Modell zur Struktur von QUAC1 entwickelt werden. Dieses Modell kann in Zukunft als Ausgangspunkt f{\"u}r weiterf{\"u}hrende Struktur-Funktionsanalysen dienen. Diese Arbeit hat somit gezeigt, dass das Gen QUAC1 tats{\"a}chlich eine Komponente der R-Typ Str{\"o}me in Schließzellen kodiert. Ebenso wie SLAC1 steht der Malat-induzierte Anionenkanal QUAC1 unter der Kontrolle der schnellen ABA-Signalkaskade. In Zukunft bleibt zu kl{\"a}ren, welche weiteren Gene f{\"u}r die R-Typ Kanalproteine in Schließzellen kodieren und welche strukturelle Grundlage f{\"u}r die besonderen Eigenschaften von QUAC1 hinsichtlich seiner schnellen Kinetiken, seiner Selektivit{\"a}t und Aktivierbarkeit durch Malat.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Dindas2019, author = {Dindas, Julian}, title = {Cytosolic Ca\(^2\)\(^+\), a master regulator of vacuolar ion conductance and fast auxin signaling in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-15863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Phytohormon Auxin erf{\"u}llt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit {\"a}ußeren Reizen wie Schwerkraft, Wasser- und N{\"a}hstoffverf{\"u}gbarkeit. Diese Funktionen basieren dabei vor allem auf der Auxin-abh{\"a}ngigen Regulation von Zellteilung und -streckung. Wichtig f{\"u}r letzteres ist dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher f{\"u}r N{\"a}hrstoffe, Metabolite und Toxine sind Vakuolen von essentieller Bedeutung. Vakuol{\"a}r gespeicherte Metabolite und Ionen werden sowohl {\"u}ber aktive Transportprozesse, als auch passiv durch Ionenkan{\"a}le, {\"u}ber die vakuol{\"a}re Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuol{\"a}rer Transportprozesse. {\"A}nderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit einer Signalweiterleitung {\"u}ber l{\"a}ngere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuol{\"a}rer Transportprozesse und der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen. Kalziumsignale sind an der Regulierung vakuol{\"a}rer Ionenkan{\"a}le und Transporter beteiligt. Um dies im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von Arabidopsis thaliana Messungen mit intrazellul{\"a}ren Mikroelektroden durchgef{\"u}hrt. Mittels der Zwei-Elektroden-Spannungsklemm-Technik konnte best{\"a}tigt werden, dass die vakuol{\"a}re Membran der limitierende elektrische Wiederstand w{\"a}hrend intravakuol{\"a}rer Messungen ist und so gemessene Ionenstr{\"o}me in der Tat nur die Str{\"o}me {\"u}ber die vakuol{\"a}re Membran repr{\"a}sentieren. Die bereits bekannte zeitabh{\"a}ngige Abnahme der vakuol{\"a}ren Leitf{\"a}higkeit in Einstichexperimenten konnte weiterhin mit einer einstichbedingten, transienten Erh{\"o}hung der zytosolischen Kalziumkonzentration korreliert werden. Durch intravakuol{\"a}re Spannungsklemmexperimente in Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen vakuol{\"a}rer Leitf{\"a}higkeit und der zytosolischen Kalziumkonzentration best{\"a}tigt werden. Die Vakuole ist jedoch nicht nur ein Empf{\"a}nger zytosolischer Kalziumsignale. Da die Vakuole den gr{\"o}ßten intrazellul{\"a}ren Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen best{\"a}tigt werden. {\"A}nderungen des vakuol{\"a}ren Membranpotentials wirkten sich auf die zytosolische Kalziumkonzentration in diesen Zellen aus. W{\"a}hrend depolarisierende Potentiale zu einer Erh{\"o}hung der zytosolischen Kalziumkonzentration f{\"u}hrten, bewirkte eine Hyperpolarisierung der vakuol{\"a}ren Membran das Gegenteil. Thermodynamische {\"U}berlegungen zum passiven und aktiven Kalziumtransport {\"u}ber die vakuol{\"a}re Membran legten dabei den Schluss nahe, dass die hierin beschriebenen Ergebnisse das Verhalten von vakuol{\"a}ren H+/Ca2+ Austauschern wiederspiegeln, deren Aktivit{\"a}t durch die protonenmotorische Kraft bestimmt wird. Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, {\"u}ber den der polare Transport des Hormons reguliert wird. Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abh{\"a}ngige Depolarisation des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abh{\"a}ngigen Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen von Verlustmutanten konnte gezeigt werden, dass die sekund{\"a}r aktive Aufnahme von Auxin durch das hochaffine Transportprotein AUX1 f{\"u}r die schnelle Depolarisation verantwortlich ist. Nicht nur die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-vermittelte Depolarisation von Wurzelhaaren. Eine unver{\"a}nderte Expression von AUX1 in der cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivit{\"a}t von AUX1 posttranslational reguliert werden muss. Diese Hypothese erfuhr Unterst{\"u}tzung durch Experimente, in denen die Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp f{\"u}hrte. Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des Auxin-Gradienten an der Wurzelspitze und unterst{\"u}tzten somit eine hypothetische Kalziumabh{\"a}ngige Regulation des polaren Auxin Transports. Ein Model f{\"u}r einen schnellen, Auxin induzierten und kalziumabh{\"a}ngigen Signalweg wird pr{\"a}sentiert und dessen Bedeutung f{\"u}r das gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abh{\"a}ngigkeit von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen Signalwegs ebenso f{\"u}r die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende Verf{\"u}gbarkeit von Phosphat diskutiert.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Lehmann2020, author = {Lehmann, Julian}, title = {Hochaufl{\"o}sende Fluoreszenzmikroskopie beleuchtet den Oligomerisierungsstatus pflanzlicher Membranproteine}, doi = {10.25972/OPUS-21176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {SLAC/SLAH Anionenkan{\"a}le, die zur Familie der langsamen Anionenkan{\"a}le geh{\"o}ren, repr{\"a}sentieren Schl{\"u}sselproteine in der pflanzlichen Stressantwort. Neben ihrer Aufgabe in Stresssituationen, ist eine Untergruppe der Kan{\"a}le f{\"u}r die Beladung der Leitgef{\"a}ße mit Nitrat und Chlorid in der Stele der Pflanzenwurzeln verantwortlich. Biophysikalische und pflanzenphysiologische Studien stellten heraus, dass vor Allem der Anionenkanal SLAH3 f{\"u}r die Beladung der Xylem Leitgef{\"a}ße mit Nitrat und Chlorid verantwortlich ist. Ihm zur Seite gestellt werden noch die elektrisch inaktiven Homologe SLAH1 und SLAH4 in der Wurzel exprimiert. Sie steuern die Aktivit{\"a}t von SLAH3 durch die Assemblierung zu SLAH1/SLAH3 oder SLAH3/SLAH4 Heteromeren. Neben der Kontrolle durch Heteromerisierungsereignisse, werden SLAH3 Homomere sehr spezifisch und schnell durch zytosolische Ans{\"a}uerung aktiviert. Obwohl bereits die Kristallstruktur des bakteriellen Homologs HiTehA zu pflanzlichen SLAC/SLAH Anionenkan{\"a}len bekannt ist, welche HiTehA als Trimer charakterisiert, sind die St{\"o}chiometrie und der Polymerisierungsgrad der pflanzlichen SLAC/SLAHs bisher noch unbekannt. Die Fluoreszenzmikroskopie umfasst viele etablierte Anwendungsmethoden, wie die konfokale Laserrastermikroskopie (CLSM), Techniken mit verbesserter Aufl{\"o}sung, wie die Mikroskopie mit strukturierter Beleuchtung (SIM) und hochaufl{\"o}sende Methoden, welche durch die Lokalisationsmikroskopie (z.B. dSTORM und PALM) oder die Expansionsmikroskopie (ExM) vertreten werden. Diese unterschiedlichen Mikroskopie-methoden erm{\"o}glichen neue Einblicke in die Organisation von Proteinen in biologischen Systemen, die bis auf die molekulare Ebene hinunterreichen. Insbesondere im Bereich der hochaufl{\"o}senden Fluoreszenzmikroskopie sind im Gegensatz zu tierischen Frage-stellungen bisher jedoch nur wenige Untersuchungen in pflanzlichen Geweben durchgef{\"u}hrt worden. Die Lokalisationsmikroskopie erm{\"o}glicht die Quantifizierung einzelner Molek{\"u}le in nativen Systemen und l{\"a}sst {\"u}berdies R{\"u}ckschl{\"u}sse auf den Polymerisierungsgrad von Proteinen zu. Da Poly- und Heteromerisierung von Proteinen oftmals mit der Funktionalit{\"a}t eines entsprechenden Proteins einhergeht, wie es bei den SLAC/SLAH Anionenkan{\"a}len der Fall ist, wurden in dieser Arbeit PALM Messungen zur Untersuchung des Polymerisierungsgrades und Interaktionsmuster der Anionenkan{\"a}le angewendet. Ferner wurden Expressionsmuster der SLAC/SLAHs untersucht und zudem Mikroskopieanwendungen im Pflanzengewebe etabliert und verbessert. In Bezug