@article{JazbutyteStumpnerRedeletal.2012, author = {Jazbutyte, Virginija and Stumpner, Jan and Redel, Andreas and Lorenzen, Johan M. and Roewer, Norbert and Thum, Thomas and Kehl, Franz}, title = {Aromatase Inhibition Attenuates Desflurane-Induced Preconditioning against Acute Myocardial Infarction in Male Mouse Heart In Vivo}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151258}, pages = {e42032}, year = {2012}, abstract = {The volatile anesthetic desflurane (DES) effectively reduces cardiac infarct size following experimental ischemia/reperfusion injury in the mouse heart. We hypothesized that endogenous estrogens play a role as mediators of desflurane-induced preconditioning against myocardial infarction. In this study, we tested the hypothesis that desflurane effects local estrogen synthesis by modulating enzyme aromatase expression and activity in the mouse heart. Aromatase metabolizes testosterone to 17b- estradiol (E2) and thereby significantly contributes to local estrogen synthesis. We tested aromatase effects in acute myocardial infarction model in male mice. The animals were randomized and subjected to four groups which were pre-treated with the selective aromatase inhibitor anastrozole (A group) and DES alone (DES group) or in combination (A+DES group) for 15 minutes prior to surgical intervention whereas the control group received 0.9\% NaCl (CON group). All animals were subjected to 45 minutes ischemia following 180 minutes reperfusion. Anastrozole blocked DES induced preconditioning and increased infarct size compared to DES alone (37.94615.5\% vs. 17.163.62\%) without affecting area at risk and systemic hemodynamic parameters following ischemia/reperfusion. Protein localization studies revealed that aromatase was abundant in the murine cardiovascular system with the highest expression levels in endothelial and smooth muscle cells. Desflurane application at pharmacological concentrations efficiently upregulated aromatase expression in vivo and in vitro. We conclude that desflurane efficiently regulates aromatase expression and activity which might lead to increased local estrogen synthesis and thus preserve cellular integrity and reduce cardiac damage in an acute myocardial infarction model.}, language = {en} } @article{SchmidtSkafGavriletal.2017, author = {Schmidt, Marianne and Skaf, Josef and Gavril, Georgiana and Polednik, Christine and Roller, Jeanette and Kessler, Michael and Holzgrabe, Ulrike}, title = {The influence of Osmunda regalis root extract on head and neck cancer cell proliferation, invasion and gene expression}, series = {BMC Complementary and Alternative Medicine}, volume = {17}, journal = {BMC Complementary and Alternative Medicine}, number = {518}, doi = {10.1186/s12906-017-2009-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158704}, year = {2017}, abstract = {Background: According to only a handful of historical sources, Osmunda regalis, the royal fern, has been used already in the middle age as an anti-cancer remedy. To examine this ancient cancer cure, an ethanolic extract of the roots was prepared and analysed in vitro on its effectiveness against head and neck cancer cell lines. Methods: Proliferation inhibition was measured with the MTT assay. Invasion inhibition was tested in a spheroid-based 3-D migration assay on different extracellular matrix surfaces. Corresponding changes in gene expression were analysed by qRT-PCR array. Induction of apoptosis was measured by fluorescence activated cell sorting (FACS) with the Annexin V binding method. The plant extract was analysed by preliminary phytochemical tests, liquid chromatography/mass spectroscopy (LC-MS) and thin layer chromatography (TLC). Anti-angiogenetic activity was determined by the tube formation assay. Results: O. regalis extract revealed a growth inhibiting effect on the head and neck carcinoma cell lines HLaC78 and FaDu. The toxic effect seems to be partially modulated by p-glycoprotein, as the MDR-1 expressing HLaC79-Tax cells were less sensitive. O. regalis extract inhibited the invasion of cell lines on diverse extracellular matrix substrates significantly. Especially the dispersion of the highly motile cell line HlaC78 on laminin was almost completely abrogated. Motility inhibition on laminin was accompanied by differential gene regulation of a variety of genes involved in cell adhesion and metastasis. Furthermore, O. regalis extract triggered apoptosis in HNSCC cell lines and inhibited tube formation of endothelial cells. Preliminary phytochemical analysis proved the presence of tannins, glycosides, steroids and saponins. Liquid chromatography/mass spectroscopy (LC-MS) revealed a major peak of an unknown substance with a molecular mass of 864.15 Da, comprising about 50\% of the total extract. Thin layer chromatography identified ferulic acid to be present in the extract. Conclusion: The presented results justify the use of royal fern extracts as an anti-cancer remedy in history and imply a further analysis of ingredients.}, language = {en} } @article{RosenbaumSchickWollbornetal.2016, author = {Rosenbaum, Corinna and Schick, Martin Alexander and Wollborn, Jakob and Heider, Andreas and Scholz, Claus-J{\"u}rgen and Cecil, Alexander and Niesler, Beate and Hirrlinger, Johannes and Walles, Heike and Metzger, Marco}, title = {Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0151335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146544}, pages = {e0151335}, year = {2016}, abstract = {Background Enteric glial cells (EGCs) are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammatory microenvironment. Previous studies on EGC pathophysiology have specifically focused on mucosal glia activation and its contribution to mucosal inflammatory processes observed in the gut of inflammatory bowel disease (IBD) patients. In contrast knowledge is scarce on intestinal inflammation not locally restricted to the mucosa but systemically affecting the intestine and its effect on the overall EGC network. Methods and Results In this study, we analyzed the biological effects of a systemic LPS-induced hyperinflammatory insult on overall EGCs in a rat model in vivo, mimicking the clinical situation of systemic inflammation response syndrome (SIRS). Tissues from small and large intestine were removed 4 hours after systemic LPS-injection and analyzed on transcript and protein level. Laser capture microdissection was performed to study plexus-specific gene expression alterations. Upon systemic LPS-injection in vivo we observed a rapid and dramatic activation of Glial Fibrillary Acidic Protein (GFAP)-expressing glia on mRNA level, locally restricted to the myenteric plexus. To study the specific role of the GFAP subpopulation, we established flow cytometry-purified primary glial cell cultures from GFAP promotor-driven EGFP reporter mice. After LPS stimulation, we analyzed cytokine secretion and global gene expression profiles, which were finally implemented in a bioinformatic comparative transcriptome analysis. Enriched GFAP+ glial cells cultured as gliospheres secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Additionally, a shift in myenteric glial gene expression profile was induced that predominantly affected genes associated with immune response. Conclusion and Significance Our findings identify the myenteric GFAP-expressing glial subpopulation as particularly susceptible and responsive to acute systemic inflammation of the gut wall and complement knowledge on glial involvement in mucosal inflammation of the intestine.}, language = {en} } @phdthesis{Cremer2012, author = {Cremer, Nicole}, title = {Genexpression bei der Alzheimer Demenz und dem Morbus Parkinson}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76748}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Alzheimer Demenz und der Morbus Parkinson als h{\"a}ufigste neurodegenerative Erkrankungen f{\"u}hren zu schwerer Behinderung, zu Pflegebed{\"u}rftigkeit und meist {\"u}ber Komplikationen zum Tod. Ihr langer Verlauf stellt f{\"u}r Betroffene, Angeh{\"o}rige sowie f{\"u}r das Gesundheitssystem eine enorme Belastung dar. Da die {\"A}tiologie der Alzheimer Demenz und des Morbus Parkinson sowie der meisten neurodegenerativen Krankheiten im Einzelnen nicht bekannt sind und ph{\"a}notypische {\"U}berschneidungen auftreten, sind die M{\"o}glichkeiten der eindeutigen Diagnosestellung h{\"a}ufig eingeschr{\"a}nkt oder erst postmortal m{\"o}glich. Um eine Therapie bei Auftreten der ersten klinischen Symptome zu beginnen oder eine Voraussage der Erkrankungen zu erm{\"o}glichen, ist eine sensitive und validierte Fr{\"u}hdiagnostik n{\"o}tig. Ziel der vorliegenden Arbeit war deshalb, auf der Genebene potentielle pathogenetische Verbindungen, m{\"o}gliche diagnostische Markerproteine sowie Zusammenh{\"a}nge zum zeitlichen Verlauf beider Krankheiten zu identifizieren. Daf{\"u}r wurde mit der Real-Time Polymerasekettenreaktion die Expression von 44 Genen anhand von post mortem Gehirngewebe von Patienten mit Alzheimer Demenz, Morbus Parkionson im Vergleich zu Gesunden aus den vier Hirnregionen Hippocampus, Gyrus