@phdthesis{Hagmann2020, author = {Hagmann, Hanns Antony}, title = {The impact of the CRISPR/Cas system on the interaction of Neisseria meningitidis with human host cells}, doi = {10.25972/OPUS-19949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199490}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Neisseria meningitidis, a commensal β-proteobacterium residing exclusively in the human nasopharynx, is a leading cause of sepsis and epidemic meningitis worldwide. While comparative genome analysis was able to define hyperinvasive lineages that are responsible for most of the cases of invasive meningococcal disease (IMD), the genetic basis of their virulence remains unclear. Recent studies demonstrate that the type II C CRISPR/Cas system of meningococci is associated with carriage and less invasive lineages. CRISPR/Cas, an adaptive defence system against foreign DNA, was shown to be involved in gene regulation in Francisella novicida. This study shows that knockout strains of N. meningitidis lacking the Cas9 protein are impaired in the adhesion to human nasopharyngeal cells in a strain-dependant manner, which constitutes a central step in the pathogenesis of IMD. Consequently, this study indicates that the meningococcal CRISPR/Cas system fulfils functions beyond the defence of foreign DNA and is involved in the regulation of meningococcal virulence.}, subject = {CRISPR/Cas-Methode}, language = {en} } @phdthesis{Zoelch2019, author = {Z{\"o}lch, Michael Ludwig}, title = {Effekt der Interleukin-1 Rezeptor-assoziierten Kinase 2 (IRAK2)-Mutation N333D auf den Signalweg von TLR4}, doi = {10.25972/OPUS-18067}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180678}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {IRAK2 besitzt eine Schl{\"u}sselrolle im Signalweg des TLR4. Fehlregulationen dieses Signalwegs f{\"u}hren zu fehlgeleiteten Immunreaktionen, die auch die Entstehung und Progression von Krebserkrankungen f{\"o}rdern. Bevor IRAK2 als therapeutisches Ziel in Frage kommen kann, muss erst noch weitere Klarheit {\"u}ber die grunds{\"a}tzliche Funktionsweise dieses Proteins bestehen. So ist f{\"u}r IRAK2 aufgrund der Substitution einer Aminos{\"a}ure in der Kinase-Dom{\"a}ne im Vergleich zu IRAK1 noch nicht abschließend gekl{\"a}rt, ob es sich um eine aktive Kinase oder eine Pseudokinase handelt und ob diese Ver{\"a}nderung eine Erh{\"o}hung oder eine Erniedrigung der Funktion im TLR4-Signalweg nach sich zieht. Um diese Fragen anzugehen, wurde in dieser Arbeit Asparagin im vermeintlich aktiven Zentrum (Aminos{\"a}ure 333) wieder zur Asparagins{\"a}ure [N333D] revertiert und damit versucht die Phosphorylierungsaktivit{\"a}t zu steigern bzw. vergleichbar zu IRAK1 wiederherzustellen. Das Einbringen der Mutation in IRAK2 erfolgte mittels ortsspezifischer Mutagenese. Mit dieser und anderen Mutanten und mit wildtypischem IRAK2 wurden durch die CRISPR/Cas9-Methode generierte IRAK2-defiziente 264.7 Makrophagen rekonstituiert und damit ein System etabliert, mit dem der Einfluss der Mutation auf den Signalweg des TLR4 nach Stimulation mit LPS quantitativ analysiert werden konnte. Sowohl die indirekte NF-κB-Messung {\"u}ber CD40-Expression als auch die direkte NF-κB-Messung {\"u}ber die NF-κB-getriebene Expression eines Reportergens (cyan fluorescent protein) ergab, dass IRAK2[N333D] die LPS-abh{\"a}ngige NF-κB-Aktivierung {\"u}ber den TLR4 Signalweg schlechter erm{\"o}glicht als IRAK2. Insgesamt deuten die Ergebnisse darauf hin, dass die in der Entwicklungsgeschichte aufgetretene Ver{\"a}nderung des aktiven Zentrums von IRAK2 im Vergleich zu IRAK1 zu einer besseren Aktivierung der MyD88-abh{\"a}ngigen NF-κB-Aktivit{\"a}t f{\"u}hrte und somit eine erh{\"o}hte und l{\"a}nger anhaltende Signalleitung erm{\"o}glichte. Diese Erkenntnis kann als weiterer Schritt hin zu einem besseren Verst{\"a}ndnis der Funktion des IRAK2-Proteins und zu einer m{\"o}glichen zuk{\"u}nftigen Verwendung von IRAK2 als Ziel therapeutischer Behandlungen gesehen werden.