@phdthesis{Zechner2018, author = {Zechner, Martin}, title = {Quantifizierung morphologischer Ver{\"a}nderungen an Neuronen der lateralen Amygdala in SPRED2-defizienten M{\"a}usen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172291}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der vorliegenden Dissertation wurden die Folgen einer SPRED2-Defizienz in einem Knockout Mausmodell untersucht. Dabei wurde insbesondere die m{\"o}gliche Verbindung zur Zwangsst{\"o}rung, einer psychiatrischen Erkrankung beleuchtet. Das SPRED2-Protein kommt im menschlichen K{\"o}rper in zahlreichen Geweben vor, besonders im Hirn wurde eine ubiquit{\"a}re Expression nachgewiesen und ein Zusammenhang mit der Neurogenese und neuronaler Differenzierung vermutet. Seine regulatorische Funktion besteht in einer inhibitorischen Wirkung auf den BDNF/TrkB-ERK-Signalweg, welcher u.a. f{\"u}r die Transkription neuronaler Gene verantwortlich ist. Die verwendeten SPRED2-defizienten M{\"a}use wurden durch Insertion eines Gene-Trap Vektors in das Spred2-Gen generiert. Die Insertion verhindert letztendlich die korrekte Translation des Proteins. Von der durch weitere Verpaarung entstehenden SPRED2-Knockout Mauslinie wurden ausschließlich m{\"a}nnliche Tiere verwendet. Im Rahmen einer SPRED2-KO-Studie von der AG Schuh des Physiologischen Instituts der Universit{\"a}t W{\"u}rzburg, die u.a. die Entgleisung der HHNA mit resultierendem erh{\"o}hten Stresshormonspiegel und eine Dysregulation des Mineralhaushaltshormons Aldosteron zeigte, wurden bei den Versuchstieren zwanghafte Verhaltensmuster beobachtet. Daraufhin wurden elektrophysiologische Messungen durchgef{\"u}hrt, die auf eine Anomalie in der synaptischen {\"U}bertragung zwischen Thalamus und Amygdala hindeuteten. Erh{\"o}hte Effizienz und Erregbarkeit der amygdaloiden Neuronen f{\"u}hrten zu der morphologischen Untersuchung, die im Rahmen dieser Arbeit durchgef{\"u}hrt wurden. Da die Afferenzen des Thalamus vorwiegend in den lateralen Kern der Amygdala projizieren, wurde zun{\"a}chst dieser betrachtet. Ziel der Untersuchung war es, Erkenntnisse dar{\"u}ber zu erlangen, ob der Knockout des SPRED2-Proteins in M{\"a}usen zu einer ver{\"a}nderten Morphologie der Neuronen der lateralen Amygdala f{\"u}hrt. Falls dies der Fall sein sollte, k{\"o}nnte damit zumindest ansatzweise das zwanghafte Verhalten der SPRED2-defizienten M{\"a}usen erkl{\"a}rt werden. Die Hirne der Versuchstiere wurden nach der Golgi-Cox-Impr{\"a}gnierung nach Glaser und Van der Loos und der Einbettung in Celloidin in 150 μm dicke Scheiben geschnitten und anschließend mithilfe eines Hellfeld-Mikroskops und des Neurolucida-Systems analysiert. Quantitativ erfasst und analysiert wurden pyramidale Klasse 1-Neuronen der lateralen Amygdala inklusive absoluter Anzahl und Dichte der Spines an ihren Dendriten. Die Untersuchung zeigte bei SPRED2-KO-M{\"a}usen eine signifikante Erh{\"o}hung der mittleren L{\"a}nge des apikalen Dendriten in Branch order 3 und eine tendenzielle Erh{\"o}hung der Gesamtzahl der Spines an den Dendriten in Branch order 1-3 gegen{\"u}ber den Wildtyp-M{\"a}usen. Daraus l{\"a}sst sich folgern, dass ein Knockout des SPRED2-Proteins sich auf die Morphologie der Neuronen der lateralen Amygdala auswirkt. Die erh{\"o}hte mittlere L{\"a}nge des apikalen Dendriten in Branch order 3 und die tendenziell erh{\"o}hte Spine-Anzahl korrelieren mit der gesteigerten