@article{GrafeLinsenmair1989, author = {Grafe, U. and Linsenmair, Karl Eduard}, title = {Protogynous sex change in the Reed Frog: Hyperolius viridiflavus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30990}, year = {1989}, abstract = {Observations on captive reed frogs Hyperolius viridijlavus ommatostictus showed that seven out of 24 females changed into males. Sex change occurred without any hormone treatment and resulted in completely functional males. The adaptive value is discussed in terms of maximizing life-time reproductive success. Hyperolius r. ommatostictus is the first amphibian known to show functional sex reversal.}, language = {en} } @article{Linsenmair1985, author = {Linsenmair, Karl Eduard}, title = {Individual and family recognition in subsocial arthropods, in particular in the desert isopod Hemilepistus reaumuri}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33957}, year = {1985}, abstract = {Individual recogmtlon in the non-eusocial arthropods is, according to our present knowledge, predominantly found in the frame of permanent or temporary monogamy. In some cases, e. g. in stomatopods and possibly other marine crustaceans too, individual recognition may serve to allow identification of (i) individuals within dominance hierarchies or (ii) neighbours in territorial species thus helping to avoid the repetition of unnecessary and costly fights. Kin recognition is experimentally proven only in some isopod species (genera Hemilepistus and Porcel/io) and in the primitive cockroach (termite?) Cryptocercus. The «signatures» or «discriminators» used in the arthropods are chemical. It is assumed that the identifying substances are mainly genetically determined and in this paper I shall discuss possible evolutionary origins. The main part of this account is devoted to the presentation of some aspects of the highly developed individual and kin identification and recognition system in the desert isopod Hemilepistus reaumuri - a pure monogamous species in which pairs together with their progeny form strictly exclusive family units. Amongst other things problems of (i) mate choice, (ii) learning to recognize a partner, (iii) avoiding the un adaptive familiarization with aliens are treated. Monogamy under present conditions is for both sexes the only suitable way of maximizing reproductive success; an extremely strong selection pressure must act against every attempt to abandon monogamy under the given ecological conditions. The family «badges» which are certainly always blends of different discriminator substances are extremely variable. This variability is mainly due to genetical differences and is not environmentally caused. It is to be expected that intra-family variabiliry exists in respect of the production of discriminator substances. Since the common badge of a family is the result of exchanging and mixing individual substances, and since the chemical nature of these discriminators requires direct body contacts in order to acquire those substances which an individual does not produce itself, problems must arise with molting. These difficulties do indeed exist and they are aggravated by the fact that individuals may produce substances which do not show up in the common family badge. An efficient learning capability on the one hand and the use of inhibiting properties of newly molted isopods help to solve these problems. In the final discussion three questions are posed and - partly at least - answered; (i) why are families so strictly exclusive, (ii) how many discriminator substances have to be produced to provide a variability allowing families to remain exclusive under extreme conditions of very high population densities, (iii) what is the structure of the family badge and what does an individual have to learn apart from the badge in order not to mistake a family member for an alien or vice versa.}, language = {en} } @article{Linsenmair1984, author = {Linsenmair, Karl Eduard}, title = {Comparative studies on the social behaviour of the desert isopod Hemilepistus reaumuri and of a Porcellio species}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30846}, year = {1984}, abstract = {Behavioural adaptations have made the desert isopod Hemilepistus reaumuri the most successful herbivore and detritivore of the macrofauna of many arid areas in North Africa and Asia Minor. For survival and reproduction Hemilepistus is dependent on burrows. New burrows can only be dug during spring. With the time-consuming digging of a burrow, Hemilepistus has only made the first step towards solving its ecological problems. The burrows are vital and have to be continuously defended against competitors. This requirement is met by co-operation of individuals within the framework of a highly developed social behaviour. In spring adults form monogamous pairs in which partners recognize each other individually and later form, with their progeny, strictly closed family communities. Hemilepistus is compared with a Porcellio' sp. which has developed, convergently, a social behaviour which resembles that of Hemilepistus in many respects, but differs essentially in some aspects, partly reflecting differences in ecological requirements. This and a few other Porcellio species demonstrate some possible steps in the evolution of the social behaviour of Hemilepistus. The female Hemilepistus is-in contrast to Porcellio sp. - semelparous and the selective advantages of monogamy in its environment are not difficult to recognize. This chapter discusses