@article{IsaiasMarzeganPezzolietal.2012, author = {Isaias, Ioannis U. and Marzegan, Alberto and Pezzoli, Gianni and Marotta, Giorgio and Canesi, Margherita and Biella, Gabriele E. M. and Volkmann, Jens and Cavallari, Paolo}, title = {A role for locus coeruleus in Parkinson tremor}, series = {Frontiers in Human Neuroscience}, volume = {5}, journal = {Frontiers in Human Neuroscience}, number = {179}, doi = {10.3389/fnhum.2011.00179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133955}, year = {2012}, abstract = {We analyzed rest tremor, one of the etiologically most elusive hallmarks of Parkinson disease(PD), in 12 consecutive PD patients during a specific task activating the locus coeruleus (LC) to investigate a putative role of noradrenaline (NA) in tremor generation and suppression. Clinical diagnosis was confirmed in all subjects by reduced dopamine reuptake transporter (DAT) binding values investigated by single photon computed tomography imaging (SPECT) with [\(^{123}\)I] N-\(\omega\)-fluoropropyl-2 \(\beta\)-carbomethoxy-3 \(\beta\)-(4-iodophenyl) tropane (FP-CIT). The intensity of tremor (i.e., the power of Electromyography [EMG] signals), but not its frequency, significantly increased during the task. In six subjects, tremor appeared selectively during the task. In a second part of the study, we retrospectively reviewed SPECT with FP-CIT data and confirmed the lack of correlation between dopaminergic loss and tremor by comparing DAT binding values of 82 PD subjects with bilateral tremor (n = 27), unilateral tremor (n = 22), and no tremor (n = 33). This study suggests a role of the LC in Parkinson tremor.}, language = {en} } @article{IsaiasVolkmannMarzeganetal.2012, author = {Isaias, Ioannis U. and Volkmann, Jens and Marzegan, Alberto and Marotta, Giorgio and Cavallari, Paolo and Pezzoli, Gianni}, title = {The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0051464}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133976}, pages = {e51464}, year = {2012}, abstract = {To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80\% chance of reduced arm ROM when putaminal dopamine content loss was >47\%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation ( at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities.}, language = {en} } @article{VolkmannAlbaneseAntoninietal.2013, author = {Volkmann, Jens and Albanese, Alberto and Antonini, Angelo and Chaudhuri, K. Ray and Clarke, Karl E. and de Bie, Rob M. A. and Deuschl, G{\"u}nther and Eggert, Karla and Houeto, Jean-Luc and Kulisevsky, Jaime and Nyholm, Dag and Odin, Per and Ostergaard, Karen and Poewe, Werner and Pollak, Pierre and Rabey, Jose Martin and Rascol, Olivier and Ruzicka, Evzen and Samuel, Michael and Speelman, Hans and Sydow, Olof and Valldeoriola, Francesc and van der Linden, Chris and Oertel, Wolfgang}, title = {Selecting deep brain stimulation or infusion therapies in advanced Parkinson's disease: an evidence-based review}, series = {Journal of Neurology}, volume = {260}, journal = {Journal of Neurology}, doi = {10.1007/s00415-012-6798-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132373}, pages = {2701-2714}, year = {2013}, abstract = {Motor complications in Parkinson's disease (PD) result from the short half-life and irregular plasma fluctuations of oral levodopa. When strategies of providing more continuous dopaminergic stimulation by adjusting oral medication fail, patients may be candidates for one of three device-aided therapies: deep brain stimulation (DBS), continuous subcutaneous apomorphine infusion, or continuous duodenal/jejunal levodopa/carbidopa pump infusion (DLI). These therapies differ in their invasiveness, side-effect profile, and the need for nursing care. So far, very few comparative studies have evaluated the efficacy of the three device-aided therapies for specific motor problems in advanced PD. As a result, neurologists currently lack guidance as to which therapy could be most appropriate for a particular PD patient. A group of experts knowledgeable in all three therapies reviewed the currently available literature for each treatment and identified variables of clinical relevance for choosing one of the three options such as type of motor problems, age, and cognitive and psychiatric status. For each scenario, pragmatic and (if available) evidence-based recommendations are provided as to which patients could be candidates for either DBS, DLI, or subcutaneous apomorphine.