synaptischen {\"U}bertragung und Erregbarkeit an amygdaloiden pyramidalen Neuronen. Auf molekularer Ebene kann die Hyperaktivit{\"a}t der lateralen Amygdala als Folge der fehlenden Inhibition des BDNF/TrkB-ERK-Signalwegs und der dadurch ver{\"a}nderten Expression zahlreicher synaptischer Proteine diskutiert werden. Die ver{\"a}nderte Morphologie der Neuronen in der lateralen Amygdala kann eine Ursache f{\"u}r das zwanghafte Verhalten der M{\"a}use sein, jedoch ist anzunehmen, dass Zwangsst{\"o}rungen nicht bloß eine monokausale Ursache haben. Diese Arbeit identifiziert SPRED2 als neuen Regulator der Morphologie und Aktivit{\"a}t von Synapsen und die Amygdala als wichtige Hirnregion bei der Entstehung von Zwangsst{\"o}rungen. SPRED2 ist somit ein vielversprechender Angriffspunkt f{\"u}r andere und spezifischere Untersuchungen der Hirnfunktion und eine potenzielle genetische Ursache f{\"u}r weitere neurologische Erkrankungen.}, subject = {SPRED2}, language = {de} } @phdthesis{Oerter2018, author = {Oerter, Sabrina}, title = {Expression von Natrium/Glukose-Cotransportern im menschlichen Gehirn bei Todesf{\"a}llen durch Sch{\"a}del-Hirn-Trauma und Todesf{\"a}llen durch Ersticken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164093}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Glukosetransporter spielen eine wichtige Rolle in der Versorgung des Gehirns mit N{\"a}hrstoffen und somit f{\"u}r den Erhalt der physiologischen Zellintegrit{\"a}t. Glukose wird {\"u}ber die Blut-Hirn-Schranke (BHS) mittels spezifischen transmembranen Transportproteinen der SLC-Genfamilie (GLUT, SGLT) bef{\"o}rdert. Dabei scheint w{\"a}hrend physiologischen Bedingungen haupts{\"a}chlich der Glukosetransporter GLUT1 (SLC2A1) f{\"u}r die Energieversorgung des Gehirns zust{\"a}ndig zu sein. Die Erforschung der SGLT-Expression ist in den letzten Jahren ein wichtiger Ansatzpunkt f{\"u}r neue Behandlungsstrategien vieler Erkrankungen, wie Diabetes Mellitus, maligne Neoplasien oder eines Herzinfarkts, geworden. Jedoch ist {\"u}ber deren Expression und Funktion im menschlichen Gehirn nur wenig bekannt. Besonders die Lokalisation entlang der BHS bleibt fraglich. Ein Großteil bisheriger Forschungsarbeiten besch{\"a}ftigt sich haupts{\"a}chlich mit der Expressionsanalyse des Transporters SGLT1 im tierischen Gehirn in vivo (Poppe et al. 1997; Balen et al. 2008; Yu et al. 2013). Es konnte aufgezeigt werden, dass SGLT1 mRNA exklusiv in Neuronen und nicht an der BHS exprimiert wird. Dies wird durch in vitro Analysen einer humanen Hirnendothelzelllinie best{\"a}tigt. Demnach kann kein SGLT1 unter physiologischen Bedingungen nachgewiesen werden (Sajja et al. 2014). Im menschlichen Hirngewebe besitzen SGLTs somit keine zentrale Funktion f{\"u}r den Glukosetransport an der BHS. Im Gegensatz dazu konnte eine Expression von SGLT sowohl in vivo als auch in vitro w{\"a}hrend hypoglyk{\"a}mischen Bedingungen belegt werden (Vemula et al. 2009; Sajja et al. 2014). Die Expression der SGLT-Transporter w{\"a}hrend einer isch{\"a}mischen Hypoglyk{\"a}mie f{\"u}hrt zu der Annahme, dass diese Transporter f{\"u}r die Aufrechterhaltung der Energieversorgung des gesch{\"a}digten Hirngewebes notwendig sind. Um die physiologischen Mechanismen nach einem Glukosemangel zu untersuchen, wurden SHT-Modelle etabliert (Salvador et al. 2013). In einem experimentellen Modell des Sch{\"a}del-Hirn-Traumas im Rahmen