@phdthesis{Mueller2012, author = {M{\"u}ller, Stephanie}, title = {Identification of early molecular changes associated with Fumonisin B1-induced carcinogenesis in vivo and in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71336}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Fumonisin B1 (FB1) is a mycotoxin produced by various Fusarium species and constitutes a major contaminant of maize worldwide. A 2-year carcinogenicity study of the National Toxicology Program (NTP) in Fischer N344 rats showed that male rats were most susceptible to FB1-induced tumor formation in the kidney. Histopathologically, a rare and highly malignant tumor type originating from the proximal tubules of rat kidney with increased potential for invasion and metastasis was identified. However, mechanisms underlying the FB1-induced carcinogenesis in kidneys of male rats are still not clear. Previous studies have shown that FB1-mediated disruption of sphingolipid metabolism via inhibition of ceramide synthase is a primary key event in FB1 toxicity. The disruption of sphingolipid metabolism may cause time- and dose-related changes in the relative balance of various bioactive intermediates. Furthermore, the ability of FB1 to induce renal cell death and subsequent compensatory cell proliferation is well known, but it does not completely explain the invasive growth characteristics and exceptionally high metastatic potential of FB1-induced tumors. Considering the complexity of sphingolipid metabolism and the fact that various sphingolipids (e.g. ceramide, sphingoid bases and their respective 1-phosphates) act on opposing signaling pathways, it is hypothesized that the balance between individual sphingolipids and thus the overall cellular response to FB1 may shift with time and by continuing FB1 exposure, resulting in the disruption of specific cell signaling pathways, which may promote tumor formation in kidney. To identify early FB1-induced gene expression patterns in the kidney, which may be associated with sphingolipid-mediated signaling pathways in cancer, a short-term i.p. study on FB1 in male Sprague Dawley rats was performed and changes in gene expression were analyzed using a qRT-PCR array that comprises 84 relevant genes of 6 pathways pivotally involved in the formation of cancer. Furthermore, apoptosis and cell proliferation as well as changes in specific sphingolipids were investigated in FB1-treated kidneys. As shown by classical histopathology (H\&E) and (immuno)-histochemical staining (TUNEL and BrdU), FB1 caused a time- and dose-dependent increase in tubular apoptosis in the cortex and OSOM of the kidney, which was compensated by the induction of proliferation in the affected areas. HPLC-MS/MS analysis of bioactive sphingolipids demonstrated that FB1 induced a marked elevation of the pro-apoptotic sphingoid bases sphinganine and sphingosine, which paralleled the time- and dose-dependent increase in renal tubular apoptosis. With prolonged exposure to FB1, increased metabolic conversion of the accumulated sphinganine to the sphinganine-1-phosphate, a second messenger with anti-apoptotic and proliferative properties, was observed in kidney. This finding was compliant with the increased regenerative cell proliferation in the cortex and OSOM. In addition to effects on sphingoid bases and their 1-phosphate metabolites, this study, for the first time, demonstrated reduced levels of specific ceramides in rat kidney after FB1 exposure. In particular, C16-ceramide, which is a widespread constituent of membrane-bound complex sphingolipids involved in cell adhesion, was time- and dose-dependently decreased after treatment with FB1. Besides its role as component of the cell membrane, C16-ceramide functions as a signaling molecule for the initiation of apoptosis in response to various stress stimuli. Under conditions of chronic FB1 exposure, a significant reduction in pro-apoptotic C16-ceramide together with markedly increased levels of anti-apoptotic and proliferation-promoting sphingoid base 1-phosphates may thus favor resistance to stress-induced apoptosis and facilitate the survival of abnormal cells with potential to initiate tumor formation. Our study also revealed that early exposure to FB1 resulted in increased expression of a plethora of genes involved in tumor initiation as well as tumor progression. While single FB1 exposure was demonstrated to predominately induce gene expression of proto-oncogenic transcription factors (e.g. Fos, Jun, Myc) and apoptotis-related genes (e.g. members of the tumor-necrosis factor family), repeated exposure resulted in marked upregulation of genes mediating cell survival and cell proliferation (e.g. Bcl-XL, Bcl-2, Nfκb1 and Egfr). Moreover, continued exposure to FB1 initiated increased expression of genes critically involved in tumor migration, adhesion, invasion and metastasis. A close correlation was established between gene expression changes in response to