@phdthesis{Slobodskyy2005, author = {Slobodskyy, Anatoliy}, title = {Diluted magnetic semiconductor Resonant Tunneling Structures for spin manipulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18263}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work we investigate magnetic resonant tunneling diode (RTD) structures for spin manipulation. All-II-VI semiconductor RTD structures based on [Zn,Be]Se are grown by molecular beam epitaxy. We observe a strong, magnetic field induced, splitting of the resonance peaks in the I-V characteristics of RTDs with [Zn,Mn]Se diluted magnetic semiconductors (DMS) quantum well. The splitting saturates at high fields and has strong temperature dependence. A phonon replica of the resonance is also observed and has similar behaviour to the peak. We develop a model based on the giant Zeeman splitting of the spin levels in the DMS quantum well in order to explain the magnetic field induced behaviour of the resonance.}, subject = {Resonanz-Tunneldiode}, language = {en} } @phdthesis{Rueth2011, author = {R{\"u}th, Michael}, title = {A Comprehensive Study of Dilute Magnetic Semiconductor Resonant Tunneling Diodes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71472}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {We investigate transport measurements on all II-VI semiconductor resonant tunneling diodes (RTDs). Being very versatile, the dilute magnetic semiconductor (DMS) system (Zn,Be,Mn,Cd)Se is a perfect testbed for various spintronic device designs, as it allows for separate control of electrical and magnetic properties. In contrast to the ferromagnetic semiconductor (Ga,Mn)As, doping ZnSe with Mn impurities does not alter the electrical properties of the semiconductor, as the magnetic dopant is isoelectric in the ZnSe host.}, subject = {Semimagnetischer Halbleiter}, language = {en} } @phdthesis{Henn2014, author = {Henn, Tobias}, title = {Hot spin carriers in cold semiconductors : Time and spatially resolved magneto-optical Kerr effect spectroscopy of optically induced electron spin dynamics in semiconductor heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The present thesis "Hot spin carriers in cold semiconductors" investigates hot carrier effects in low-temperature photoinduced magneto-optical Kerr effect (MOKE) microscopy of electron spins in semiconductor heterostructures. Our studies reveal that the influence of hot photocarriers in magneto-optical pump-probe experiments is twofold. First, it is commonly assumed that a measurement of the local Kerr rotation using an arbitrary probe wavelength maps the local electron spin polarization. This is the fundamental assumption that underlies the widely used two-color MOKE microscopy technique. Our continuous-wave (cw) spectroscopy experiments demonstrate that this assumption is not correct. At low lattice temperatures the nonresonant spin excitation by the focused pump laser inevitably leads to a strong heating of the electron system. This heating, in turn, locally modifies the magneto-optical coefficient which links the experimentally observed Kerr rotation to the electron spin polarization. As a consequence, the spin-induced local Kerr rotation is augmented by spin-unrelated changes in the magneto-optical coefficient. A spatially resolved measurement of the Kerr rotation then does not correctly map the electron spin polarization profile. We demonstrate different ways to overcome this limitation and to correctly measure the electron spin profile. For cw spectroscopy we show how the true local electron spin polarization can be obtained from a quantitative analysis of the full excitonic Kerr rotation spectrum. Alternatively, picosecond MOKE microscopy using a spectrally broad probe laser pulse mitigates hot-carrier effects on the magneto-optical spin detection and allows to directly observe the time-resolved expansion of optically excited electron spin packets in real-space. Second, we show that hot photocarriers strongly modify the spin diffusion process. Owing to their high kinetic energy, hot carriers greatly enhance the electron spin diffusion coefficient with respect to the intrinsic value of the undisturbed system. Therefore, for steady-state excitation the spin diffusivity is strongly enhanced close to the pump spot center where hot electrons are present. Similarly, for short delays following pulsed excitation the high initial temperature of the electrons leads to a very fast initial expansion of the spin packet which gradually slows as the electrons cool down to the lattice temperature. While few previous publications have recognized the possible influence of hot carriers on the electron spin transport properties, the present work is the first to directly observe and quantify such hot carrier contributions. We develop models which for steady-state and pulsed excitation quantitatively describe the experimentally observed electron spin diffusion. These models are capable of separating the intrinsic spin diffusivity from the hot electron contribution, and allow to obtain spin transport parameters of the undisturbed system. We perform extensive cw and time-resolved spectroscopy studies of the lattice temperature dependence of the electron spin diffusion in bulk GaAs. Using our models we obtain a consistent set of parameters for the intrinsic temperature dependence of the electron spin diffusion coefficient and spin relaxation time and the hot carrier contributions which quantitatively describes all experimental observations. Our analysis unequivocally demonstrates that we have, as we believe for the first time, arrived at a coherent understanding of photoinduced low-temperature electron spin diffusion in bulk semiconductors.