eines DFG-gef{\"o}rdertes Projekts ist ein Expressionsverlauf von Glukosetransportern im Maushirn und in Hirnendothelzellen erarbeitet worden (Wais 2012; Salvador et al. 2015). Somit k{\"o}nnten SGLTs als Ansatzpunkt f{\"u}r den Nachweis der {\"U}berlebenszeit nach einem SHT fungieren. Die vorliegende Arbeit fokussiert sich auf die Expression der Natrium-abh{\"a}ngigen Glukosetransporter SGLT1 und SGLT2 im menschlichen Gehirn. Hierbei liegt das Hauptaugenmerk auf der Lokalisation dieser Transporter an der menschlichen BHS von post mortalem Hirngewebe. Weiterhin wird untersucht ob die Expressionsst{\"a}rke von SGLT1 und SGLT2 eine Aussage {\"u}ber die {\"U}berlebenszeit von Verstorbenen nach einer traumatisch bedingten Hirnver{\"a}nderung zul{\"a}sst. Die Lokalisation von SGLT1 und SGLT2 an der menschlichen BHS konnte durch die Etablierung eines Protokolls zur Isolation von Hirnkapillaren erfolgen. Vorab wurden alle verwendeten Antik{\"o}rper auf ihre Spezifit{\"a}t mittels siRNA Transfektion und Blockierung der Immunfluoreszenzsignale mittels immunisierten Peptids getestet. Somit ist die Spezifit{\"a}t der detektierten SGLT1- und SGLT2-Expression in menschlichen Hirnkapillaren gew{\"a}hrleistet. Anschließend wird untersucht, in welchen zeitlichem Verlauf nach einer traumatisch bedingten Hirnver{\"a}nderung die verschiedenen Formen der Glukosetransporter exprimiert werden und ob ggf. der Umfang und die Verteilung von SGLT1, SGLT2 und GLUT1 sowie das Verh{\"a}ltnis zueinander Ausk{\"u}nfte {\"u}ber eine vitale bzw. postmortale Entstehung eines Traumas bzw. dessen {\"U}berlebenszeit zul{\"a}sst. Hierf{\"u}r wird ein Expressionsschema der Glukosetransporter generiert, abh{\"a}ngig von Todeszeitpunkt und Todesursache. Es konnte festgestellt werden, dass GLUT1 nicht als Target f{\"u}r die Ermittlung der {\"U}berlebenszeit nach einem Trauma geeignet ist. Dahingegen zeigen SGLT1 und SGLT2 eine signifikante {\"A}nderung der Expressionsst{\"a}rke im contusionalen Gewebe in Abh{\"a}ngigkeit von der {\"U}berlebenszeit. Obwohl diese vorl{\"a}ufigen Daten einen neuen Ansatzpunkt f{\"u}r die forensische Fragestellung aufzeigen, m{\"u}ssen weitere Experimente mit einem erh{\"o}hten Umfang der Probenanzahl und k{\"u}rzere Zeitspannen der {\"U}berlebenszeitr{\"a}ume durchgef{\"u}hrt werden.}, subject = {Sodium-Glucose Transporter 2}, language = {de} } @phdthesis{Kaiser2018, author = {Kaiser, Markus Leonhard}, title = {Kardialer Ph{\"a}notyp und SUDEP durch Knockout des Nav1.1 Kanalgens (SCN1A) in einem Dravet-Mausmodell}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {SUDEP bezeichnet den pl{\"o}tzlichen und unerwarteten Epilepsietod ohne offensichtliche kausale Todesursache. Junge Patienten, die an der schweren infantilen enzephalo-pathischen Epilepsieform des Dravet-Syndroms (SMEI) leiden, tragen besonderes Risiko an SUDEP zu versterben. Die pathophysiologische Ursache f{\"u}r das Dravet-Syndrom liegt in einem Defekt des brain-type Natriumkanals Nav1.1. Neuere Studien zeigen, dass der urspr{\"u}nglich als hirnspezifisch geltende Kanal nicht explizit in neuronalem Gewebe, sondern auch im Herzen exprimiert wird. Ziel dieser Arbeit war es daher, die Auswirkungen des Nav1.1-Defektes auf kardialer Ebene zu evaluieren, um eine m{\"o}gliche Beteiligung von Herzrhythmusst{\"o}rungen an der {\"A}tiologie des SUDEP aufzudecken. Dazu wurde ein Knockout-Mausmodell hinsichtlich