frontalis medialis, Gyrus temporalis medialis und Kleinhirn untersucht. Im Resultat zeigen die Gene mit einer statistisch signifikant ver{\"a}nderten Expression, z. B. Glutamattransporter, olfaktorische Rezeptoren oder vakuol{\"a}re Sortierungsproteine, bei beiden Erkrankungen geh{\"a}uft gleichsinnige {\"A}nderungen. Anhand dieser Ergebnisse ist eine kausale Verkn{\"u}pfung des ver{\"a}nderten Genmetabolismus mit der ablaufenden Neurodegeneration zu vermuten. Zus{\"a}tzlich wird die Hypothese gemeinsamer pathogenetischer Mechanismen beider Erkrankungen untermauert. Zusammenh{\"a}nge der Genexpression zum zeitlichen Verlauf der Erkrankungen werden nur vereinzelt belegt, bekr{\"a}ftigten dann aber die Annahme einer Assoziation zu den degenerativen Prozessen. Die Identifizierung eines spezifischen Biomarkers f{\"u}r eine der beiden Erkrankungen war ein Ziel der vorliegenden Arbeit. Aufgrund seiner Expressions{\"a}nderung im Hippocampus bei Patienten mit Alzheimer Demenz k{\"o}nnte das BACE1-Gen (Beta site APP cleaving enzyme 1), das dort eine signifikante Expressionsabnahme zeigt, als solcher f{\"u}r dieses Patientenkollektiv diskutiert werden. Die h{\"a}ufig in dieser Arbeit im Hippocampus detektierten, signifikanten Expressions{\"a}nderungen, weisen zudem auf eine besondere Affektion dieser Hirnregion bei der Alzheimer Demenz als auch beim Morbus Parkinson hin. Des Weiteren werden in der vorliegenden Arbeit im Kleinhirn, einer Hirnregion, in der bei beiden Erkrankungen scheinbar kaum oder keine pathologischen Prozesse ablaufen, geh{\"a}uft und dann {\"a}hnliche {\"A}nderungen der Genexpression gemessen, die f{\"u}r eine Beteiligung des Kleinhirns bei beiden Krankheiten sprechen, deren Bedeutung bislang unklar ist.}, subject = {Alzheimer}, language = {de} } @article{SchneiderKleinMielichSuessetal.2015, author = {Schneider, Johannes and Klein, Teresa and Mielich-S{\"u}ss, Benjamin and Koch, Gudrun and Franke, Christian and Kuipers, Oskar P. and Kov{\´a}cs, {\´A}kos T. and Sauer, Markus and Lopez, Daniel}, title = {Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125577}, pages = {e1005140}, year = {2015}, abstract = {Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.}, language = {en} } @phdthesis{Hirschmann2020, author = {Hirschmann, Anna}, title = {microRNA-Genexpressionsprofile in Blut-, Haut- und Nervenproben von Patienten mit Polyneuropathien}, doi = {10.25972/OPUS-21701}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217010}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die Polyneuropathie (PNP) ist die h{\"a}ufigste St{\"o}rung des peripheren Nervensystems bei Erwachsenen. Die Suche nach der Ursache bleibt in vielen F{\"a}llen erfolglos, ist aber unverzichtbar, da die Therapiewahl von der {\"A}tiologie der Erkrankung abh{\"a}ngt. Geeignete Biomarker k{\"o}nnten die Differentialdiagnose unter Umst{\"a}nden erleichtern. microRNAs (miRNAs) sind in dieser Hinsicht vielversprechend, da in vielen Studien bei Nervende- und regenerationsprozessen sowie in neuropathischen Schmerzmodellen eine Dysregulation beschrieben wurde. In dieser Studie wurde die Expression zweier miRNAs, miR-103a und miR-let-7d, sowie eines Zielmolek{\"u}ls der miR-103a, des Kalziumkanals Cav1,2, in einer großen Kohorte von PNP-Patienten unterschiedlicher {\"A}tiologie in Blut, Haut- und Nervenbiopsien untersucht. Insgesamt wurden 116 Patienten und 22 Kontroll-probanden in die Studie eingeschlossen. Nach der Isolation von RNA aus weißen Blutzellen (WBC), Haut- und Nervenbiopsien folgte die Expressionsbestimmung mittels qRT-PCR. W{\"a}hrend sich jeweils Unterschiede zwischen PNP-Patienten und Kontrollen und zwischen Patienten mit entz{\"u}ndlicher und solchen mit nicht-entz{\"u}ndlicher PNP zeigten, wurden keine Unterschiede in der Expression zwischen den {\"a}tiologischen Subgruppen oder zwischen Patienten mit schmerzhafter und schmerzloser PNP festgestellt. In den Nervenbiopsien der Patientenkohorte ergab sich eine inverse Korrelation der miR-103a und ihrem Zielgen Cacna1c, die darauf hinweisen k{\"o}nnte, dass Cacna1c von der miR-103a negativ reguliert wird. Da in unserer Patientenkohorte keine Unterschiede zwischen den PNP-Subgruppen auftraten, scheint der Einsatz der miR-103a und miR-let-7d als diagnostische Biomarker zur {\"a}tiologischen Einordnung einer PNP nicht gerechtfertigt. Dennoch deuten unsere Ergebnisse auf eine m{\"o}gliche Rolle der untersuchten miRNAs bei Entstehung und Verlauf von PNP hin. F{\"u}r ein tieferes pathophysiologisches Verst{\"a}ndnis der miRNAs vor allem bei entz{\"u}ndlichen Neuropathien, k{\"o}nnte die Untersuchung von weiteren miRNAs und Zielgenen Aufschluss geben.}, subject = {miRNS}, language = {de} } @article{HickeySridharWestermannetal.2012, author = {Hickey, Scott F. and Sridhar, Malathy and Westermann, Alexander J. and Qin, Qian and Vijayendra, Pooja and Liou, Geoffrey and Hammond, Ming C.}, title = {Transgene regulation in plants by alternative splicing of a suicide exon}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {10}, doi = {10.1093/nar/gks032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134724}, pages = {4701-4710}, year = {2012}, abstract = {Compared to transcriptional activation, other mechanisms of gene regulation have not been widely exploited for the control of transgenes. One barrier to the general use and application of alternative splicing is that splicing-regulated transgenes have not been shown to be reliably and simply designed. Here, we demonstrate that a cassette bearing a suicide exon can be inserted into a variety of open reading frames (ORFs), generating transgenes whose expression is activated by exon skipping in response to a specific protein inducer. The surprisingly minimal sequence requirements for the maintenance of splicing fidelity and regulation indicate that this splicing cassette can be used to regulate any ORF containing one of the amino acids Glu, Gln or Lys. Furthermore, a single copy of the splicing cassette was optimized by rational design to confer robust gene activation with no background expression in plants. Thus, conditional splicing has the potential to be generally useful for transgene regulation.}, language = {en} } @article{CeteciCeteciZanuccoetal.2012, author = {Ceteci, Fatih and Ceteci, Semra and Zanucco, Emanuele and Thakur, Chitra and Becker, Matthias and El-Nikhely, Nefertiti and Fink, Ludger and Seeger, Werner and Savai, Rajkumar and Rapp, Ulf R.}, title = {E-Cadherin Controls Bronchiolar Progenitor Cells and Onset of Preneoplastic Lesions in Mice}, series = {Neoplasia}, volume = {14}, journal = {Neoplasia}, number = {12}, doi = {10.1593/neo.121088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135407}, pages = {1164-1177}, year = {2012}, abstract = {Although progenitor cells of the conducting airway have been spatially localized and some insights have been gained regarding their molecular phenotype, relatively little is known about the mechanisms regulating their maintenance, activation, and differentiation. This study investigates the potential roles of E-cadherin in mouse Clara cells, as these cells were shown to represent the progenitor/stem cells of the conducting airways and have been implicated as the cell of origin of human non-small cell lung cancer. Postnatal inactivation of E-cadherin affected Clara cell differentiation and compromised airway regeneration under injury conditions. In steady-state adult lung, overexpression of the dominant negative E-cadherin led to an expansion of the bronchiolar stem cells and decreased differentiation concomitant with canonical Wnt signaling activation. Expansion of the bronchiolar stem cell pool was associated with an incessant proliferation of neuroepithelial body-associated Clara cells that ultimately gave rise to bronchiolar hyperplasia. Despite progressive hyperplasia, only a minority of the mice developed pulmonary solid tumors, suggesting that the loss of E-cadherin function leads to tumor formation when additional mutations are sustained. The present study reveals that E-cadherin plays a critical role in the regulation of proliferation and homeostasis of the epithelial cells lining the conducting airways.}, language = {en} } @article{UeceylerTopuzoğluSchiesseretal.2011, author = {{\"U}{\c{c}}eyler, Nurcan and Topuzoğlu, Teng{\"u} and Schießer, Peter and Hahnenkamp, Saskia and Sommer, Claudia}, title = {IL-4 Deficiency Is Associated with Mechanical Hypersensitivity in Mice}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137924}, pages = {e28205}, year = {2011}, abstract = {Interleukin-4 (IL-4) is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko) mice to characterize their pain behavior before and after chronic constriction injury (CCI) of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS) of IL-4 ko mice in comparison with wildtype (wt) mice. Na{\"i}ve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001), while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF), IL-1β, IL-10, and IL-13 were found in the PNS and CNS of na{\"i}ve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001) 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014). Remarkably, CCI induced TNF (p<0.01), IL-1β (p<0.05), IL-10 (p<0.05), and IL-13 (p<0.001) gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.