auf die Mikroskopieanwendungen konnten wir in Arabidopsis thaliana (At) Wurzeln die polare Verteilung von PIN Proteinen mittels SIM best{\"a}tigen und die gruppierte Verteilung in der Plasmamembran am Zellpol aufl{\"o}sen. In Wurzel-querschnitten war es m{\"o}glich, Zellw{\"a}nde zu vermessen, den Aufbau der Pflanzenwurzel mit den verschiedenen Zelltypen zu rekonstruieren und diesen in Zusammenhang mit Zellwanddicken zu bringen. Anhand dieser Aufnahmen ließ sich die Aufl{\"o}sungsgrenze eines SIM-Mikroskops bestimmen, weshalb diese Probe als Modellstruktur f{\"u}r Aufl{\"o}sungsanalysen, zur Kontrolle f{\"u}r die korrekte Bildverarbeitung bei hochaufl{\"o}sender Bildgebung und andere Fragestellungen empfohlen werden kann. F{\"u}r die Expansionsmikroskopie in pflanzlichen Proben konnten ein enzym- und ein denaturierungsbasiertes Pr{\"a}parationsprotokoll etabliert werden. Dabei wurden ganze At Setzlinge, Wurzelabschnitte und Blattst{\"u}cke gef{\"a}rbt, expandiert und mit zwei bis drei Mal verbesserter Aufl{\"o}sung bildlich dargestellt. In diesem Zusammenhang waren Aufnahmen ganzer Wurzel- und Blattproben mit beeindruckender Eindringtiefe und extrem geringem Hintergrundsignal m{\"o}glich. Zudem wurden die Daten kritisch betrachtet, Probleme aufgezeigt, gewebespezifische Ver{\"a}nderungen dargestellt und limitierende Faktoren f{\"u}r die ExM in Pflanzenproben thematisiert. Im Fokus dieser Arbeit stand die Untersuchung der SLAC/SLAH Proteine. SLAH2 wird in den Wurzeln vornehmlich in Endodermis- und Perizykelzellen exprimiert, was anhand verschiedener At SLAH2 YFP Mutanten untersucht werden konnte. Dies unterst{\"u}tzt die Annahme, dass SLAH2 bei der Beladung der Leitgef{\"a}ße mit Nitrat maßgeblich beteiligt ist. Es ist denkbar, dass SLAH2 ebenfalls eine wachstumsbeeinflussende Funktion {\"u}ber die Regulation von Nitratkonzentrationen zugeschrieben werden kann. Darauf deuten vor allem die verst{\"a}rkte Expression von SLAH2 im Bereich der Seitenwurzeln und die heterogene Expression in der Elongations-, Differenzierungs- und meristematischen Zone hin. Die Membranst{\"a}ndigkeit von SLAH4 konnte nachgewiesen werden und FRET FLIM Untersuchungen zeigten eine hohe Affinit{\"a}t von SLAH4 zu SLAH3, was die beiden Homologe als Interaktionspartner identifiziert. F{\"u}r die Bestimmung des Oligomerisierungsgrades mittels PALM wurden die pflanzlichen Anionenkan{\"a}le in tierischen COS7-Zellen exprimiert. Die elektrophysiologische Funktionalit{\"a}t der mEOS2-SLAC/SLAH-Konstrukte wurde mit Hilfe von Patch-Clamp-Versuchen in COS7-Zellen {\"u}berpr{\"u}ft. Um Expressionslevel, Membranst{\"a}ndigkeit und die Verteilung {\"u}ber die Membran der SLAC/SLAHs zu verifizieren, wurden dSTORM-Aufnahmen herangezogen Schließlich erm{\"o}glichten PALM-Aufnahmen die Bestimmung des Polymerisierungs-grades der SLAC/SLAH Anionenkan{\"a}le, die st{\"o}chiometrischen Ver{\"a}nderungen bei Heteromerisierung von SLAH3 mit SLAH1 oder SLAH4 und auch der Einfluss einer zytosolischer Ans{\"a}uerung auf den Polymerisierungsgrad von SLAH3 Homomeren. Zudem weisen die Oligomerisierungsanalysen von SLAH3 Mutanten darauf hin, dass die Aminos{\"a}uren Histidin His330 und His454 entscheidend an der pH sensitiven Regulierung von SLAH3 beteiligt sind. Durch die erhobenen Daten konnten also entscheidende, neue Erkenntnisse {\"u}ber die Regulationsmechanismen von pflanzlichen Anionenkan{\"a}len auf molekularer Ebene gewonnen werden: Unter Standardbedingungen liegen SLAC1, SLAH2 und SLAH3 haupts{\"a}chlich als Dimer vor. Auf eine zytosolische Ans{\"a}uerung reagiert ausschließlich SLAH3 mit einer signifikanten st{\"o}chiometrischen Ver{\"a}nderung und liegt im aktiven Zustand vor Allem als Monomer vor. Der Oligomerisierungsgrad von SLAC1 und SLAH2 bleibt hingegen bei einer zytosolischen Ans{\"a}uerung unver{\"a}ndert. Ferner kommt es bei der Interaktion von SLAH3 mit SLAH1 oder SLAH4 zur Formierung eines Heterodimers, welches unbeeinflusst durch den zytosolischen pH bleibt. Im Gegensatz dazu bleiben die elektrisch inaktiven Untereinheiten SLAH1 und SLAH4 monomerisch und assemblieren ganz spezifisch nur mit SLAH3. Die hochaufl{\"o}sende Fluoreszenz-mikroskopie, insbesondere PALM erlaubt es also Heteromerisierungsereignisse und {\"A}nderungen im Poylmerisierungsgrad von Membranproteinen wie den SLAC/SLAHs auf molekularer Ebene zu untersuchen und l{\"a}sst so R{\"u}ckschl{\"u}sse auf physiologische Ereignisse zu.