@phdthesis{Lechermeier2024, author = {Lechermeier, Carina}, title = {Neuroanatomical and functional evaluation of ADHD candidate genes in the model organism zebrafish (\(Danio\) \(rerio\))}, doi = {10.25972/OPUS-37108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent developmental disorders, affecting 5.9\% children and adolescents and 2.5\% adults worldwide. The core characteristics are age-inappropriate levels of hyperactivity, impulsivity and inattention, often accompanied by co-morbidities such as mood and conduct disorders as wells as learning deficits. In the majority of cases, ADHD is caused by an interplay of accumulated genetic and environmental risk factors. Twin studies report a very high heritability of 70-80\%, however, common genetic variants in the population only explain a third of the heritability. The rest of the genetic predisposition is composed of rare copy number variations (CNVs) and gene x environment interactions including epigenetic alterations. Through genome wide association (GWAS) and linkage studies a number of likely candidate genes were identified. A handful of them play a role in dopamine or noradrenaline neurotransmitter systems, simultaneously those systems are the main targets of common drug treatment approaches. However, for the majority of candidates the biological function in relation to ADHD is unknown. It is crucial to identify those functions in order to gain a deeper understanding of the pathomechanism and genetic networks potentially responsible for the disorder. This work focuses on the three candidate genes GFOD1, SLC2A3 and LBX1 and their role in the healthy organism as well as in case of ADHD. The neuroanatomy was regarded through expression analysis and various behavioural assays of activity were performed to link alterations on the transcript level to phenotypes associated with the neurodevelopmental disorder. Zebrafish orthologues of the human risk genes were identified and extensive temporal and spacial expression characterisation performed via RNA in situ hybridisation. Through morpholino derived knock-down and mRNA overexpression zebrafish models with subsequent behavioural analysis, both hyper- and hypoactive phenotypes were discovered. Additional expression analysis through double in situ hybridisation revealed a co-localisation during zebrafish neurodevelopment of each gfod1 and slc2a3a together with gad1b, a marker for GABAergic neurons. Interestingly, both risk genes have previously been associated with glucose homeostasis and energy metabolism, which when disrupted could lead to alterations in signal transduction and neuron survival. Likewise, Lbx1 plays a pivotal role in GABAergic versus glutamatergic neuron specification during spinal cord and hindbrain development in mice and chicken. Preliminary results of this work suggest a similar role in zebrafish. Taken together, those findings on the one hand represent a sturdy basis to con- tinue studies of the function of the genes and on the other hand open up the opportunity to investigate novel aspects of ADHD research by exploring the role of the GABAergic neurotransmitter system or the connection between energy metabolism and psychiatric disorders.}, subject = {Aufmerksamkeitsdefizit-Syndrom}, language = {en} } @phdthesis{Fohmann2024, author = {Fohmann, Ingo}, title = {The Role of Sphingosine 1-phosphate and S1PR1-3 in the Pathophysiology of Meningococcal Meningitis}, doi = {10.25972/OPUS-36976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369764}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Neisseria meningitidis (N. meningitidis) is an obligate human pathogen which causes live-threatening sepsis and meningitis. The fatality rate after meningococcal infection is high and surviving patients often suffer from severe sequelae. To cause meningitis, N. meningitidis must overcome the endothelium of the blood-brain barrier. The bacterium achieves this through the interaction with endothelial surface receptors leading to alternations of the cellular metabolism and signaling, which lastly results in cellular uptake and barrier traversal of N. meningitidis. Sphingosine 1-phosphate (S1P) is a lipid mediator that belongs to the class of sphingolipids and regulates the integrity of the blood-brain barrier through the interaction with its cognate receptors S1P receptors 1-3 (S1PR1-3). In this study, high performance liquid chromatography coupled with mass spectrometry (LC-MS/MS) was used to generate a time-resolved picture of the sphingolipid metabolism in a brain endothelial cell line (hCMEC/D3) upon meningococcal infection. Among various changes, S1P was elevated in the cellular compartment as well as in the supernatant of infected hCMEC/D3s. Analysis of mRNA expression in infected hCMEC/D3s with quantitative real-time polymerase chain reaction (RT-qPCR) revealed that the increase in S1P could be attributed to the enhanced expression of the S1P-generating enzyme sphingosine kinase 1 (SphK1). Antibody-based detection of SphK1 protein or phosphorylation at SphK1 residue Serine 225 in hCMEC/D3 plasma membrane fractions via Western Blot revealed that N. meningitidis also induced SphK1 phospho-activation and recruitment to the plasma membrane. Importantly, recruitment of SphK1 to the plasma membrane increases the probability of substrate encounter, thus elevating SphK activity. Enhanced SphK activity was also reflected on a functional level, as detected by a commercially available ATP depletion assay used for measuring the enzymatic activity of SphK. Infection of hCMEC/D3 cells with pilus-deficient mutants resulted in a lower SphK activation compared to the N. meningitidis wild type strain. hCMEC/D3 treatment with pilus-enriched protein fractions showed SphK activation similar to the infection with living bacteria and could be ascribed to pilus interaction with the membrane-proximal domain of cellular surface receptor CD147. Inhibition of SphK1 or SphK2 through pre-treatment with specific inhibitors or RNA interference reduced uptake of N. meningitidis into hCMEC/D3 cells, as measured with Gentamicin protection assays. Released S1P induced the phospho-activation of epidermal growth factor receptor (EGFR) via S1PR2 activation, whose expression was also increasing during infection. Furthermore, S1PR2 blockage had a preventive effect on bacterial invasion into hCMEC/D3 cells. On the contrary, activation of S1PR1+3 also reduced bacterial uptake, indicating an opposing regulatory role of S1PR1+3 and S1PR2 during N. meningitidis uptake. Moreover, SphK2 inhibition prevented inflammatory cytokine expression as well as release of interleukin-8 after N. meningitidis infection. Taken together, this study demonstrates the central role of S1P and its cognate receptors S1PR1-3 in the pathophysiology of meningococcal meningitis.}, subject = {Blut-Hirn-Schranke}, language = {en} }