}, language = {en} } @article{FanLiChaoetal.2015, author = {Fan, Ben and Li, Lei and Chao, Yanjie and F{\"o}rstner, Konrad and Vogel, J{\"o}rg and Borriss, Rainer and Wu, Xiao-Qin}, title = {dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138369}, pages = {e0142002}, year = {2015}, abstract = {Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.}, language = {en} } @article{SchulSchmittRegnerietal.2013, author = {Schul, Daniela and Schmitt, Alexandra and Regneri, Janine and Schartl, Manfred and Wagner, Toni Ulrich}, title = {Bursted BMP Triggered Receptor Kinase Activity Drives Smad1 Mediated Long-Term Target Gene Oscillation in c2c12 Cells}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0059442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130131}, pages = {e59442}, year = {2013}, abstract = {Bone Morphogenetic Proteins (BMPs) are important growth factors that regulate many cellular processes. During embryogenesis they act as morphogens and play a critical role during organ development. They influence cell fates via concentration-gradients in the embryos where cells transduce this extracellular information into gene expression profiles and cell fate decisions. How receiving cells decode and quantify BMP2/4 signals is hardly understood. There is little data on the quantitative relationships between signal input, transducing molecules, their states and location, and ultimately their ability to integrate graded systemic inputs and generate qualitative responses. Understanding this signaling network on a quantitative level should be considered a prerequisite for efficient pathway modulation, as the BMP pathway is a prime target for therapeutic invention. Hence, we quantified the spatial distribution of the main signal transducer of the BMP2/4 pathway in response to different types and levels of stimuli in c2c12 cells. We found that the subcellular localization of Smad1 is independent of ligand concentration. In contrast, Smad1 phosphorylation levels relate proportionally to BMP2 ligand concentrations and they are entirely located in the nucleus. Interestingly, we found that BMP2 stimulates target gene expression in non-linear, wave-like forms. Amplitudes showed a clear concentration-dependency, for sustained and transient stimulation. We found that even burst-stimulation triggers gene-expression wave-like modulations that are detectable for at least 30 h. Finally, we show here that target gene expression oscillations depend on receptor kinase activity, as the kinase drives further expression pulses without receptor reactivation and the target gene expression breaks off after inhibitor treatment in c2c12 cells.}, language = {en} } @article{SchwerkPapandreouSchuhmannetal.2012, author = {Schwerk, Christian and Papandreou, Thalia and Schuhmann, Daniel and Nickol, Laura and Borkowski, Julia and Steinmann, Ulrike and Quednau, Natascha and Stump, Carolin and Weiss, Christel and Berger, J{\"u}rgen and Wolburg, Hartwig and Claus, Heike and Vogel, Ulrich and Ishikawa, Hiroshi and Tenenbaum, Tobias and Schroten, Horst}, title = {Polar Invasion and Translocation of Neisseria meningitidis and Streptococcus suis in a Novel Human Model of the Blood-Cerebrospinal Fluid Barrier}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0030069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131459}, pages = {e30069}, year = {2012}, abstract = {Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.}, language = {en} } @article{NonoPletinckxLutzetal.2012, author = {Nono, Justin Komguep and Pletinckx, Katrien and Lutz, Manfred B. and Brehm, Klaus}, title = {Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {2}, doi = {10.1371/journal.pntd.0001516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134280}, pages = {e1516}, year = {2012}, abstract = {Background: Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E. multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action. Methodology/Principal Findings: We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naive T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro. Conclusions: This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.}, language = {en} } @article{DeGiorgiBuonaguroWorschechetal.2013, author = {De Giorgi, Valeria and Buonaguro, Luigi and Worschech, Andrea and Tornesello, Maria Lina and Izzo, Francesco and Marincola, Francesco M. and Wang, Ena and Buonaguro, Franco M.}, title = {Molecular Signatures Associated with HCV-Induced Hepatocellular Carcinoma and Liver Metastasis}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0056153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131155}, pages = {e56153}, year = {2013}, abstract = {Hepatocellular carcinomas (HCCs) are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV) infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis. Conclusions: A diagnostic molecular signature complementing conventional pathologic assessment was identified.}, language = {en} } @article{WangChenMinevetal.2012, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Szalay, Aladar A.}, title = {Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells}, series = {Journal of Translational Medicine}, volume = {10}, journal = {Journal of Translational Medicine}, number = {167}, doi = {10.1186/1479-5876-10-167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130019}, year = {2012}, abstract = {Background: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44\(^+\)CD24\(^+\)ESA\(^+\) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44\(^+\)CD24\(^+\)ESA\(^+\) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44\(^+\)CD24\(^-\)ESA\(^+\) cells. Conclusions: Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.}, language = {en} } @article{SanderdeJongRosenwaldetal.2014, author = {Sander, Brigitta and de Jong, Daphne and Rosenwald, Andreas and Xie, Wanling and Balagu{\´e}, Olga and Calaminici, Maria and Carreras, Joaquim and Gaulard, Philippe and Gribben, John and Hagenbeek, Anton and Kersten, Marie Jos{\´e} and Molina, Thierry Jo and Lee, Abigail and Montes-Moreno, Santiago and Ott, German and Raemaekers, John and Salles, Gilles and Sehn, Laurie and Thorns, Christoph and Wahlin, Bjorn E. and Gascoyne, Randy D. and Weller, Edie}, title = {The reliability of immunohistochemical analysis of the tumor microenvironment in follicular lymphoma: a validation study from the Lunenburg Lymphoma Biomarker Consortium}, series = {Haematologica}, volume = {99}, journal = {Haematologica}, number = {4}, issn = {1592-8721}, doi = {10.3324/haematol.2013.095257}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116875}, pages = {715-725}, year = {2014}, abstract = {The cellular microenvironment in follicular lymphoma is of biological and clinical importance. Studies on the clinical significance of non-malignant cell populations have generated conflicting results, which may partly be influenced by poor reproducibility in immunohistochemical marker quantification. In this study, the reproducibility of manual scoring and automated microscopy based on a tissue microarray of 25 follicular lymphomas as compared to flow cytometry is evaluated. The agreement between manual scoring and flow cytometry was moderate for CD3, low for CD4, and moderate to high for CD8, with some laboratories scoring closer to the flow cytometry results. Agreement in manual quantification across the 7 laboratories was low to moderate for CD3, CD4, CD8 and FOXP3 frequencies, moderate for CD21, low for MIB1 and CD68, and high for CD10. Manual scoring of the architectural distribution resulted in moderate agreement for CD3, CD4 and CD8, and low agreement for FOXP3 and CD68. Comparing manual scoring to automated microscopy demonstrated that manual scoring increased the variability in the low and high frequency interval with some laboratories showing a better agreement with automated scores. Manual scoring reliably identified rare architectural patterns of T-cell infiltrates. Automated microscopy analyses for T-cell markers by two different instruments were highly reproducible and provided acceptable agreement with flow cytometry. These validation results provide explanations for the heterogeneous findings on the prognostic value of the microenvironment in follicular lymphoma. We recommend a more objective measurement, such as computer-assisted scoring, in future studies of the prognostic impact of microenvironment in follicular lymphoma patients.