}, subject = {Fluoreszenzmikroskopie}, language = {de} } @phdthesis{vonRueden2022, author = {von R{\"u}den, Martin Frederik}, title = {The Venus flytrap - Role of oxylipins in trap performance of Dionaea muscipula}, doi = {10.25972/OPUS-27385}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273854}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A part of the plant kingdom consists of a variety of carnivorous plants. Some trap their prey using sticky leaves, others have pitfall traps where prey cannot escape once it has fallen inside. A rare trap type is the snap-trap: it appears only twice in the plant kingdom, in the genera Aldrovanda and Dionaea. Even Charles Darwin himself described Dionaea muscipula, the Venus flytrap, with the following words "This plant, commonly called Venus' fly-trap, from the rapidity and force of its movements, is one of the most wonderful in the world". For a long time now, the mechanisms of Dionaea's prey recognition, capture and utilization are of interest for scientists and have been studied intensively. Dionaea presents itself with traps wide-open, ready to catch insects upon contact. For this, the insect has to touch the trigger hairs of the opened trap twice within about 20-30 seconds. Once the prey is trapped, the trap lobes close tight, forming a hermetically sealed "green stomach". Until lately, there was only limited knowledge about the molecular and hormonal mechanisms which lead to prey capture and excretion of digestive fluids. It is known that the digestion process is very water-consuming; therefore, the interplay of digestion-inducing and digestion inhibiting substances was to be analyzed in this work, to elucidate the fine-tuning of the digestive pathway. Special attention was given to the impact of phytohormones on mRNA transcript levels of digestion-related proteins after various stimuli as well as their effect on Dionaea's physiological responses. Jasmonic acid (JA) and its isoleucine-conjugated form, JA-Ile, are an important signal in the jasmonate pathway. In the majority of non-carnivorous plants, jasmonates are critical for the defense against herbivory and pathogens. In Dionaea, this defense mechanism has been restructured towards offensive prey catching. One question in this work was how the frequency of trigger hair bendings is related to the formation of jasmonates and the induction of the digestion process. Upon contact of a prey with the trigger hairs in the inside of the trap, the trap closes and jasmonates are produced biosynthetically. JA-Ile interacts with the COI1- receptor, thereby activating the digestion pathway which leads to the secretion of digestive fluid and production of transporters needed to take up prey-derived nutrients. In this work it could be shown that the number of trigger hair bendings is positively correlated with the level and duration of transcriptional induction of several digestive enzymes/hydrolases. Abscisic acid (ABA) acts, along with many other functions, as the plant "drought stress hormone". It is synthesized either by roots as the primary sensor for water shortage or by guard cells in the leaves. ABA affects a network of several thousand genes whose regulation prepares the plant for drought and initiates protective measurements. It was known from previous work that the application of ABA for 48 hours increased the required amount of trigger hair bendings to achieve trap closure. As the digestion process is very water-intensive, the question arose how exactly the interplay between the jasmonate- and the ABA-pathway is organized, and if ABA could stop the running digestion process once it had been activated. In the present work it could be shown that the application of ABA on intact traps prior to mechanically stimulating the trigger hairs (mechanostimulation) already