}, language = {en} } @article{IsaiasSpiegelBrumbergetal.2014, author = {Isaias, Ioannis Ugo and Spiegel, J{\"o}rg and Brumberg, Joachim and Cosgrove, Kelly P. and Marotta, Giorgio and Oishi, Naoya and Higuchi, Takahiro and K{\"u}sters, Sebastian and Schiller, Markus and Dillmann, Ulrich and van Dyck, Christopher H. and Buck, Andreas and Herrmann, Ken and Schloegl, Susanne and Volkmann, Jens and Lassmann, Michael and Fassbender, Klaus and Lorenz, Reinhard and Samnick, Samuel}, title = {Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson's disease}, series = {Frontiers in Aging Neuroscience}, volume = {6}, journal = {Frontiers in Aging Neuroscience}, doi = {10.3389/fnagi.2014.00213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119351}, pages = {213}, year = {2014}, abstract = {We investigated in vivo brain nicotinic acetylcholine receptor (nAChR) distribution in cognitively intact subjects with Parkinson's disease (PD) at an early stage of the disease. Fourteen patients and 13 healthy subjects were imaged with single photon emission computed tomography and the radiotracer 5-[(123)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ([(123)I]5IA). Patients were selected according to several criteria, including short duration of motor signs (<7 years) and normal scores at an extensive neuropsychological evaluation. In PD patients, nAChR density was significantly higher in the putamen, the insular cortex and the supplementary motor area and lower in the caudate nucleus, the orbitofrontal cortex, and the middle temporal gyrus. Disease duration positively correlated with nAChR density in the putamen ipsilateral (ρ = 0.56, p < 0.05) but not contralateral (ρ = 0.49, p = 0.07) to the clinically most affected hemibody. We observed, for the first time in vivo, higher nAChR density in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our findings support the notion of an up-regulated cholinergic activity at the striatal and possibly cortical level in cognitively intact PD patients at an early stage of disease.}, language = {en} } @article{WangIpKlausKarikarietal.2017, author = {Wang Ip, Chi and Klaus, Laura-Christin and Karikari, Akua A. and Visanji, Naomi P. and Brotchie, Jonathan M. and Lang, Anthony E. and Volkmann, Jens and Koprich, James B.}, title = {AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease}, series = {Acta Neuropathologica Communications}, volume = {5}, journal = {Acta Neuropathologica Communications}, number = {11}, doi = {10.1186/s40478-017-0416-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159429}, year = {2017}, abstract = {α-Synuclein is a protein implicated in the etiopathogenesis of Parkinson's disease (PD). AAV1/2-driven overexpression of human mutated A53T-α-synuclein in rat and monkey substantia nigra (SN) induces degeneration of nigral dopaminergic neurons and decreases striatal dopamine and tyrosine hydroxylase (TH). Given certain advantages of the mouse, especially it being amendable to genetic manipulation, translating the AAV1/2-A53T α-synuclein model to mice would be of significant value. AAV1/2-A53T α-synuclein or AAV1/2 empty vector (EV) at a concentration of 5.16 x 10\(^{12}\) gp/ml were unilaterally injected into the right SN of male adult C57BL/6 mice. Post-mortem examinations included immunohistochemistry to analyze nigral α-synuclein, Ser129 phosphorylated α-synuclein and TH expression, striatal dopamine transporter (DAT) levels by autoradiography and dopamine levels by high performance liquid chromatography. At 10 weeks, in AAV1/2-A53T α-synuclein mice there was a 33\% reduction in TH+ dopaminergic nigral neurons (P < 0.001), 29\% deficit in striatal DAT binding (P < 0.05), 38\% and 33\% reductions in dopamine (P < 0.001) and DOPAC (P < 0.01) levels and a 60\% increase in dopamine turnover (homovanilic acid/dopamine ratio; P < 0.001). Immunofluorescence showed that the AAV1/2-A53T α-synuclein injected mice had widespread nigral and striatal expression of vector-delivered A53T-α-synuclein. Concurrent staining with human PD SN samples using gold standard histological methodology for Lewy pathology detection by proteinase K digestion and application of specific antibody raised against human Lewy body α-synuclein (LB509) and Ser129 phosphorylated α-synuclein (81A) revealed insoluble α-synuclein aggregates in AAV1/2-A53T α-synuclein mice resembling Lewy-like neurites and bodies. In the cylinder test, we observed significant paw use asymmetry in the AAV1/2-A53T α-synuclein group when compared to EV controls at 5 and 9 weeks post injection (P < 0.001; P < 0.05). These data show that unilateral injection of AAV1/2-A53T α-synuclein into the mouse SN leads to persistent motor deficits, neurodegeneration of the nigrostriatal dopaminergic system and development of Lewy-like pathology, thereby reflecting clinical and pathological hallmarks of human PD.}, language = {en} }