}, subject = {Toll-like-Rezeptoren}, language = {de} } @phdthesis{Dambacher2021, author = {Dambacher, Helena}, title = {Die Etablierung des CRISPR/Cas9-Systems in humanen induzierten pluripotenten Stammzellen zur Untersuchung der Funktion des Kanalproteins Connexin 43 in der Embryonalentwicklung}, doi = {10.25972/OPUS-24015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die Rolle von Connexinen und Gap Junction-vermittelter Kommunikation in pluripotenten Stammzellen sowie der fr{\"u}hen Embryonalentwicklung sind bis heute nicht vollst{\"a}ndig aufgekl{\"a}rt. Mutationen in humanen Connexinen verursachen eine Vielzahl von Krankheiten. Connexin-defiziente iPS Zellen stellen eine gute Basis f{\"u}r die Erforschung der Rolle von Connexinen w{\"a}hrend der Embryonalentwicklung und bei der Krankheitsentstehung dar. Das Ziel der vorliegenden Arbeit war es, das CRISPR/Cas9-System in pluripotenten Stammzellen erfolgreich anzuwenden und ein Protokoll zur Erstellung verschiedener Cx43-Defektmutanten zu entwerfen. Nach der Etablierung der CRSIPR/Cas9-Methode in HEK293T-Zellen konnte in der vorliegenden Arbeit dar{\"u}ber hinaus erfolgreich eine Cx43-Defizienz in FSiPS-Zellen erzeugt werden. Weiterhin wurden mehrere Cx43-Mutanten geschaffen und initial auf Pluripotenzmarker und ihr Differenzierungspotential untersucht. Diese Arbeit bildet die Basis f{\"u}r weitere Untersuchungen des Cx43 in iPS-Zellklonen und davon abgeleiteten Zelltypen sowie artifiziellen 3D-Gewebekulturen. Dar{\"u}ber hinaus bildet sie die Grundlage f{\"u}r die Bildung weiterer Connexin-Defektmutanten sowie von iPS-Zellen mit krankheitsrelevanten Mutationen.}, subject = {CRISPR/Cas-Methode}, language = {de} } @phdthesis{Rehm2022, author = {Rehm, Alexandra}, title = {Etablierung von USP8 und USP48 Mutationen in Zelllinien f{\"u}r Cushing-Syndrom Analysen mittels CRISPR/Cas9}, doi = {10.25972/OPUS-23450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Morbus Cushing ist die h{\"a}ufigste Ursache f{\"u}r endogenes Cushing-Syndrom und f{\"u}hrt auf Grund eines kortikotropen Hypophysenadenoms zu einem Glucocorticoid {\"U}berschuss und wiederum zu einer hohen Morbidit{\"a}t und Mortalit{\"a}t. Die Ursache hierf{\"u}r sind unter anderem somatische Mutationen in den Deubiquitinasen USP8 und USP48. Das Ziel dieser Arbeit war es mittels der CRISPR/Cas9-Methode, die Mutationen USP8 und USP48 in Zelllinien zu etablieren und diese f{\"u}r Cushing-Syndrom Analysen zu verwenden. Hierf{\"u}r wurden in dieser Arbeit gRNAs f{\"u}r USP8 und USP48 designt, welche anschließend in die humane embryonale Zelllinie HEK293AD Zellen transfiziert wurden. Diese Zellen wurden zu monoklonalen Zellen vereinzelt. Ziel war einen Knock-out von USP8 bzw. USP48 zu generieren. Es konnte ein erfolgreicher Zellklon generiert werden mit einem Knock-out von USP48. Ebenfalls konnte ein Genomediting von USP8 in Exon 20 durchgef{\"u}hrt werden. Zusammenfassend konnte die CRISPR/Cas9 Methode f{\"u}r ein M. Cushing-Zellmodells etabliert und eine gute Ausgangsbasis f{\"u}r weitere Experimente (z.B. ein gezielter Knock-in von USP8- und USP48- Mutationen) generiert werden.}, subject = {Cushing-Syndrom}, language = {de} } @phdthesis{Majumder2023, author = {Majumder, Snigdha}, title = {Selective inhibition of NFAT in mouse and human T cells by CRISPR/Cas9 to ameliorate acute Graft-versus-Host Disease while preserving Graft-versus-Leukemia effect}, doi = {10.25972/OPUS-29325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Allogenic hematopoietic stem cell transplantation (allo-HCT) is a curative therapy for the treatment of malignant and non-malignant bone marrow diseases. The major complication of this treatment is a highly inflammatory reaction known as Graft-versus-Host Disease (GvHD). Cyclosporin A (CsA) and tacrolimus are used to treat GvHD which limits inflammation but also interferes with the anticipated Graft-versus-Leukemia (GvL) effect. These drugs repress conventional T cells (Tcon) along with regulatory T cells (Treg), which are important for both limiting GvHD and supporting GvL. Both of these drugs inhibit calcineurin (CN), which dephosphorylates and activates the nuclear factor of activated T-cells (NFAT) family of transcription factors. Here, we make use of our Cd4cre.Cas9+ mice and developed a highly efficient non-viral CRISPR/Cas9 gene editing method by gRNA-only nucleofection. Utilizing this technique, we demonstrated that unstimulated mouse T