significantly reduced the transcription of digestive enzymes for an incubation time as short as 4 h, showing that already short-term exposure to ABA counteracts the effects of jasmonates when it comes to initiating the digestion process, but does not inhibit trap closure. Incubation for 24 and 48 hours with 100 μM active ABA had no effect on trap reopening, only very high levels of 200 μM of active ABA inhibited trap reopening but also led to tissue necrosis. As the application of ABA could reduce the transcription of digestive hydrolases, it is likely that Dionaea can stop the digestion process, if corresponding external stimuli are received. Another factor, which only emerged later, was the effect of the wounding-induced systemic jasmonate burst. As efficient as ABA was in inhibiting marker hydrolase expression after mechanostimulation in intact plants, the application of ABA on truncated traps was not able to inhibit mechanostimulation-induced marker hydrolase expression. One reason might be that the ABA-signal is perceived in the roots, and therefore truncated traps were not able to react to it. Another reason might be that the wounding desensitized the tissue for the ABAsignal. Further research is required at this point. Inhibitors of the jasmonate pathway were also used to assess their effect on the regulation of Dionaea´s hunting cycle. Coronatine-O-methyloxime proved to be a potent inhibitor of mechanostimulation-induced expression of digestive enzymes, thus confirming the key regulatory role of jasmonates for Dionaea´s prey consumption mechanism. In a parallel project, the generation of in vitro cultures from sterilized seeds and single plant parts proved successful, which may be important for stock-keeping of future transgenic lines. Protoplasts were generated from leaf blade tissue and transiently transformed, expressing the reporter protein YFP after 24 h of incubation. In the future this might be the starting point for the generation of transgenic lines or the functional testing of DNA constructs.}, subject = {Venusfliegenfalle}, language = {en} } @phdthesis{Vikuk2020, author = {Vikuk, Veronika}, title = {Epichlo{\"e} endophyte-grass symbioses in Germany - Infection rates, alkaloid concentrations and possible intoxication risks}, doi = {10.25972/OPUS-21389}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213895}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Endophytes live in partial symbiosis inside a plant and have been detected in all tested plants. They belong to the group of fungi or bacteria and their ecological function is mostly unknown. The fungal endophytes of the genus Epichlo{\"e} belong to a special group of endophytes. Epichlo{\"e} endophytes live symbiotically inside cool season grass species and some of them are able to produce alkaloids toxic to vertebrates and insects. Their symbiosis is seen as mutualistic for the following reasons: the fungus provides the plant herbivore resistance by producing alkaloids, and it increases the plant's drought tolerance as well as its biomass production. In return, the grass provides the fungus shelter, nutrients and dispersal. Epichlo{\"e} endophytes are host specific and the ability to produce alkaloids differs between species. In order to estimate intoxication risks in grasslands, it is necessary to detect infection rates of different grass species with Epichlo{\"e} endophytes, and to determine the genotypes and chemotypes of the Epichlo{\"e} species as well as the produced alkaloid concentrations. Factors like land-use intensity or season may have an influence on infection rates and alkaloid concentrations. Also, different methodological approaches may lead to different results. In this doctoral thesis my general aim was to evaluate intoxication risks in German grasslands caused by Epichlo{\"e} endophytes. For that I investigated infection rates of different grass species and the genotypes and chemotypes of their Epichlo{\"e} endophytes in German grasslands (Chapter II). Furthermore, I compared alkaloid concentrations detected with dry and fresh plant weight and different analytical methods. I