}, language = {en} } @article{AukemaKreuzKohleretal.2014, author = {Aukema, Sietse M. and Kreuz, Markus and Kohler, Christian W. and Rosolowski, Maciej and Hasenclever, Dirk and Hummel, Michael and K{\"u}ppers, Ralf and Lenze, Diddo and Ott, German and Pott, Christiane and Richter, Julia and Rosenwald, Andreas and Szczepanowski, Monika and Schwaenen, Carsten and Stein, Harald and Trautmann, Heiko and Wessendorf, Swen and Tr{\"u}mper, Lorenz and Loeffler, Markus and Spang, Rainer and Kluin, Philip M. and Klapper, Wolfram and Siebert, Reiner}, title = {Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma}, series = {Haematologica}, volume = {99}, journal = {Haematologica}, number = {4}, issn = {1592-8721}, doi = {10.3324/haematol.2013.091827}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116882}, pages = {726-735}, year = {2014}, abstract = {Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC+) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC+ lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC+-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6(+)/MYC+ and BCL2(+)/MYC+ double-hit lymphomas. BCL2(+)/MYC+ double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC+ lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC+ lymphomas sharing various molecular characteristics.}, language = {en} } @article{GarciaMatosShenetal.2014, author = {Garcia, Tzintzuni I. and Matos, Isa and Shen, Yingjia and Pabuwal, Vagmita and Coelho, Maria Manuela and Wakamatsu, Yuko and Schartl, Manfred and Walter, Ronald B.}, title = {Novel Method for Analysis of Allele Specific Expression in Triploid Oryzias latipes Reveals Consistent Pattern of Allele Exclusion}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116000}, pages = {e100250}, year = {2014}, abstract = {Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82\%) shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18\%) displayed a wide range of ASE levels. Interestingly the majority of genes (78\%) displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.}, language = {en} } @article{TilstamGijbelsHabbeddineetal.2014, author = {Tilstam, Pathricia V. and Gijbels, Marion J. and Habbeddine, Mohamed and Cudejko, Celine and Asare, Yaw and Theelen, Wendy and Zhou, Baixue and D{\"o}ring, Yvonne and Drechsler, Maik and Pawig, Lukas and Simsekyilmaz, Sakine and Koenen, Rory R. and de Winther, Menno P. J. and Lawrence, Toby and Bernhagen, J{\"u}rgen and Zernecke, Alma and Weber, Christian and Noels, Heidi}, title = {Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {2}, doi = {10.1371/journal.pone.0087452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117450}, pages = {e87452}, year = {2014}, abstract = {Background: The Ikkα kinase, a subunit of the NF-kappa B-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikk alpha mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results: Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA) Apoe(-/-)) or with Ikkα(+/+) Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA) Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion: Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα AA mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.}, language = {en} } @article{ReynoldsCliffeFoerstneretal.2014, author = {Reynolds, David and Cliffe, Laura and F{\"o}rstner, Konrad U. and Hon, Chung-Chau and Siegel, T. Nicolai and Sabatini, Robert}, title = {Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei}, series = {Nucleic Acids Research}, volume = {42}, journal = {Nucleic Acids Research}, number = {15}, doi = {10.1093/nar/gku714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117863}, pages = {9717-9729}, year = {2014}, abstract = {Base J, beta-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase ( RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters.}, language = {en} } @article{NguyenMuellerParketal.2014, author = {Nguyen, Tu N. and M{\"u}ller, Laura S. M. and Park, Sung Hee and Siegel, T. Nicolai and G{\"u}nzl, Arthur}, title = {Promoter occupancy of the basal class I transcription factor A differs strongly between active and silent VSG expression sites in Trypanosoma brucei}, series = {Nucleic Acid Research}, volume = {42}, journal = {Nucleic Acid Research}, number = {5}, issn = {1362-4962}, doi = {10.1093/nar/gkt1301}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117232}, pages = {3164-3176}, year = {2014}, abstract = {Monoallelic expression within a gene family is found in pathogens exhibiting antigenic variation and in mammalian olfactory neurons. Trypanosoma brucei, a lethal parasite living in the human bloodstream, expresses variant surface glycoprotein (VSG) from 1 of 15 bloodstream expression sites (BESs) by virtue of a multifunctional RNA polymerase I. The active BES is transcribed in an extranucleolar compartment termed the expression site body (ESB), whereas silent BESs, located elsewhere within the nucleus, are repressed epigenetically. The regulatory mechanisms, however, are poorly understood. Here we show that two essential subunits of the basal class I transcription factor A (CITFA) predominantly occupied the promoter of the active BES relative to that of a silent BES, a phenotype that was maintained after switching BESs in situ. In these experiments, high promoter occupancy of CITFA was coupled to high levels of both promoter-proximal RNA abundance and RNA polymerase I occupancy. Accordingly, fluorescently tagged CITFA-7 was concentrated in the nucleolus and the ESB. Because a ChIP-seq analysis found that along the entire BES, CITFA-7 is specifically enriched only at the promoter, our data strongly indicate that monoallelic BES transcription is activated by a mechanism that functions at the level of transcription initiation.}, language = {en} } @article{MortonFliesserDittrichetal.2014, author = {Morton, Charles Oliver and Fliesser, Mirjam and Dittrich, Marcus and M{\"u}ller, Tobias and Bauer, Ruth and Kneitz, Susanne and Hope, William and Rogers, Thomas Richard and Einsele, Hermann and L{\"o}ffler, J{\"u}rgen}, title = {Gene Expression Profiles of Human Dendritic Cells Interacting with Aspergillus fumigatus in a Bilayer Model of the Alveolar Epithelium/Endothelium Interface}, doi = {10.1371/journal.pone.0098279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112893}, year = {2014}, abstract = {The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.}, language = {en} } @article{UeceylerValetKafkeetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Valet, Michael and Kafke, Waldemar and T{\"o}lle, Thomas R. and Sommer, Claudia}, title = {Local and Systemic Cytokine Expression in Patients with Postherpetic Neuralgia}, doi = {10.1371/journal.pone.0105269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113041}, year = {2014}, abstract = {Background Postherpetic neuralgia (PHN) is the painful complication of a varicella zoster virus reactivation. We investigated the systemic and local gene expression of pro- and anti-inflammatory cytokine expression in patients with PHN. Methods Thirteen patients with PHN at the torso (Th4-S1) were recruited. Skin punch biopsies were obtained from the painful and the contralateral painless body area for intraepidermal nerve fiber density (IENFD) and cytokine profiling. Additionally, blood was withdrawn for systemic cytokine expression and compared to blood values of healthy controls. We analyzed the gene expression of selected pro- and anti-inflammatory cytokines (tumor necrosis factor-alpha [TNF] and interleukins [IL]-1β, IL-2, and IL-8). Results IENFD was lower in affected skin compared to unaffected skin (p<0.05), while local gene expression of pro- and anti-inflammatory cytokines did not differ except for two patients who had 7fold higher IL-6 and 10fold higher IL-10 gene expression in the affected skin compared to the contralateral unaffected skin sample. Also, the systemic expression of cytokines in patients with PHN and in healthy controls was similar. Conclusion While the systemic and local expression of the investigated pro- and anti-inflammatory cytokines was not different from controls, this may have been influenced by study limitations like the low number of patients and different disease durations. Furthermore, other cytokines or pain mediators need to be considered.}, language = {en} } @article{BuchnerBlancoRedondoBunzetal.2013, author = {Buchner, Erich and Blanco Redondo, Beatriz and Bunz, Melanie and Halder, Partho and Sadanandappa, Madhumala K. and M{\"u}hlbauer, Barbara and Erwin, Felix and Hofbauer, Alois and Rodrigues, Veronica and VijayRaghavan, K. and Ramaswami, Mani and Rieger, Dirk and Wegener, Christian and F{\"o}rster, Charlotte}, title = {Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the W{\"u}rzburg Hybridoma Library}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97109}, year = {2013}, abstract = {Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the W{\"u}rzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the W{\"u}rzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed.}, language = {en} } @article{SchubertSpahnKneitzetal.2013, author = {Schubert, Maria and Spahn, Martin and Kneitz, Susanne and Scholz, Claus J{\"u}rgen and Joniau, Steven and Stroebel, Philipp and Riedmiller, Hubertus and Kneitz, Burkhard}, title = {Distinct microRNA Expression Profile in Prostate Cancer Patients with Early Clinical Failure and the Impact of let-7 as Prognostic Marker in High-Risk Prostate Cancer}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0065064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96825}, year = {2013}, abstract = {Background The identification of additional prognostic markers to improve risk stratification and to avoid overtreatment is one of the most urgent clinical needs in prostate cancer (PCa). MicroRNAs, being important regulators of gene expression, are promising biomarkers in various cancer entities, though the impact as prognostic predictors in PCa is poorly understood. The aim of this study was to identify specific miRNAs as potential prognostic markers in high-risk PCa and to validate their clinical impact. Methodology and Principal Findings We performed miRNA-microarray analysis in a high-risk PCa study group selected by their clinical outcome (clinical progression free survival (CPFS) vs. clinical failure (CF)). We identified seven candidate miRNAs (let-7a/b/c, miR-515-3p/5p, -181b, -146b, and -361) that showed differential expression between both groups. Further qRT-PCR analysis revealed down-regulation of members of the let-7 family in the majority of a large, well-characterized high-risk PCa cohort (n = 98). Expression of let-7a/b/and -c was correlated to clinical outcome parameters of this group. While let-7a showed no association or correlation with clinical relevant data, let-7b and let-7c were associated with CF in PCa patients and functioned partially as independent prognostic marker. Validation of the data using an independent high-risk study cohort revealed that let-7b, but not let-7c, has impact as an independent prognostic marker for BCR and CF. Furthermore, we identified HMGA1, a non-histone protein, as a new target of let-7b and found correlation of let-7b down-regulation with HMGA1 over-expression in primary PCa samples. Conclusion Our findings define a distinct miRNA expression profile in PCa cases with early CF and identified let-7b as prognostic biomarker in high-risk PCa. This study highlights the importance of let-7b as tumor suppressor miRNA in high-risk PCa and presents a basis to improve individual therapy for high-risk PCa patients.}, language = {en} } @article{DeekenGohlkeScholzetal.2013, author = {Deeken, Rosalia and Gohlke, Jochen and Scholz, Claus-Juergen and Kneitz, Susanne and Weber, Dana and Fuchs, Joerg and Hedrich, Rainer}, title = {DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors}, series = {PLoS Genetics}, journal = {PLoS Genetics}, doi = {10.1371/journal.pgen.1003267}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96318}, year = {2013}, abstract = {Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.}, language = {en} } @phdthesis{Wu2007, author = {Wu, Rongxue}, title = {Treatment with integrin alpha v inhibitor abolishes compensatory cardiac hypertrophy due to altered signal transduction and ECM gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Integrine sind Transmembranrezeptoren, welche mechanische Signale von der extrazellul{\"a}ren Matrix (ECM) zum Zytoskelett {\"u}bermitteln ("outside-in-signaling"). Viele molekulare Defekte in der Verbindung zwischen Zytoskelett und ECM erzeugen bekanntermaßen Kardiomyopathien. alpha v Integrin scheint eine Hauptrolle in verschiedenen Prozessen der kardialen Reorganisation zu spielen, wie z.B. Regulation der Zellproliferation, -migration und -differenzierung. Unsere Hypothese war, dass alpha v -Integrin-vermittelte Signale notwendig f{\"u}r die kompensatorische Hypertrophie nach Aortenkonstriktion sind und assoziiert mit der Modulation der Expression von ECM-Proteinen. Dazu wurden M{\"a}use mit einem spezifischen alpha v Integrin-Inhibitor behandelt und einer Aortenkonstriktion (AB) unterzogen. Nach zwei Tagen und nach sieben Tagen wurden die M{\"a}use echokardiographisch untersucht und eingehende h{\"a}modynamische Untersuchungen wurden durchgef{\"u}hrt. Die Behandlung mit dem alpha v -Integrin-Inhibitor f{\"u}hrte zu einer dilatativen Kardiomyopathie und Herzinsuffizienz in den AB-M{\"a}usen, gekennzeichnet durch einen dilatierten linken Ventrikel, schlechte linksventrikul{\"a}re Funktion und einer Lungenstauung, wohingegen die scheinbehandelten Tiere eine kompensatorische Hypertrophie des linken Ventrikels zeigten. Untersuchungen der beteiligten Signalwege zeigten eine Aktivierung des p38 MAP-Kinase-Signalwegs, von ERK 1 und -2, der Focal Adhesion Kinase FAK und Tyrosin-Phosphorylierung von c-Src in den Kontrollherzen, was in den Inhibitor-behandelten Herzen fehlte. mRNA-Expressionsanalysen f{\"u}r 96 Gene mittels "Micro-Arrays" ermittelten verschiedene genomische Ziele des alpha v -Integrin-aktivierten Signalwegs. 18 f{\"u}r ECM-Proteine codierende Gene wurden mehr als 2-fach hochreguliert, z.B. Kollagen (8,11-fach ± 2,2), Fibronectin (2,32 ± 094), SPARC (3,78 ± 0,12), ADAMTS-1 (3,51 ± 0,81) und TIMP2 (2,23 ± 0,98), wohingegen die Aktivierung dieser Gene in Inhibitor-behandelten Tieren aufgehoben war. Wir folgern daraus, dass Signalwege unterhalb von alpha v -Integrin, mediiert durch MAP-Kinasen, FAK und c-Src, zu einer verst{\"a}rkten Expression von ECM-Komponenten f{\"u}hrt, welche f{\"u}r die kompensatorische Antwort auf Druckbelastung n{\"o}tig sind.}, subject = {Antigen}, language = {en} } @phdthesis{Heintel2006, author = {Heintel, Timo Michael}, title = {Einfluss von Stickstoffmonoxid auf die Genexpression humaner artikul{\"a}rer Chondrozyten w{\"a}hrend Expansion und Redifferenzierung in einem in-vitro-Modell}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20456}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Bei der Kultivierung humaner artikul{\"a}rer Chondrozyten f{\"u}r eine m{\"o}gliche therapeutische Anwendung gilt es, deren besondere zellphysiologische Eigenschaften zu ber{\"u}cksichtigen, um ein zell- und molekularbiologisch hochwertiges Transplantat erzielen zu k{\"o}nnen. Stickstoffmonoxid (NO) gilt als ein wichtiger Faktor f{\"u}r die Hom{\"o}ostase der chondrogenen Extrazellul{\"a}rmatrix, der f{\"u}r die Funktion des hyalinen Gelenkknorpels entscheidenden Gewebekomponente. Es stellt bisherigen Untersuchungen nach einen wichtigen Regulator im sensiblen Gleichgewicht zwischen der Synthese knorpelspezifischer Matrixproteine und dem Matrixabbau dar. Trotz dieser Bedeutung ist das Wissen {\"u}ber die Expression der NO-generierenden Enzyme in humanen artikul{\"a}ren Chondrozyten, insbesondere unter Kulturbedingungen, sehr begrenzt. Des Weiteren fehlen Erkenntnisse {\"u}ber den Einfluss von NO auf den Differenzierungsstatus dieser Zellen. Ziel der vorliegenden Arbeit war daher die Charakterisierung der Genexpression adulter Gelenkknorpelzellen w{\"a}hrend deren Expansion und anschließender Redifferenzierung in einem in vitro-Modell. Das Hauptaugenmerk wurde hierbei auf die 3 NOS-Isoformen sowie die beiden Matrixproteine Kollagen Typ II und Aggrecan gelegt. In Zusatzversuchen wurde die Bedeutung von NO f{\"u}r den Metabolismus sowie f{\"u}r Differenzierungsvorg{\"a}nge humaner artikul{\"a}rer Chondrozyten untersucht. Hierbei sollten funktionelle Zusammenh{\"a}nge aufgezeigt und regulative Abh{\"a}ngigkeiten auf der Ebene der Transkription identifiziert werden. Humane artikul{\"a}re Chondrozyten wurden hierf{\"u}r unter standardisierten Bedingungen enzymatisch aus Knorpelgewebe von Femurk{\"o}pfen isoliert. Nach Expansion der Zellen in zweidimensionaler Monolayerkultur wurden die amplifizierten Zellen in Form dreidimensionaler Zellaggregate in einem chondrogenen Differenzierungsmedium rekultiviert. Ver{\"a}nderungen des zellul{\"a}ren Ph{\"a}notyps wurden morphologisch, histochemisch, immunhistochemisch und mittels RT-PCR auf Genexpressionsebene verfolgt. Im Verlauf der Expansion konnte eine funktionelle und morphologische Dedifferenzierung der Chondrozyten dokumentiert werden. Durch 21t{\"a}gige Rekultivierung in einem definierten chondrogenen Differenzierungsmedium konnten die Zellen ihre, zuvor verloren gegangenen knorpelspezifischen Eigenschaften wieder ausbilden (Redifferenzierung). Die Analyse der Genexpression der NOS-Isoformen humaner artikul{\"a}rer Chondrozyten auf RNA-Ebene ergab neben der, in der Literatur bereits beschriebenen induzierbaren NOS die Expression zweier weiterer Isoformen, der neuronalen und der endothelialen NOS. In weiteren Versuchen wurde der Effekt verschiedener Mediatoren auf die Genexpression der Gelenkknorpelzellen beobachtet. So wurden Zellaggregate w{\"a}hrend verschiedener Phasen der Redifferenzierung mit rhIL-1 beta bzw. rhTNF alpha stimuliert. Die Chondrozyten reagierten darauf mit einer starker Induktion der induzierbaren NOS sowie mit einem konsekutiven Anstieg der NO-Freisetzung. Die eNOS-Expression wurde negativ reguliert. Auf die Konzentration der nNOS-Transkripte hatten beide Zytokine keinen messbaren Einfluss. Zudem konnte auf diesen Reiz hin eine drastische Reduktion der Kollagen Typ II und Aggrecan-Expression festgestellt werden. In Zusatzversuchen, bei denen u.a. ein NO-Donor und ein NOS-Inhibitor zum Einsatz kamen wurde dieser Effekt genauer erforscht. Aus den gewonnenen Ergebnissen kann geschlossen werden, dass der Effekt von IL-1 beta und TNF alpha auf die Synthese der beiden wichtigen Matrixproteine Kollagen Typ II und Aggrecan zumindest teilweise {\"u}ber NO vermittelt wird. In mehren Versuchsreihen gelang es des Weiteren die besondere Bedeutung von NO f{\"u}r die Zelldifferenzierung zu belegen. Die Modifikation des verwendeten chondrogenen Differenzierungsmediums durch Zusatz des NOS-Inhibitors NG-Amino-L-Arginin (L-NAA) f{\"u}hrte zu einer deutlich fr{\"u}heren bzw. st{\"a}rkeren Expression der beiden chondrogenen Markergene Kollagen Typ II und Aggrecan.