seines kardialen Ph{\"a}notyps charakterisiert. Mit Hilfe elektrokardiographischer Untersuchungen (EKG) konnte eine gesteigerte Herzfrequenz unter Stressbedingungen festgestellt werden. Die Frequenz lag sowohl bei den Versuchen unter pharmakologischem Stress mittels Isoproterenol als auch unter induziertem Stress mittels Hyperthermie bei den Dravet-Syndrom-M{\"a}usen h{\"o}her als in dem wildtypischen Kontrollkollektiv. Elektrophysiologische Untersuchungen (EPU) zeigten neben einem erh{\"o}hten Schweregrad der induzierbaren Arrhythmien, gemessen anhand eines Arrhythmie-Scores, auch eine erh{\"o}hte Quantit{\"a}t ausgel{\"o}ster Herzrhythmusst{\"o}rungen. Sowohl unter Ruhebedingungen als auch nach Induktion von Hyperthermie {\"u}berwogen die aufgezeichneten Arrhythmien bei Dravet-Syndrom-M{\"a}usen. Die Erkenntnisse dieser Studie helfen die Rolle des Nav1.1-Defektes an einer kardialen Beteiligung im Rahmen von SUDEP bei Dravet-Patienten zu beschreiben. Sie zeigen ver-schiedene kardiale Auswirkungen bei Knockout des prim{\"a}r neuronalen Natrium¬kanalgens SCN1A. Weitere Einsichten in diesen Bereich werden angemessene Risikostratifizierung f{\"u}r Epilepsie-Patienten hinsichtlich Ihres SUDEP-Risikos erm{\"o}glichen und moderne The-rapieans{\"a}tze anregen.}, subject = {Natriumkanal}, language = {de} } @article{ChtourouEngelFakhfakhetal.2018, author = {Chtourou, Hamdi and Engel, Florian Azad and Fakhfakh, Hassen and Fakhfakh, Hazem and Hammouda, Omar and Ammar, Achraf and Trabelsi, Khaled and Souissi, Nizar and Sperlich, Billy}, title = {Diurnal Variation of Short-Term Repetitive Maximal Performance and Psychological Variables in Elite Judo Athletes}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01499}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189269}, pages = {1409}, year = {2018}, abstract = {Objectives: The aim of this study was to examine the effect of time of day on short-term repetitive maximal performance and psychological variables in elite judo athletes. Methods: Fourteen Tunisian elite male judokas (age: 21 ± 1 years, height:172 ± 7 cm, body-mass: 70.0 ± 8.1 kg) performed a repeated shuttle sprint and jump ability (RSSJA) test (6 m × 2 m × 12.5 m every 25-s incorporating one countermovement jump (CMJ) between sprints) in the morning (7:00 a.m.) and afternoon (5:00 p.m.). Psychological variables (Profile of mood states (POMS-f) and Hooper questionnaires) were assessed before and ratings of perceived exertion (RPE) immediately after the RSSJA. Results: Sprint times (p > 0.05) of the six repetition, fatigue index of sprints (p > 0.05) as well as mean (p > 0.05) jump height and fatigue index (p > 0.05) of CMJ did not differ between morning and afternoon. No differences were observed between the two times-of-day for anxiety, anger, confusion, depression, fatigue, interpersonal relationship, sleep, and muscle soreness (p > 0.05). Jump height in CMJ 3 and 4 (p < 0.05) and RPE (p < 0.05) and vigor (p < 0.01) scores were higher in the afternoon compared to the morning. Stress was higher in the morning compared to the afternoon (p < 0.01). Conclusion: In contrast to previous research, repeated sprint running performance and mood states of the tested elite athletes showed no-strong dependency of time-of-day of testing. A possible explanation can be the habituation of the judo athletes to work out early in the morning.}, language = {en} }