}, subject = {Galliumarsenid}, language = {en} } @phdthesis{Frey2011, author = {Frey, Alexander}, title = {Spin-Dependent Tunneling and Heterovalent Heterointerface Effects in Diluted Magnetic II-VI Semiconductor Heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78133}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The contribution of the present thesis consists of three parts. They are centered around investigating certain semiconductor heterointerfaces relevant to spin injection, exploring novel, diluted magnetic single barrier tunneling structures, and further developing diluted magnetic II-VI resonant tunneling diodes.}, subject = {Zwei-Sechs-Halbleiter}, language = {en} } @phdthesis{Bach2006, author = {Bach, Peter}, title = {Growth and characterization of NiMnSb-based heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17771}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this work heterostructures based on the half-Heusler alloy NiMnSb have been fabricated and characterized. NiMnSb is a member of the half-metallic ferromagnets, which exhibit an electron spin-polarization of 100\% at the Fermi-level. For fabrication of these structures InP substrates with surface orientations of (001),(111)A and (111)B have been used. The small lattice mismatch of NiMnSb to InP allows for pseudomorphic layers, the (111) orientation additionally makes the formation of a half-metallic interface possible. For the growth on InP(001), procedures for the substrate preparation, growth of the lattice matched (In,Ga)As buffer layer and of the NiMnSb layer have been developed. The effect of flux-ratios and substrate temperatures on the MBE growth of the buffer as well as of the NiMnSb layer have been investigated and the optimum conditions have been pointed out. NiMnSb grows in the layer-by-layer Frank-van der Merwe growth mode, which can be seen by the intensity oscillations of the RHEED specular spot during growth. RHEED and LEED measurements show a flat surface and a well-defined surface reconstruction. High resolution x-ray measurements support this statement, additionally they show a high crystalline quality. Measurements of the lateral and the vertical lattice constant of NiMnSb films on (001) oriented substrates show that layers above a thickness of 20nm exhibit a pseudomorphic as well as a relaxed part in the same layer. Whereas layers around 40nm show partly relaxed partitions, these partitions are totally relaxed for layers above 100nm. However, even these layers still have a pseudomorphic part. Depth-dependent x-ray diffraction experiments prove that the relaxed part of the samples is always on top of the pseudomorphic part. The formation and propagation of defects in these layers has been investigated by TEM. The defects nucleate early during growth and spread until they form a defect network at a thickness of about 40nm. These defects are not typical misfit dislocations but rather antiphase boundaries which evolve in the Mn/Sb sublattice of the NiMnSb system. Dependent on the thickness of the NiMnSb films different magnetic anisotropies can be found. For layers up to 15nm and above 25nm a clear uniaxial anisotropy can be determined, while the layers with thicknesses in between show a fourfold anisotropy. Notably the easy axis for the thin layers is perpendicular to the easy axis observed for the thick layers. Thin NiMnSb layers show a very good magnetic homogeneity, as can be seen by the very small FMR linewidth of 20Oe at 24GHz. However, the increase of the linewidth with increasing thickness shows that the extrinsic damping gets larger for thicker samples which is a clear indication for magnetic inhomogeneities introduced by crystalline defects. Also, the magnetic moment of thick NiMnSb is reduced compared to the theoretically expected value. If a antiferromagnetic material is deposited on top of the NiMnSb, a clear exchange biasing of the NiMnSb layer can be observed. In a further step the epitaxial layers of the semiconductor ZnTe have been grown on these NiMnSb layers, which enables the fabrication of NiMnSb/ZnTe/NiMnSb TMR structures. These heterostructures are single crystalline and exhibit a low surface and interface roughness as measured by x-ray reflectivity. Magnetic measurements of the hysteresis curves prove that both NiMnSb layers in these heterostructures can switch separately, which is a necessary requirement for TMR applications. If a NiMn antiferromagnet is deposited on top of this structure, the upper NiMnSb layer is exchange biased by the antiferromagnet, while the lower one is left unaffected. Furthermore the growth of NiMnSb on (111) oriented substrates has been investigated. For these experiments, InP substrates with a surface orientation of (111)A and (111)B were used, which were miscut by 1 to 2° from the exact orientation to allow for smoother surfaces during growth. Both the (In, Ga)As buffer as well as the NiMnSb layer show well defined surface reconstructions during growth. X-ray diffraction experiments prove the single crystalline structure of the samples. However, neither for the growth on (111)A nor on (111)B a perfectly smooth surface could be obtained during growth, which can be attributed to the formation of pyramid-like facets evolving as a result of the atomic configuration at the surface. A similar relaxation behavior as NiMnSb layers on (001) oriented InP could not be observed. RHEED and x-ray diffraction measurements show that above a thickness of about 10nm the NiMnSb layer begins to relax, but remnants of pseudomorphic parts could not be found. Magnetic measurements show that the misorientation of the substrate crystal has a strong influence on the magnetic anisotropies of NiMnSb(111) samples. In all cases a uniaxial anisotropy could be observed. The easy axis is always aligned parallel to the direction of the miscut of the substrate.}, subject = {Nickelverbindungen}, language = {en} }