}, language = {de} } @phdthesis{Hock2013, author = {Hock, Matthias}, title = {Analyse der NFATc1-Genexpression durch eGFP-BAC-Reporterm{\"a}use}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In Lymphozyten wird nach Antigenaktivierung die Expression des Nfatc1-Gens durch Aktivierung des P1-Promoters stark induziert. Dagegen ist die, durch den Promoter P2 vermittelte Expression ebenso wie die der anderen NFAT Faktoren c2 und c3 konstitutiv. Die Akkumulation der dabei gebildeten Isoform NFATc1/αA ist sowohl f{\"u}r Effektorfunktionen wie die Zytokinproduktion sowie die Proliferation und das {\"U}berleben der aktivierten Zellen wichtig (Chuvpilo et al., 2002). Um die Expression des Nfatc1-Gens auf Einzelzellebene messen zu k{\"o}nnen, wurden BAC (bacterial artificial chromosom) transgene Mauslinien generiert, die einen 210kb großen Bereich des Nfatc1-Gens der Maus enthalten. In diesen Lokus wurde ein eGFP-Reportergen innerhalb des allen Isoformen gemeinsamen, dritten Exons integriert. In dieser Arbeit wird durch semiquantitative RT-PCR-Experimente von Gesamt-Milzzellen und TLymphozyten gezeigt, dass in den B6/NFATc1-eGFP-BAC-Reporterm{\"a}usen die Expression der eGFP-cDNA analog zum endogenen Nfatc1-Lokus der Kontrolle der beiden Promotoren P1 und P2 unterliegt. In Western Blot Experimenten wird in diesen Zellen mittels eines NFATc1α-spezifischen Antik{\"o}rpers eine induzierbare und CsA-sensitive α-GFP-Isoform - vergleichbar mit der endogenen NFATc1α-Isoform - nachgewiesen. Gleichzeitig zeigen NFATc1-Antik{\"o}rper das konstitutiv exprimierte GFPβ-Protein. Die Korrelation der Expression von NFATc1 und GFP auf mRNA- und Proteinebene machen in B6/NFATc1-eGFP-BAC-Reporterm{\"a}usen das GFP-Protein somit zu einem sensitiven und spezifischen Marker der NFATc1-Aktivit{\"a}t. In FACS-Analysen gibt der Anstieg der GFP-Fluoreszenzintensit{\"a}t bei Stimulation von Gesamt- Milzzellen bzw. T-Lymphozyten um bis auf das Dreifache die Induktion von NFATc1 wider. Unter dem Einfluss von CsA verbleibt die GFPFluoreszenzintensit{\"a}t auf dem Niveau unstimulierter Zellen. Die GFPFluoreszenz korreliert dar{\"u}ber hinaus bei Prim{\"a}rstimulation mit der Expression des IL-2-Gens, dessen Promotor mit 5 NFAT-Bindestellen den Prototyp eines NFATc1-Targets darstellt (Serfling et al., 1989). Die Analyse der Koexpression von NFATc1 und GFP mittels Fluoreszenzmikroskopie zeigt in allen stimulierten, GFP-positiven CD4+-Lymphozyten die nukle{\"a}re Lokalisation von 75 NFATc1, vor allem von NFATc1α. Die Analyse des GFP-Ph{\"a}notyps in alloreaktiven T-Zellen zeigt bei Abstoßungsreaktionen in vitro („Mixed Lymphocyte Reactions") eine selektive Zunahme der Fluoreszenz dieser Zellen um bis auf das Vierfache, was die Rolle von NFATc1 f{\"u}r die Effektorfunktion aktivierter T-Lymphozyten verdeutlicht. GFP und das endogene NFATc1 werden bei Stimulation konventioneller T-Zellen (Tcons, CD4+CD25-FoxP3-) stark exprimiert, w{\"a}hrend nat{\"u}rliche regulatorische T-Zellen (nTregs, CD4+CD25+FoxP3+) konstant geringe NFATc1- und GFP-Konzentrationen zeigen. In induzierten regulatorischen T-Lymphozyten (iTregs) supprimiert TGF- β konzentrationsabh{\"a}ngig die GFP-Fluoreszenz bis auf das Niveau unstimulierter Lymphozyten. W{\"a}hrend in nTregs die Suppression des Nfatc1- Gens im wesentlichen durch FoxP3 erfolgt (Torgerson et al., 2009), scheint dies in iTregs vor allem {\"u}ber den TGF-β Signalweg vermittelt zu werden. Die Analyse der GFP-Expression in den verschiedenen Stadien der TZellentwicklung zeigt weiterhin deutliche Unterschiede in der Aktivit{\"a}t des Nfatc1-Gens. Dies wird durch die starke Aktivit{\"a}t des BAC-Genlokus in CD4- CD8- DN Thymozyten, welche eine sechsfach h{\"o}here GFP-Expression aufweisen als CD4+CD8+ DP Zellen, deutlich.}, subject = {NFATc1}, language = {de} } @article{KressEgenolfSommeretal.2023, author = {Kreß, Luisa and Egenolf, Nadine and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Cytokine expression profiles in white blood cells of patients with small fiber neuropathy}, series = {BMC Neuroscience}, volume = {24}, journal = {BMC Neuroscience}, number = {1}, doi = {10.1186/s12868-022-00770-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300619}, year = {2023}, abstract = {Background The role of cytokines in the pathophysiology, diagnosis, and prognosis of small fiber neuropathy (SFN) is incompletely understood. We studied expression profiles of selected pro- and anti-inflammatory cytokines in RNA from white blood cells (WBC) of patients with a medical history and a clinical phenotype suggestive for SFN and compared data with healthy controls. Methods We prospectively recruited 52 patients and 21 age- and sex-matched healthy controls. Study participants were characterized in detail and underwent complete neurological examination. Venous blood was drawn for routine and extended laboratory tests, and for WBC isolation. Systemic RNA expression profiles of the pro-inflammatory cytokines interleukin (IL)-1ß, IL-2, IL-8, tumor necrosis factor-alpha (TNF) and the anti-inflammatory cytokines IL-4, IL-10, transforming growth factor beta-1 (TGF) were analyzed. Protein levels of IL-2, IL-8, and TNF were measured in serum of patients and controls. Receiver operating characteristic (ROC)-curve analysis was used to determine the accuracy of IL-2, IL-8, and TNF in differentiating patients and controls. To compare the potential discriminatory efficacy of single versus combined cytokines, equality of different AUCs was tested. Results WBC gene expression of IL-2, IL-8, and TNF was higher in patients compared to healthy controls (IL-2: p = 0.02; IL-8: p = 0.009; TNF: p = 0.03) and discriminated between the groups (area under the curve (AUC) ≥ 0.68 for each cytokine) with highest diagnostic accuracy reached by combining the three cytokines (AUC = 0.81, sensitivity = 70\%, specificity = 86\%). Subgroup analysis revealed the following differences: IL-8 and TNF gene expression levels were higher in female patients compared to female controls (IL-8: p = 0.01; TNF: p = 0.03). The combination of TNF with IL-2 and TNF with IL-2 and IL-8 discriminated best between the study groups. IL-2 was higher expressed in patients with moderate pain compared to those with severe pain (p = 0.02). Patients with acral pain showed higher IL-10 gene expression compared to patients with generalized pain (p = 0.004). We further found a negative correlation between the relative gene expression of IL-2 and current pain intensity (p = 0.02). Serum protein levels of IL-2, IL-8, and TNF did not differ between patients and controls. Conclusions We identified higher systemic gene expression of IL-2, IL-8, and TNF in SFN patients than in controls, which may be of potential relevance for diagnostics and patient stratification.}, language = {en} } @article{LaglerElMeseryKuebleretal.2017, author = {Lagler, Charlotte and El-Mesery, Mohamed and K{\"u}bler, Alexander Christian and M{\"u}ller-Richter, Urs Dietmar Achim and St{\"u}hmer, Thorsten and Nickel, Joachim and M{\"u}ller, Thomas Dieter and Wajant, Harald and Seher, Axel}, title = {The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158993}, pages = {e0185720}, year = {2017}, abstract = {Multiple myeloma (MM), a malignancy of the bone marrow, is characterized by a pathological increase in antibody-producing plasma cells and an increase in immunoglobulins (plasmacytosis). In recent years, bone morphogenetic proteins (BMPs) have been reported to be activators of apoptotic cell death in neoplastic B cells in MM. Here, we use bone morphogenetic protein 2 (BMP2) to show that the "apoptotic" effect of BMPs on human neoplastic B cells is dominated by anti-proliferative activities and cell cycle arrest and is apoptosis-independent. The anti-proliferative effect of BMP2 was analysed in the human cell lines KMS12-BM and L363 using WST-1 and a Coulter counter and was confirmed using CytoTox assays with established inhibitors of programmed cell death (zVAD-fmk and necrostatin-1). Furthermore, apoptotic activity was compared in both cell lines employing western blot analysis for caspase 3 and 8 in cells treated with BMP2 and FasL. Additionally, expression profiles of marker genes of different cell death pathways were analysed in both cell lines after stimulation with BMP2 for 48h using an RT-PCR-based array. In our experiments we observed that there was rather no reduction in absolute cell number, but cells stopped proliferating following treatment with BMP2 instead. The time frame (48-72 h) after BMP2 treatment at which a reduction in cell number is detectable is too long to indicate a directly BMP2-triggered apoptosis. Moreover, in comparison to robust apoptosis induced by the approved apoptotic factor FasL, BMP2 only marginally induced cell death. Consistently, neither the known inhibitor of apoptotic cell death zVAD-fmk nor the necroptosis inhibitor necrostatin-1 was able to rescue myeloma cell growth in the presence of BMP2.