also detected possible changes on the influence of season or land-use intensity (Chapter III). Additionally, I examined infections with Epichlo{\"e} endophytes and alkaloid concentrations in commercially available grass seed mixtures and determined how that influences the intoxication risk of grazing animals in Europe (Chapter IV). It is of agricultural interest to estimate intoxication risks for grazing livestock on German grasslands due to Epichlo{\"e} infected grass species. Therefore, it is important to investigate which grasses are infected with the Epichlo{\"e} endophyte, if the endophytes have the ability to produce vertebrate and invertebrate toxic alkaloids and if the alkaloids are indeed produced. I showed that Epichlo{\"e} festucae var. lolii infecting agriculturally important Lolium perenne lacked the starting gene for ergovaline biosynthesis. Hence, vertebrate toxic ergovaline was not detected in the majority of the collected L. perenne plants. The detection of alkaloid concentrations is an important tool to estimate intoxication risk for vertebrates, but also invertebrates. My studies showed that the usage of dry plant material is crucial to quantify the correct alkaloid concentrations, and that alkaloid concentrations can vary depending on the detection method. Hence, the usage of validated, similar detection methods is important to be able to compare alkaloid concentrations from different studies. Nevertheless, the trends of seasonal changes and the influence of land-use intensity stayed the same, regardless if dry or fresh plant weight was used. Also, alkaloid concentrations were below toxicity thresholds on population level, regardless of the method used. Two commercially available forage grass and two commercially available turf grass seed mixtures were infected with Epichlo{\"e} endopyhtes and alkaloids were detected. This might contribute to the spreading of Epichlo{\"e} endopyhtes in Germany, therefore seed mixtures should be tested for Epichlo{\"e} infections. My results indicate that the intoxication risk is generally low in Germany at the moment, although that might change due to climate change, an increase of monocultural land-use, or the seeding of Epichlo{\"e} infected grass seeds.}, subject = {Endophytische Pilze}, language = {en} } @phdthesis{Isasa2024, author = {Isasa, Emilie}, title = {Relationship between wood properties, drought-induced embolism and environmental preferences across temperate diffuse-porous broadleaved trees}, doi = {10.25972/OPUS-30356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In the scope of climate warming and the increase in frequency and intensity of severe heat waves in Central Europe, identification of temperate tree species that are suited to cope with these environmental changes is gaining increasing importance. A number of tree physiological characteristics are associated with drought-stress resistance and survival following severe heat, but recent studies have shown the importance of plant hydraulic and anatomical traits for predicting drought-induced tree mortality, such as vessel diameter, and their potential to predict species distribution in a changing climate. A compilation of large global datasets is required to determine traits related to drought-induced embolism and test whether embolism resistance can be determined solely by anatomical traits. However, most measurements of plant hydraulic traits are labour-intense and prone to measurement artefacts. A fast, accurate and widely applicable technique is necessary for estimating xylem embolism resistance (e.g., water potential at 50\% loss of conductivity, P50), in order to improve forecasts of future forest changes. These traits and their combination must have evolved following the selective pressure of the environmental conditions in which each species occurs. Describing these environmental-trait relationships can be useful to assess potential responses to environmental change and mitigation strategies for tree species, as future warmer temperatures may be compounded by drier conditions.}, subject = {Pflanzen{\"o}kologie}, language = {en} }