FB1 and known signaling pathways mediated by extracellular or intracellular action of sphingoid base 1-phosphates - bioactive lipids that were markedly increased after FB1 treatment. In particular, genes encoding components of the plasminogen activator system were abundantly upregulated. These mediate invasion and metastasis in response to So1P, and may hence particularly promote the formation of highly aggressive and invasive tumors in kidney as observed after chronic exposure to FB1. Thus, it is conceivable that upregulation of a majority of genes in response to FB1 may be a direct or indirect consequence of increased So1P signaling. Another aim of this study was to identify differences in the organ-specific susceptibility for tumor formation by comparing FB1-mediated effects on apoptosis, cell proliferation, sphingolipids, and selected cancer-related genes in kidney and liver. Collectively, the present results revealed that kidney and liver showed marked differences in several endpoints of FB1 toxicity, which seemed to be primarily associated with their different susceptibility to FB1-mediated alterations in sphingolipid metabolism. The strong correlation between histopathological lesions and alterations in sphingolipid metabolism as well as sphingoid base 1-phosphate accumulation and concomitant S1P receptor expression suggested that tumor formation and progression to highly malignant carcinomas seems to be rather favored in kidney compared to liver. However, genes mostly deregulated by FB1 treatment in kidney (PAI-1, Thbs1 and Itga2) were also found to be induced in liver. To verify FB1-induced gene expression in kidney, normal rat tubular epithelial (NRK-52E) cells were analyzed for FB1-induced expression changes of the same cancer-related genes as in vivo. The results of qRT-PCR analysis revealed that gene expression changes in NRK-52E cells after FB1 treatment strongly correlated with those found in rat kidney and paralleled the marked alterations in sphingolipid metabolism. Furthermore, a good correlation between FB1-induced expression changes of cancer-related genes obtained in vivo and in vitro and those known to be mediated by bioactive sphingoid base 1-phosphates in cancer was established. Moreover, experiments modeling the invasive behavior of NRK-52E cells showed that FB1 may enhance cell invasion, which also correlated with both the increase in invasion- and metastasis-associated genes and bioactive sphingoid base 1-phophates. Importantly, NRK-52E cells basally expressed the S1P receptors S1P2 and S1P3, which are known to be involved in tumor migration and invasion. Since these receptors were also identified as most abundant S1PRs in kidneys of male Sprague Dawley rats, they may present important mediators of gene expression and invasion in response to FB1 in vivo. In summary, FB1-mediated disruption of sphingolipid metabolism and subsequent time- and dose-related increase in intermediates, such as bioactive sphingoid base 1-phosphates, correlate with early changes in genes and signaling pathways that may mediate loss of growth control, replication, evasion of apoptosis, cell motility and invasion, and thus favor renal tumor formation in response to FB1. However, to clarify whether the obtained gene expression changes in cancer-related genes in kidney are specific to the biological action of sphingoid base 1-phosphates and their respective receptors, further mechanistic studies are necessary.}, subject = {Nephrotoxizit{\"a}t}, language = {en} } @phdthesis{Moro2011, author = {Moro, Sabrina}, title = {Identification of target proteins of furan reactive metabolites in rat liver}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Furan was recently found to be present in a variety of food items that undergo heat treatment. It is known to act as a potent hepatotoxin and liver carcinogen in rodents. In a 2-year bioassay, chronic furan administration to rats was shown to cause hepatocellular adenomas and carcinomas and very high incidences of cholangiocarcinomas even at the lowest furan dose tested (2.0 mg/kg bw). However, the mechanisms of furan-induced tumor formation are poorly understood. Furan is metabolized by cytochrome P450 (CYP) enzymes, predominantly CYP2E1, to its major metabolite cis-2-butene-1,4-dial (BDA). BDA is thought to be the key mediator of furan toxicity and carcinogenicity and was shown to react with cellular nucleophiles such as nucleosides and amino acid residues in vitro. It is well known that covalent protein binding may lead to cytotoxicity, but the cellular mechanisms involved remain to be elucidated. Since covalent binding of reactive intermediates to a target protein may result in loss of protein function and subsequent damage to the cell, the aim of this study was to identify furan target proteins to establish their role in the pathogenesis of furan-associated liver toxicity and carcinogenicity. In order to identify target proteins of furan