how this mating system could have evolved and especially why monogamous behaviour is also the best method for the Hemilepistus male to maximize its reproductive success. The cohesion of pairs and of family communities in Hemilepistus is based on a highly developed chemical communication system. Individual- and family-specific badges owe their specificity to genetically determined discriminating substances. The nature of the badges raises a series of questions: e.g. since alien badges release aggression, how do parents avoid cannibalizing their young? Similar problems arise from the fact that family badges are mixtures of chemical compounds of very low volatility with the consequence that they can only be transferred by direct contact and that during moulting all substances are lost which an individual does not produce itself. It is shown that in solving these problems inhibiting properties (presumably substances) and learning play a dominant role.}, language = {en} } @article{RoederSteinleinSchmidetal.1993, author = {R{\"o}der, G. and Steinlein, C. and Schmid, M. and Linsenmair, Karl Eduard}, title = {Karyotype and chromosome banding in the Turkish desert woodlouse Desertellio elongatus (Crustacea, Isopoda, Oniscidea)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30989}, year = {1993}, abstract = {The karyotype of D. elongatus was investigated by means of C-banding, silver staining, and mithramycinand quinacrine fluorescent staining. The diploid chromosome number is 2n = 50. C-banding shows pericentromerically localized constitutive heterochromatin in every chromosome. Two of the chromosome pairs carry two telomeric nucleolus organizer regions each. No heteromorphic sex chromosomes were found.}, language = {en} } @phdthesis{Scholl2015, author = {Scholl, Christina}, title = {Cellular and molecular mechanisms contributing to behavioral transitions and learning in the honeybee}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115527}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The honeybee Apis mellifera is a social insect well known for its complex behavior and the ability to learn tasks associated with central place foraging, such as visual navigation or to learn and remember odor-reward associations. Although its brain is smaller than 1mm² with only 8.2 x 105 neurons compared to ~ 20 x 109 in humans, bees still show amazing social, cognitive and learning skills. They express an age - related division of labor with nurse bees staying inside the hive and performing tasks like caring for the brood or cleaning, and foragers who collect food and water outside the hive. This challenges foragers with new responsibilities like sophisticated navigation skills to find and remember food sources, drastic changes in the sensory environment and to communicate new information to other bees. Associated with this plasticity of the behavior, the brain and especially the mushroom bodies (MBs) - sensory integration and association centers involved in learning and memory formation - undergo massive structural and functional neuronal alterations. Related to this background my thesis on one hand focuses on neuronal plasticity and underlying molecular mechanisms in the MBs that accompany the nurse - forager transition. In the first part I investigated an endogenous and an internal factor that may contribute to the nurse - forager phenotype plasticity and the correlating changes in neuronal network in the MBs: sensory exposure (light) and juvenile hormone (JH). Young bees were precociously exposed to light and subsequently synaptic complexes (microglomeruli, MG) in the MBs or respectively hemolymph juvenile hormone (JH) levels were quantified. The results show that light input indeed triggered a significant decrease in MG density, and mass spectrometry JH detection revealed an increase in JH titer. Interestingly light stimulation in young bees (presumably nurse bees) triggered changes in MG density and JH levels comparable to natural foragers. This indicates that both sensory stimuli as well as the endocrine system may play a part in preparing bees for the behavioral transition to foraging. Considering a connection between the JH levels and synaptic remodeling I used gene knockdown to disturb JH pathways and artificially increase the JH level. Even though the knockdown was successful, the results show that MG densities remained unchanged, showing no direct effect of JH on synaptic restructuring. To find a potential mediator of structural synaptic plasticity I focused on the calcium-calmodulin-dependent protein kinase II (CaMKII) in the second part of my thesis. CaMKII is a protein known to be involved in neuronal and behavioral plasticity and also plays an important part in structural plasticity reorganizing synapses. Therefore it is an interesting candidate for molecular mechanisms underlying MG reorganization in the MBs in the honeybee. Corresponding to the high abundance of CaMKII in the learning center in vertebrates (hippocampus), CaMKII was shown to be enriched in the MBs of the honeybee. Here I first investigated the function of CaMKII in learning and memory formation as from vertebrate work CaMKII is known to be associated with the strengthening of synaptic connections inducing long term potentiation and memory formation. The experimental approach included manipulating CaMKII function using 2 different inhibitors and a specific siRNA to create a CaMKII knockdown phenotype. Afterwards bees were subjected to classical olfactory conditioning which is known to induce stable long-term memory. All bees showed normal learning curves and an intact memory acquisition, short-term and mid-term memory (1 hour retention). However, in all cases long-term memory formation was significantly disrupted (24 and 72 hour retention). These results suggests the necessity of functional CaMKII in the MBs for the induction of both early and late phases of long-term memory in honeybees. The neuronal and molecular bases underlying long-term memory and the resulting plasticity in behavior is key to understanding higher brain function and phenotype plasticity. In this context CaMKII may be an important mediator inducing structural synaptic and neuronal changes in the MB synaptic network.