cells upon NFATc1 or NFATc2 ablation ameliorated GvHD in a major mismatch mouse model. However, in vitro pre-stimulated mouse T cells could not achieve long-term protection from GvHD upon NFAT single-deficiency. This highlights the necessity of gene editing and transferring unstimulated human T cells during allo-HCT. Indeed, we established a highly efficient ribonucleoprotein (RNP)-mediated CRISPR/Cas9 gene editing for NFATC1 and/or NFATC2 in pre-stimulated as well as unstimulated primary human T cells. In contrast to mouse T cells, not NFATC1 but NFATC2 deficiency in human T cells predominantly affected proinflammatory cytokine production. However, either NFAT single-knockout kept cytotoxicity of human CD3+ T cells untouched against tumor cells in vitro. Furthermore, mouse and human Treg were unaffected upon the loss of a single NFAT member. Lastly, NFATC1 or NFATC2-deficient anti-CD19 CAR T cells, generated with our non-viral 'one-step nucleofection' method validated our observations in mouse and human T cells. Proinflammatory cytokine production was majorly dependent on NFATC2 expression, whereas, in vitro cytotoxicity against CD19+ tumor cells was undisturbed in the absence of either of the NFAT members. Our findings emphasize that NFAT single-deficiency in donor T cells is superior to CN-inhibitors as therapy during allo-HCT to prevent GvHD while preserving GvL in patients.}, subject = {CRISPR/Cas-Methode}, language = {en} } @phdthesis{Janz2024, author = {Janz, Anna}, title = {Human induced pluripotent stem cells (iPSCs) in inherited cardiomyopathies: Generation and characterization of an iPSC-derived cardiomyocyte model system of dilated cardiomyopathy with ataxia (DCMA)}, doi = {10.25972/OPUS-24096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240966}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The emergence of human induced pluripotent stem cells (iPSCs) and the rise of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing technology innovated the research platform for scientists based on living human pluripotent cells. The revolutionary combination of both Nobel Prize-honored techniques enables direct disease modeling especially for research focused on genetic diseases. To allow the study on mutation-associated pathomechanisms, we established robust human in vitro systems of three inherited cardiomyopathies: arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy with juvenile cataract (DCMJC) and dilated cardiomyopathy with ataxia (DCMA). Sendai virus vectors encoding OCT3/4, SOX2, KLF4, and c-MYC were used to reprogram human healthy control or mutation-bearing dermal fibroblasts from patients to an embryonic state thereby allowing the robust and efficient generation of in total five transgene-free iPSC lines. The nucleofection-mediated CRISPR/Cas9 plasmid delivery in healthy control iPSCs enabled precise and efficient genome editing by mutating the respective disease genes to create isogenic mutant control iPSCs. Here, a PKP2 knock-out and a DSG2 knock-out iPSC line were established to serve as a model of ACM. Moreover, a DNAJC19 C-terminal truncated variant (DNAJC19tv) was established to mimic a splice acceptor site mutation in DNAJC19 of two patients with the potential of recapitulating DCMA-associated phenotypes. In total eight self-generated iPSC lines were assessed matching internationally defined quality control criteria. The cells retained their ability to differentiate into cells of all three germ layers in vitro and maintained a stable karyotype. All iPSC lines exhibited a typical stem cell-like morphology as well as expression of characteristic pluripotency markers with high population purities, thus validating the further usage of all iPSC lines in in vitro systems of ACM, DCMA and DCMJC. Furthermore, cardiac-specific disease mechanisms underlying DCMA were investigated using in vitro generated iPSC-derived cardiomyocytes (iPSC-CMs). DCMA is an autosomal recessive disorder characterized by life threatening early onset cardiomyopathy associated with a metabolic syndrome. Causal mutations were identified in the DNAJC19 gene encoding an inner mitochondrial membrane (IMM) protein with a presumed function in mitochondrial