}, language = {en} } @article{RutkowskiErhardL'Hernaultetal.2015, author = {Rutkowski, Andrzej J. and Erhard, Florian and L'Hernault, Anne and Bonfert, Thomas and Schilhabel, Markus and Crump, Colin and Rosenstiel, Philip and Efstathiou, Stacey and Zimmer, Ralf and Friedel, Caroline C. and D{\"o}lken, Lars}, title = {Widespread disruption of host transcription termination in HSV-1 infection}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7126}, doi = {10.1038/ncomms8126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148643}, year = {2015}, abstract = {Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination.}, language = {en} } @article{ZannasArlothCarrilloRoaetal.2015, author = {Zannas, Anthony S. and Arloth, Janine and Carrillo-Roa, Tania and Iurato, Stella and R{\"o}h, Simone and Ressler, Kerry J. and Nemeroff, Charles B. and Smith, Alicia K. and Bradley, Bekh and Heim, Christine and Menke, Andreas and Lange, Jennifer F. and Br{\"u}ckl, Tanja and Ising, Marcus and Wray, Naomi R. and Erhardt, Angelika and Binder, Elisabeth B. and Mehta, Divya}, title = {Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling}, series = {Genome Biology}, volume = {16}, journal = {Genome Biology}, number = {266}, doi = {10.1186/s13059-015-0828-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149865}, year = {2015}, abstract = {Background Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. Results We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 \% (110/353) of these CpGs and transcription in 81.7 \% (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Conclusions Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk.}, language = {en} } @article{SeherLaglerStuehmeretal.2017, author = {Seher, Axel and Lagler, Charlotte and St{\"u}hmer, Thorsten and M{\"u}ller-Richter, Urs Dietmar Achim and K{\"u}bler, Alexander Christian and Sebald, Walter and M{\"u}ller, Thomas Dieter and Nickel, Joachim}, title = {Utilizing BMP-2 muteins for treatment of multiple myeloma}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0174884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158144}, pages = {e0174884}, year = {2017}, abstract = {Multiple myeloma (MM) represents a haematological cancer characterized by the pathological hyper proliferation of antibody-producing B-lymphocytes. Patients typically suffer from kidney malfunction and skeletal disorders. In the context of MM, the transforming growth factor β (TGFβ) member Activin A was recently identified as a promoter of both accompanying symptoms. Because studies have shown that bone morphogenetic protein (BMP)-2-mediated activities are counteracted by Activin A, we analysed whether BMP2, which also binds to the Activin A receptors ActRII and ActRIIB but activates the alternative SMAD-1/5/8 pathway, can be used to antagonize Activin A activities, such as in the context of MM. Therefore three BMP2 derivatives were generated with modified binding activities for the type II (ActRIIB) and/or type I receptor (BMPRIA) showing either increased or decreased BMP2 activity. In the context of MM these BMP2 muteins show two functionalities since they act as a) an anti-proliferative/apoptotic agent against neoplastic B-cells, b) as a bone-formation promoting growth factor. The molecular basis of both activities was shown in two different cellular models to clearly rely on the properties of the investigated BMP2 muteins to compete for the binding of Activin A to the Activin type II receptors. The experimental outcome suggests new therapeutic strategies using BMP2 variants in the treatment of MM-related pathologies.}, language = {en} } @article{AfonsoGrunzHoffmeierMuelleretal.2015, author = {Afonso-Grunz, Fabian and Hoffmeier, Klaus and M{\"u}ller, S{\"o}ren and Westermann, Alexander J. and Rotter, Bj{\"o}rn and Vogel, J{\"o}rg and Winter, Peter and Kahl, G{\"u}nter}, title = {Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {323}, doi = {10.1186/s12864-015-1489-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143230}, year = {2015}, abstract = {Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro-and eukaryotic cells without prior fixation or physical disruption of the interaction. Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75\% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium.}, language = {en} } @phdthesis{LangjahrverhHeld2018, author = {Langjahr [verh. Held], Melissa}, title = {Systemische Expression von Zytokinen bei schmerzhaften und schmerzlosen Polyneuropathien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154445}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Pathophysiologie der PNP wie auch die Entstehung der oft assoziierten neuropathischen Schmerzen ist unklar. Gleichzeitig gibt es bislang keine geeigneten Biomarker, die die oft komplizierte Differentialdiagnose vereinfachen k{\"o}nnen. Einige Tiermodelle und klinische Studien lieferten bereits Hinweise auf die entscheidende Rolle pro- und anti-inflammatorischer Zytokine in diesen Prozessen. Ziel unserer Studie war es, die systemische Genexpression pro- und anti-inflammatorischer Zytokine in einer großen Kohorte von Patienten mit PNP verschiedener {\"A}tiologie zu charakterisieren. Insgesamt konnten 111 PNP-Patienten und 38 gesunde Kontrollpersonen prospektiv rekrutiert werden. Nach Isolation von PBMC aus Blutproben von 97 Patienten wurde die Genexpression der pro-inflammatorischen Zytokine TNF, IL1, IL2, IL6, IL8 und der anti-inflammatorischen Zytokine IL4 und IL10 mittels qRT-PCR bestimmt. Bei 47 Patienten und 12 Kontrollen wurde zudem die IL6-, IL-8- und TNF-Zytokinproduktion von PBMC in vitro nach Stimulation durch LPS mittels ELISA untersucht. Hauptbefund war ein pro-inflammatorisches Zytokinprofil der PNP-Patienten mit h{\"o}herer Genexpression von IL1, IL2, IL8 und TNF im Vergleich zu den gesunden Kontrollen. Im Falle der entz{\"u}ndlichen Neuropathien konnte zudem eine niedrigere Genexpression von IL10 im Vergleich zu Gesunden nachgewiesen werden. Sowohl schmerzhafte als auch schmerzlose Verlaufsformen wiesen ein pro-inflammatorisches Zytokingenexpressionsprofil im Vergleich zu Gesunden auf, das bei schmerzhaften PNP deutlich mehr beteiligte pro-inflammatorische Zytokine umfasste; relevante Unterschiede zwischen den PNP-Patienten mit und ohne Schmerz sowie der diagnostischen Subgruppen fanden sich nicht. Eine niedrigere Stimulationsschwelle der PBMC lag bei PNP-Patienten im Vergleich zu Gesunden nicht vor. Insgesamt erscheint die Rolle einzelner Zytokine als systemische Biomarker f{\"u}r die Differenzierung verschiedener PNP-Formen bzw. bez{\"u}glich neuropathischen Schmerzes aufgrund einer niedrigen Spezifit{\"a}t deutlich eingeschr{\"a}nkt. Dennoch sprechen unsere Ergebnisse f{\"u}r eine m{\"o}gliche Rolle eines pro-inflammatorischen Milieus bei der Entstehung bzw. des Verlaufes verschiedener entz{\"u}ndlicher und nicht-entz{\"u}ndlicher Neuropathien und neuropathischen Schmerzes.}, subject = {Polyneuropathie}, language = {de} } @article{SchulteSchweinlinWestermannetal.2020, author = {Schulte, Leon N. and Schweinlin, Matthias and Westermann, Alexander J. and Janga, Harshavardhan and Santos, Sara C. and Appenzeller, Silke and Walles, Heike and Vogel, J{\"o}rg and Metzger, Marco}, title = {An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection}, series = {mBio}, volume = {11, 2020}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.03348-19}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229428}, year = {2020}, abstract = {A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens. IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.}, language = {en} } @article{ScognamiglioCabezasWallscheidThieretal.2016, author = {Scognamiglio, Roberta and Cabezas-Wallscheid, Nina and Thier, Marc Christian and Altamura, Sandro and Reyes, Alejandro and Prendergast, {\´A}ine M. and Baumg{\"a}rtner, Daniel and Carnevalli, Larissa S. and Atzberger, Ann and Haas, Simon and von Paleske, Lisa and Boroviak, Thorsten and W{\"o}rsd{\"o}rfer, Philipp and Essers, Marieke A. G. and Kloz, Ulrich and Eisenman, Robert N. and Edenhofer, Frank and Bertone, Paul and Huber, Wolfgang and van der Hoeven, Franciscus and Smith, Austin and Trumpp, Andreas}, title = {Myc depletion induces a pluripotent dormant state mimicking diapause}, series = {Cell}, volume = {164}, journal = {Cell}, number = {4}, doi = {10.1016/j.cell.2015.12.033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190868}, pages = {668-680}, year = {2016}, abstract = {Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.