}, subject = {Biene}, language = {en} } @article{BaalbergenHelwerdaSchelfhorstetal.2014, author = {Baalbergen, Els and Helwerda, Renate and Schelfhorst, Rense and Castillo Cajas, Ruth F. and van Moorsel, Coline H. M. and Kundrata, Robin and Welter-Schultes, Francisco W. and Giokas, Sinos and Schilthuizen, Menno}, title = {Predator-Prey Interactions between Shell-Boring Beetle Larvae and Rock-Dwelling Land Snails}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115963}, pages = {e100366}, year = {2014}, abstract = {Drilus beetle larvae (Coleoptera: Elateridae) are specialized predators of land snails. Here, we describe various aspects of the predator-prey interactions between multiple Drilus species attacking multiple Albinaria (Gastropoda: Clausiliidae) species in Greece. We observe that Drilus species may be facultative or obligate Albinaria-specialists. We map geographically varying predation rates in Crete, where on average 24\% of empty shells carry fatal Drilus bore holes. We also provide first-hand observations and video-footage of prey entry and exit strategies of the Drilus larvae, and evaluate the potential mutual evolutionary impacts. We find limited evidence for an effect of shell features and snail behavioral traits on inter-and intraspecifically differing predation rates. We also find that Drilus predators adjust their predation behavior based on specific shell traits of the prey. In conclusion, we suggest that, with these baseline data, this interesting predator-prey system will be available for further, detailed more evolutionary ecology studies.}, language = {en} } @article{RoemerRoces2014, author = {R{\"o}mer, Daniela and Roces, Flavio}, title = {Nest Enlargement in Leaf-Cutting Ants: Relocated Brood and Fungus Trigger the Excavation of New Chambers}, doi = {10.1371/journal.pone.0097872}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112860}, year = {2014}, abstract = {During colony growth, leaf-cutting ants enlarge their nests by excavating tunnels and chambers housing their fungus gardens and brood. Workers are expected to excavate new nest chambers at locations across the soil profile that offer suitable environmental conditions for brood and fungus rearing. It is an open question whether new chambers are excavated in advance, or will emerge around brood or fungus initially relocated to a suitable site in a previously-excavated tunnel. In the laboratory, we investigated the mechanisms underlying the excavation of new nest chambers in the leaf-cutting ant Acromyrmex lundi. Specifically, we asked whether workers relocate brood and fungus to suitable nest locations, and to what extent the relocated items trigger the excavation of a nest chamber and influence its shape. When brood and fungus were exposed to unfavorable environmental conditions, either low temperatures or low humidity, both were relocated, but ants clearly preferred to relocate the brood first. Workers relocated fungus to places containing brood, demonstrating that subsequent fungus relocation spatially follows the brood deposition. In addition, more ants aggregated at sites containing brood. When presented with a choice between two otherwise identical digging sites, but one containing brood, ants' excavation activity was higher at this site, and the shape of the excavated cavity was more rounded and chamber-like. The presence of fungus also led to the excavation of rounder shapes, with higher excavation activity at the site that also contained brood. We argue that during colony growth, workers preferentially relocate brood to suitable locations along a tunnel, and that relocated brood spatially guides fungus relocation and leads to increased digging activity around them. We suggest that nest chambers are not excavated in advance, but emerge through a self-organized process resulting from the aggregation of workers and their density-dependent digging behavior around the relocated brood and fungus.}, language = {en} } @article{HopfenmuellerSteffanDewenterHolzschuh2014, author = {Hopfenmueller, Sebastian and Steffan-Dewenter, Ingolf and Holzschuh, Andrea}, title = {Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors}, doi = {10.1371/journal.pone.0104439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112872}, year = {2014}, abstract = {Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @article{KellerGrimmerSteffanDewenter2013, author = {Keller, Alexander and Grimmer, Gudrun and Steffan-Dewenter, Ingolf}, title = {Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758)}, series = {PLoS One}, journal = {PLoS One}, doi = {10.1371/journal.pone.0078296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97305}, year = {2013}, abstract = {Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.}, language = {en} }