biogenesis and cardiolipin (CL) remodeling. In total, two DCMA patient-derived iPSC lines (DCMAP1, DCMAP2) of siblings with discordant cardiac phenotypes, a third isogenic mutant control iPSC line (DNAJC19tv) as well as two control lines (NC6M and NC47F) were directed towards the cardiovascular lineage upon response to extracellular specification cues. The monolayer cardiac differentiation approach was successfully adapted for all five iPSC lines and optimized towards ventricular subtype identity, higher population purities and enhanced maturity states to fulfill all DCMA-specific requirements prior to phenotypic investigations. To provide a solid basis for the study of DCMA, the combination of lactate-based metabolic enrichment, magnetic-activated cell sorting, mattress-based cultivation and prolonged cultivation time was performed in an approach-dependent manner. The application of the designated strategies was sufficient to ensure adult-like characteristics, which included at least 60-day-old iPSC-CMs. Therefore, the novel human DCMA platform was established to enable the study of the pathogenesis underlying DCMA with respect to structural, morphological and functional changes. The disease-associated protein, DNAJC19, is constituent of the TIM23 import machinery and can directly interact with PHB2, a component of the membrane bound hetero-oligomeric prohibitin ring complexes that are crucial for phospholipid and protein clustering in the IMM. DNAJC19 mutations were predicted to cause a loss of the DnaJ interaction domain, which was confirmed by loss of full-length DNAJC19 protein in all mutant cell lines. The subcellular investigation of DNAJC19 demonstrated a nuclear restriction in mutant iPSC-CMs. The loss of DNAJC19 co-localization with mitochondrial structures was accompanied by enhanced fragmentation, an overall reduction of mitochondrial mass and smaller cardiomyocytes. Ultrastructural analysis yielded decreased mitochondria sizes and abnormal cristae providing a link to defects in mitochondrial biogenesis and CL remodeling. Preliminary data on CL profiles revealed longer acyl chains and a more unsaturated acyl chain composition highlighting abnormities in the phospholipid maturation in DCMA. However, the assessment of mitochondrial function in iPSCs and dermal fibroblasts revealed an overall higher oxygen consumption that was even more enhanced in iPSC-CMs when comparing all three mutants to healthy controls. Excess oxygen consumption rates indicated a higher electron transport chain (ETC) activity to meet cellular ATP demands that probably result from proton leakage or the decoupling of the ETC complexes provoked by abnormal CL embedding in the IMM. Moreover, in particular iPSC-CMs presented increased extracellular acidification rates that indicated a shift towards the utilization of other substrates than fatty acids, such as glucose, pyruvate or glutamine. The examination of metabolic features via double radioactive tracer uptakes (18F-FDG, 125I-BMIPP) displayed significantly decreased fatty acid uptake in all mutants that was accompanied by increased glucose uptake in one patient cell line only, underlining a highly dynamic preference of substrates between mutant iPSC-CMs. To connect molecular changes directly to physiological processes, insights on calcium kinetics, contractility and arrhythmic potential were assessed and unraveled significantly increased beating frequencies, elevated diastolic calcium concentrations and a shared trend towards reduced cell shortenings in all mutant cell lines basally and upon isoproterenol stimulation. Extended speed of recovery was seen in all mutant iPSC-CMs but most striking in one patient-derived iPSC-CM model, that additionally showed significantly prolonged relaxation times. The investigations of calcium transient shapes pointed towards enhanced arrhythmic features in mutant cells comprised by both the occurrence of DADs/EADs and fibrillation-like events with discordant preferences. Taken together, new insights into a novel in vitro model system of DCMA were gained to study a genetically determined cardiomyopathy in a patient-specific manner upon incorporation of an isogenic mutant control. Based on our results, we