reactive metabolites, male F344/N rats were administered [3,4-14C]-furan. Liquid scintillation counting of protein extracts revealed a dose-dependent increase of radioactivity covalently bound to liver proteins. After separation of the liver protein extracts by two-dimensional gel electrophoresis and subsequent detection of radioactive spots by fluorography, target proteins of reactive furan intermediates were identified by mass spectrometry and database search via Mascot. A total of 61 putative target proteins were consistently found to be adducted in 3 furan-treated rats. The identified proteins represent - among others - enzymes, transport proteins, structural proteins and chaperones. Pathway mapping tools revealed that target proteins are predominantly located in the cytosol and mitochondria and participate in glucose metabolism, mitochondrial β-oxidation of fatty acids, and amino acid degradation. These findings together with the fact that ATP synthase β subunit was also identified as a putative target protein strongly suggest that binding of furan reactive metabolites to proteins may result in mitochondrial injury, impaired cellular energy production, and altered redox state, which may contribute to cell death. Moreover, several proteins involved in the regulation of redox homeostasis represent putative furan target proteins. Loss of function of these proteins by covalent binding of furan reactive metabolites may impair cellular defense mechanisms against oxidative stress, which may also result in cell death. Besides the potential malfunction of whole pathways due to loss of functions of several participating proteins, loss of function of individual proteins which are involved in various cellular processes such as transport processes across the mitochondrial membranes, cell signaling, DNA methylation, blood coagulation, and bile acid transport may also contribute to furan-induced cytotoxicity and carcinogenicity. Covalent binding of reactive metabolites to cellular proteins may result in accumulation of high amounts of unfolded or damaged proteins in the endoplasmic reticulum (ER). In response to this ER stress, the cell can activate the unfolded protein response (UPR) to repair or degrade damaged proteins. To address whether binding of furan reactive metabolites to cellular proteins triggers activation of the UPR, semiquantitative PCR and TaqMan® real-time PCR were performed. In the case of UPR activation, semiquantitative PCR should show enhanced splicing of X-box binding protein-1 (XBP1) mRNA (transcription factor and key regulator of the UPR) and TaqMan® real-time PCR should determine an increased expression of UPR target genes. However, our data showed no evidence for activation of the UPR in the livers of rats treated either with a single hepatotoxic dose or with a known carcinogenic dose for 4 weeks. This suggests either that furan administration does not induce ER stress through accumulation of damaged proteins or that activation of the UPR is disrupted. Consistent with the latter, glucose-regulated protein 78 (GRP78), identified as a target protein in our study, represents an important mediator involved in activation of the UPR whose inhibition was shown to impair induction of the UPR. Thus, adduct formation and inactivation of GRP78 by furan metabolites may disturb activation of the UPR. In addition to impaired activation of UPR, protein repair and degradation functions may be altered, because several proteins involved in these processes also represent target proteins of furan and thus may show impaired functionality. Taken together...}, subject = {Furan}, language = {en} } @phdthesis{Roman2006, author = {Roman, Adriana}, title = {Erh{\"o}hung des Genomschadens in der humanen Brustkrebszelllinie MCF-7 durch die Induktion vermehrter Zellproliferation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23501}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die karzinogene Aktivit{\"a}t von {\"O}stradiol wurde bereits in mehreren Studien nachgewiesen und scheint das Ergebnis einer Kombination von hormonellen und genotoxischen Mechanismen zu sein. In der vorliegenden Arbeit konnte ein weiterer Mechanismus der Induktion chromosomaler Sch{\"a}den durch {\"O}stradiol festgestellt werden. Es kam in der {\"o}strogenrezeptorpositiven Zelllinie MCF-7 zu einer konzentrationsabh{\"a}ngigen Steigerung der Zellproliferation und Mikrokernsteigerung, als Maß f{\"u}r die chromosomale Sch{\"a}digung. In der {\"o}strogenrezeptornegativen Zelllinie MDA-MB231 konnte weder einer Steigerung der Zellproliferation, noch eine vermehrte Mikrokerninduktion nachgewiesen werden. Die Vermutung ist, dass die Zellen, durch den Proliferationsdruck den Zellteilungszyklus schneller durchlaufen und infolgedessen vermehrt Fehler im Replikationsablauf entstehen k{\"o}nnen. Zudem k{\"o}nnen wichtige Reparaturmechanismen oder Zellzykluskontrollpunkte nicht mehr ad{\"a}quat agieren.}, language = {de} }