}, language = {en} } @article{SchulzRuppertHermsetal.2017, author = {Schulz, Herbert and Ruppert, Ann-Kathrin and Herms, Stefan and Wolf, Christiane and Mirza-Schreiber, Nazanin and Stegle, Oliver and Czamara, Darina and Forstner, Andreas J. and Sivalingam, Sugirthan and Schoch, Susanne and Moebus, Susanne and P{\"u}tz, Benno and Hillmer, Axel and Fricker, Nadine and Vatter, Hartmut and M{\"u}ller-Myhsok, Bertram and N{\"o}then, Markus M. and Becker, Albert J. and Hoffmann, Per and Sander, Thomas and Cichon, Sven}, title = {Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, doi = {10.1038/s41467-017-01818-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173168}, year = {2017}, abstract = {Emerging evidence emphasizes the strong impact of regulatory genomic elements in neurodevelopmental processes and the complex pathways of brain disorders. The present genome-wide quantitative trait loci analyses explore the \(cis\)-regulatory effects of single-nucleotide polymorphisms (SNPs) on DNA methylation (meQTL) and gene expression (eQTL) in 110 human hippocampal biopsies. We identify \(cis\)-meQTLs at 14,118 CpG methylation sites and \(cis\)-eQTLs for 302 3′-mRNA transcripts of 288 genes. Hippocampal \(cis\)-meQTL-CpGs are enriched in flanking regions of active promoters, CpG island shores, binding sites of the transcription factor CTCF and brain eQTLs. \(Cis\)-acting SNPs of hippocampal meQTLs and eQTLs significantly overlap schizophrenia-associated SNPs. Correlations of CpG methylation and RNA expression are found for 34 genes. Our comprehensive maps of \(cis\)-acting hippocampal meQTLs and eQTLs provide a link between disease-associated SNPs and the regulatory genome that will improve the functional interpretation of non-coding genetic variants in the molecular genetic dissection of brain disorders.}, language = {en} } @article{BocukWolffKrauseetal.2017, author = {Bocuk, Derya and Wolff, Alexander and Krause, Petra and Salinas, Gabriela and Bleckmann, Annalen and Hackl, Christina and Beissbarth, Tim and Koenig, Sarah}, title = {The adaptation of colorectal cancer cells when forming metastases in the liver: expression of associated genes and pathways in a mouse model}, series = {BMC Cancer}, volume = {17}, journal = {BMC Cancer}, number = {342}, doi = {10.1186/s12885-017-3342-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170853}, year = {2017}, abstract = {Background: Colorectal cancer (CRC) is the second leading cause of cancer-related death in men and women. Systemic disease with metastatic spread to distant sites such as the liver reduces the survival rate considerably. The aim of this study was to investigate the changes in gene expression that occur on invasion and expansion of CRC cells when forming metastases in the liver. Methods: The livers of syngeneic C57BL/6NCrl mice were inoculated with 1 million CRC cells (CMT-93) via the portal vein, leading to the stable formation of metastases within 4 weeks. RNA sequencing performed on the Illumina platform was employed to evaluate the expression profiles of more than 14,000 genes, utilizing the RNA of the cell line cells and liver metastases as well as from corresponding tumour-free liver. Results: A total of 3329 differentially expressed genes (DEGs) were identified when cultured CMT-93 cells propagated as metastases in the liver. Hierarchical clustering on heat maps demonstrated the clear changes in gene expression of CMT-93 cells on propagation in the liver. Gene ontology analysis determined inflammation, angiogenesis, and signal transduction as the top three relevant biological processes involved. Using a selection list, matrix metallopeptidases 2, 7, and 9, wnt inhibitory factor, and chemokine receptor 4 were the top five significantly dysregulated genes. Conclusion: Bioinformatics assists in elucidating the factors and processes involved in CRC liver metastasis. Our results support the notion of an invasion-metastasis cascade involving CRC cells forming metastases on successful invasion and expansion within the liver. Furthermore, we identified a gene expression signature correlating strongly with invasiveness and migration. Our findings may guide future research on novel therapeutic targets in the treatment of CRC liver metastasis.}, language = {en} } @article{IrmerTarazonaSasseetal.2015, author = {Irmer, Henriette and Tarazona, Sonia and Sasse, Christoph and Olbermann, Patrick and Loeffler, J{\"u}rgen and Krappmann, Sven and Conesa, Ana and Braus, Gerhard H.}, title = {RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {640}, doi = {10.1186/s12864-015-1853-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151390}, year = {2015}, abstract = {Background: Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results: We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions: We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth.}, language = {en} } @article{HamannBankmannMoraMazaetal.2022, author = {Hamann, Catharina S. and Bankmann, Julian and Mora Maza, Hanna and Kornhuber, Johannes and Zoicas, Iulia and Schmitt-B{\"o}hrer, Angelika}, title = {Social fear affects limbic system neuronal activity and gene expression}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms23158228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284274}, year = {2022}, abstract = {Social anxiety disorder (SAD) is a highly prevalent and comorbid anxiety disorder with rather unclear underlying mechanisms. Here, we aimed to characterize neurobiological changes occurring in mice expressing symptoms of social fear and to identify possible therapeutic targets for SAD. Social fear was induced via social fear conditioning (SFC), a validated animal model of SAD. We assessed the expression levels of the immediate early genes (IEGs) cFos, Fosl2 and Arc as markers of neuronal activity and the expression levels of several genes of the GABAergic, serotoninergic, oxytocinergic, vasopressinergic and neuropeptide Y (NPY)-ergic systems in brain regions involved in social behavior or fear-related behavior in SFC+ and SFC- mice 2 h after exposure to a conspecific. SFC+ mice showed a decreased number and density of cFos-positive cells and decreased expression levels of IEGs in the dorsal hippocampus. SFC+ mice also showed alterations in the expression of NPY and serotonin system-related genes in the paraventricular nucleus of the hypothalamus, basolateral amygdala, septum and dorsal raphe nucleus, but not in the dorsal hippocampus. Our results describe neuronal alterations occurring during the expression of social fear and identify the NPY and serotonergic systems as possible targets in the treatment of SAD.}, language = {en} } @article{CurtazReifschlaegerStraehleetal.2022, author = {Curtaz, Carolin J. and Reifschl{\"a}ger, Leonie and Str{\"a}hle, Linus and Feldheim, Jonas and Feldheim, Julia J. and Schmitt, Constanze and Kiesel, Matthias and Herbert, Saskia-Laureen and W{\"o}ckel, Achim and Meybohm, Patrick and Burek, Malgorzata}, title = {Analysis of microRNAs in exosomes of breast cancer patients in search of molecular prognostic factors in brain metastases}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284476}, year = {2022}, abstract = {Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use.}, language = {en} } @article{BrodehlBelkeGarnettetal.2017, author = {Brodehl, Andreas and Belke, Darrell D. and Garnett, Lauren and Martens, Kristina and Abdelfatah, Nelly and Rodriguez, Marcela and Diao, Catherine and Chen, Yong-Xiang and Gordon, Paul M. K. and Nygren, Anders and Gerull, Brenda}, title = {Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0174019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171084}, pages = {e0174019}, year = {2017}, abstract = {Background Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure, mainly as a result of mutations in cardiac desmosomal genes. Desmosomes are cell-cell junctions mediating adhesion of cardiomyocytes; however, the molecular and cellular mechanisms underlying the disease remain widely unknown. Desmocollin-2 is a desmosomal cadherin serving as an anchor molecule required to reconstitute homeostatic intercellular adhesion with desmoglein-2. Cardiac specific lack of desmoglein-2 leads to severe cardiomyopathy, whereas overexpression does not. In contrast, the corresponding data for desmocollin-2 are incomplete, in particular from the view of protein overexpression. Therefore, we developed a mouse model overexpressing desmocollin-2 to determine its potential contribution to cardiomyopathy and intercellular adhesion pathology. Methods and results We generated transgenic mice overexpressing DSC2 in cardiac myocytes. Transgenic mice developed a severe cardiac dysfunction over 5 to 13 weeks as indicated by 2D-echocardiography measurements. Corresponding histology and immunohistochemistry demonstrated fibrosis, necrosis and calcification which were mainly localized in patches near the epi- and endocardium of both ventricles. Expressions of endogenous desmosomal proteins were markedly reduced in fibrotic areas but appear to be unchanged in non-fibrotic areas. Furthermore, gene expression data indicate an early up-regulation of inflammatory and fibrotic remodeling pathways between 2 to 3.5 weeks of age. Conclusion Cardiac specific overexpression of desmocollin-2 induces necrosis, acute inflammation and patchy cardiac fibrotic remodeling leading to fulminant biventricular cardiomyopathy.}, language = {en} }