suggest that loss of full-length DNAJC19 impedes PHB2-complex stabilization within the IMM, thus hindering PHB-rings from building IMM-specific phospholipid clusters. These clusters are essential to enable normal CL remodeling during cristae morphogenesis. Disturbed cristae and mitochondrial fragmentation were observed and refer to an essential role of DNAJC19 in mitochondrial morphogenesis and biogenesis. Alterations in mitochondrial morphology are generally linked to reduced ATP yields and aberrant reactive oxygen species production thereby having fundamental downstream effects on the cardiomyocytes` functionality. DCMA-associated cellular dysfunctions were in particular manifested in excess oxygen consumption, altered substrate utilization and abnormal calcium kinetics. The summarized data highlight the usage of human iPSC-derived CMs as a powerful tool to recapitulate DCMA-associated phenotypes that offers an unique potential to identify therapeutic strategies in order to reverse the pathological process and to pave the way towards clinical applications for a personalized therapy of DCMA in the future.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Schiffmaier2024, author = {Schiffmaier, Jana}, title = {Parathormon als potentielle Therapiestrategie der Odonto-Hypophosphatasie - Untersuchungen in einem dentogenen \(in-vitro\)-Modell}, doi = {10.25972/OPUS-34915}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Hypophosphatasie (HPP) beschreibt eine seltene Erbkrankheit, die haupts{\"a}chlich durch heterozygote Mutationen im ALPL-Gen verursacht wird. Diese f{\"u}hren zu einer verminderten Aktivit{\"a}t der gewebeunspezifischen alkalischen Phosphatase (TNAP). Neben skelettalen Symptomen sind Zahnanomalien wie der vorzeitige Verlust von Milchz{\"a}hnen ohne resorbierte Wurzel sowie eine gest{\"o}rte Mineralisierung der Zahnhart-substanzen ein typisches Merkmal der HPP. Die zugrunde liegenden molekularen Mechanismen sind bisher noch nicht vollst{\"a}ndig verstanden. In der vorliegenden Arbeit wurden Zelllinien des parodontalen Ligaments mit Mutationen im ALPL-Gen charakterisiert, um anschließend m{\"o}gliche Therapiestrategien f{\"u}r die HPP auf molekularer Ebene zu untersuchen. Im Rahmen der basalen Charakterisierung wurden die Zelllinien hinsichtlich der TNAP-Expression (Immunhistochemie, Western Blot), des Stoffwechselprofils (ATP-Assay) und des osteogenen Differenzierungspotenzials (Alizarin-F{\"a}rbung) analysiert. Von Interesse war auch, ob durch CRISPR/Cas9-basiertes Genediting Off-Target Mutationen entstanden sind. Zur Untersuchung der molekularen Auswirkungen von PTH, welches die ALPL-Expression steigern kann, wurden zwei Protokolle etabliert, die eine kontinuier-liche, kurzzeitige bzw. intermittierende Pr{\"a}senz von PTH in-vitro imitieren. Anschließend wurde die ALPL-Expression (qPCR) sowie TNAP-Aktivit{\"a}t (CSPD-Assay) ermittelt. Die basale TNAP-Expression war variabel und reichte vom v{\"o}lligen Fehlen in den Zell-linien mit Deletionen bis hin zu einer starken TNAP-Expression in der Zelllinie mit einer heterogenen Punktmutation. Eine niedrige Expression ging mit einer verringerten Zell-proliferation sowie extrazellul{\"a}ren ATP einher. Es zeigte sich ein unterschiedliches Mineralisierungspotenzial, das haupts{\"a}chlich das TNAP-Expressionsniveau in den verschiedenen Zelllinien widerspiegelt, w{\"a}hrend die PTH-Stimulation keine Wirkung auf die Differenzierung hatte. Im Gegensatz zu klinischen Beobachtungen deuten die Ergebnisse auf eine hohe Korrelation zwischen Genotyp und Ph{\"a}notyp in-vitro hin, die in-vivo noch best{\"a}tigt werden m{\"u}ssen. Die Sequenzierung best{\"a}tigte, dass durch die Geneditierung keine Off-Target Mutationen aufgetreten sind, welche somit keinen limitierenden Faktor hinsichtlich der Differenzierungskapazit{\"a}t darstellen k{\"o}nnen. Die Stimulation mit PTH f{\"u}hrte zwar nicht zu einer gesteigerten ALPL-Expression, doch konnte die TNAP-Aktivit{\"a}t in den ALPL-defizienten Zelllinien punktuell gesteigert werden und bildet somit eine solide Basis f{\"u}r weitere Experimente, die zur Therapieentwicklung f{\"u}r die Odonto-HPP beitragen k{\"o}nnen.}, subject = {Hypophosphatasie}, language = {de} }